1
|
Tuli HS, Bhushan S, Kumar A, Aggarwal P, Sak K, Ramniwas S, Vashishth K, Behl T, Rana R, Haque S, Prieto MA. Autophagy Induction by Scutellaria Flavones in Cancer: Recent Advances. Pharmaceuticals (Basel) 2023; 16:302. [PMID: 37259445 PMCID: PMC9962484 DOI: 10.3390/ph16020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 07/28/2024] Open
Abstract
In parallel with a steady rise in cancer incidence worldwide, the scientific community is increasingly focused on finding novel, safer and more efficient modalities for managing this disease. Over the past decades, natural products have been described as a significant source of new structural leads for novel drug candidates. Scutellaria root is one of the most studied natural products because of its anticancer potential. Besides just describing the cytotoxic properties of plant constituents, their molecular mechanisms of action in different cancer types are equally important. Therefore, this review article focuses on the role of the Scutellaria flavones wogonin, baicalein, baicalin, scutellarein and scutellarin in regulating the autophagic machinery in diverse cancer models, highlighting these molecules as potential lead compounds for the fight against malignant neoplasms. The knowledge that autophagy can function as a dual-edged sword, acting in both a pro- and antitumorigenic manner, further complicates the issue, revealing an amazing property of flavonoids that behave either as anti- or proautophagic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (University), Mullana, Ambala 133207, India
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Samba 181143, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (P.B.T.I.), Phase VIII, Mohali 160071, India
| | - Poonam Aggarwal
- The Basic Research Laboratory, Center for Cancer Research, National Institutes of Health, Frederick, MD 20892, USA
| | | | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, Post Graduate Institute of Medical Education and Rsearch (P.G.I.M.E.R.), Chandigarh 160012, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi 122016, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
2
|
Li SY, Wang WJ, Li QY, Yang PH, Li XL, Yan Y, Yuan Y, Feng YB, Hong M. Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Front Pharmacol 2022; 13:884822. [PMID: 36210831 PMCID: PMC9538923 DOI: 10.3389/fphar.2022.884822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese herbal medicines offer a rich source of anti-cancer drugs. Differences between the pharmacology of Chinese herbal medicines and modern synthetic chemicals hinder the development of drugs derived from herbal products. To address this challenge, novel omics approaches including transcriptomics, proteomics, genomics, metabolomics, and microbiomics have been applied to dissect the pharmacological benefits of Chinese herbal medicines in cancer treatments. Numerous Chinese herbal medicines have shown potential anti-tumor effects on different gastrointestinal (GI) cancers while eliminating the side effects associated with conventional cancer therapies. The present study aimed to provide an overview of recent research focusing on Chinese herbal medicines in GI cancer treatment, based on omics approaches. This review also illustrates the potential utility of omics approaches in herbal-derived drug discovery. Omics approaches can precisely and efficiently reveal the key molecular targets and intracellular interaction networks of Chinese herbal medicines in GI cancer treatment. This study summarizes the application of different omics-based approaches in investigating the effects and mechanisms of Chinese herbal medicines in GI cancers. Future research directions are also proposed for this area of study.
Collapse
Affiliation(s)
- Si-Yi Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, Guangzhou, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Wei-Jia Wang
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Qiu-Yue Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng-Hui Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Long Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Yuan
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Yi-Bin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Yi-Bin Feng, ; Ming Hong,
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
- *Correspondence: Yi-Bin Feng, ; Ming Hong,
| |
Collapse
|
3
|
Pang H, Wu T, Peng Z, Tan Q, Peng X, Zhan Z, Song L, Wei B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. J Bone Oncol 2022; 33:100415. [PMID: 35573641 PMCID: PMC9091934 DOI: 10.1016/j.jbo.2022.100415] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Baicalin causes apoptosis and autophagy through accumulating ROS to suppress PI3K/Akt/mTOR, ERK1/2 and β-catenin pathways in OS cells. Baicalin-induced autophagosome further triggers apoptosis. Baicalin-induced ROS and Ca2+ interactions induce apoptosis. Baicalin molecule targets PI3Kγ, inhibiting downstream effectors AKT and mTOR.
Baicalin, a flavonoid derivative, exerts antitumor activity in a variety of neoplasms. However, whether baicalin exerts antitumor effects on osteosarcoma cells remains to be elucidated. In this study, treatment with baicalin reduced the proliferation and invasive potential of osteosarcoma cells and reduced the mitochondrial membrane potential, which eventually caused mitochondrial apoptosis. In addition, baicalin increased intercellular Ca2+ and ROS concentrations. Baicalin-induced apoptosis was confirmed by enhanced Bax, cleaved caspase-3, and cleaved PARP levels and decreased Bcl-2 levels. The increase in LC3-II and p62 suggested that baicalin induced autophagosome formation but ultimately inhibited downstream autophagy. Moreover, apoptosis induced by baicalin was attenuated by the addition of 3-MA. Furthermore, we found that baicalin inhibited the PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. Chelation of free Ca2+ by BAPTA-AM also inhibited both apoptosis induction and ROS concentration changes. Finally, NAC pretreatment reversed baicalin treatment outcomes, including the increase in Ca2+ concentration, induction of apoptosis and autophagy, and inhibition of the pathways. Molecular docking results indicated that baicalin might interact with the structural domain of PI3Kγ. Thus, baicalin may be considered a potential candidate for osteosarcoma treatment.
Collapse
Affiliation(s)
- He Pang
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhonghua Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qichao Tan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xin Peng
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zeyu Zhan
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Corresponding authors.
| |
Collapse
|
4
|
Zhou C, Zhou H, Zhang F, Hao L, Guo J. Active Ingredients and Potential Mechanisms of the Gan Jiang-Huang Qin-Huang Lian-Ren Shen Decoction against Ulcerative Colitis: A Network Pharmacology and Molecular Docking-Based Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1925718. [PMID: 34539797 PMCID: PMC8445727 DOI: 10.1155/2021/1925718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/01/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ulcerative colitis (UC), a chronic and nonspecific inflammatory bowel disease, seriously affects the quality of patients' life. Han Re Bing Yong Fa (treating diseases with both cool- and warm-natured herbs) is a classical therapeutic principle of traditional Chinese medicine (TCM), which is often used to treat chronic diseases, including UC. The Gan Jiang-Huang Qin-Huang Lian-Ren Shen decoction (GJHQHLRSD), a representative of Han Re Bing Yong Fa, is effective in alleviating inflammatory symptoms in UC. However, the pharmacological mechanism underlying its anti-inflammatory effect remains unclear. METHODS A network pharmacology strategy, including the construction and analysis of the drug-disease network, was used to explore the complex mechanism of GJHQHLRSD treatment of UC. In addition, molecular docking technology was used to preliminarily examine the binding ability of the potential active components and core therapeutic targets of GJHQHLRSD. RESULTS The network pharmacology results revealed 140 targets of GJHQHLRSD which are involved in UC. The PPI network analysis identified seven target genes: BCL2L1, NR3C1, ALOX5, S1PR5, NR1I2, CYP2D6, and LPAR6. The molecular docking results revealed that the following displayed strongest combined effects: EGFR with kaempferol, ERK1 with worenine, STAT3 with Palmidin A, BCL2L1 with diop and VEGFA with ginsenoside Rg3. The KEGG and gene ontology enrichment analyses results indicated that GJHQHLRSD functions by regulating the EGFR signaling pathway in UC treatment. Other effective biological processes involved in UC treatment included cancer-related as well as inflammation and viral infection signaling pathways, such as the "MicroRNAs in cancer," "TNF signaling pathway," and "JAK-STAT signaling pathway." CONCLUSIONS This study reflects the multicomponent, multitarget, and multipathway characteristics of the action mechanism of GJHQHLRSD in treating UC. Furthermore, it helps better understand the TCM therapeutic principle of Han Re Bing Yong Fa and explore novel candidate drug targets for UC treatment.
Collapse
Affiliation(s)
- Ce Zhou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Furong Zhang
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Liangliang Hao
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Guo
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|