1
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
2
|
Antoon R, Overdevest N, Saleh AH, Keating A. Mesenchymal stromal cells as cancer promoters. Oncogene 2024:10.1038/s41388-024-03183-1. [PMID: 39414984 DOI: 10.1038/s41388-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) are important cellular constituents of tumor stroma that play an active role in tumor development. Complex interactions between MSCs and cancer promote tumor progression by creating a favorable milieu for tumor cell proliferation, angiogenesis, motility, invasion, and metastasis. The cellular heterogeneity, source of origin, diversity in isolation methods, culture techniques and model systems of MSCs, together with the different tumor subtypes, add to the complexity of MSC-tumor interactions. In this review, we discuss the mechanisms of MSC-mediated tumor promotion and evaluate cell-stromal interactions between cancer cells, MSCs, cells of the tumor microenvironment (TME), and the extracellular matrix (ECM). A more thorough understanding of tumor-MSC interactions is likely to lead to better cancer management.
Collapse
Affiliation(s)
| | | | - Amr H Saleh
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Armand Keating
- Krembil Research Institute, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Mohamed AH, Shafie A, Abdulmonem WA, Alzahrani HS, Ashour AA, Hjazi A, Jamal A, Aldreiwish AD, Kamal MA, Ahmad F, Khan N. Mesenchymal stem cells and their potential therapeutic benefits and challenges in the treatment and pathogenesis of gastric cancer. Pathol Res Pract 2024; 260:155422. [PMID: 38981347 DOI: 10.1016/j.prp.2024.155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are acknowledged for their remarkable ability to undergo differentiation into various cell types. In addition, they exhibit anti-tumor characteristics, prompting endeavors to modify MSCs for employment in cancer therapies. On the contrary, it is imperative to recognize that MSCs have been extensively linked to pathways that facilitate the advancement of tumors. Numerous research studies have sought to modify MSCs for clinical application; however, the outcomes have been ambiguous, potentially due to the heterogeneity of MSC populations. Furthermore, the conflicting roles of MSCs in suppressing and promoting tumor growth present a challenge to the appropriateness of their use in anti-cancer therapies. Currently, there exists a lack of comprehensive comprehension concerning the anti-tumor and pro-tumor characteristics of MSCs for gastric cancer (GC). This article discusses the influence of MSCs on GC, the underlying mechanisms, the origins of MSCs, and their effects. This review article also elucidates how MSCs exhibit dual characteristics of promoting and inhibiting tumor growth. Hence, it is of utmost importance that clinical inquiries aimed at utilizing MSCs as a therapeutic intervention for cancer consider the potentiality of MSCs to accelerate the progression of GC. It is crucial to exercise caution throughout the process of developing MSC-based cellular therapies to enhance their anti-cancer attributes while simultaneously eliminating their tumor-promoting impacts.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hilla, Babil 51001, Iraq.
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Hassan Swed Alzahrani
- Counselling healthy marriage, maternity and children hospital, Jeddah second cluster, Jeddah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry. Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| |
Collapse
|
4
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
5
|
Shen J, Huang C, Cui L, Zhao Y, Zhu M, Chen Z, Wang M, Zhu W, Shen B. Chemotherapeutic Drugs Endow Gastric Cancer Mesenchymal Stem Cells with Stronger Tumor-Promoting Ability. J Environ Pathol Toxicol Oncol 2024; 43:1-13. [PMID: 37824366 DOI: 10.1615/jenvironpatholtoxicoloncol.2023041847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive tumors and has a poor prognosis. It has been demonstrated that gastric cancer mesenchymal stem cells (GC-MSCs) can promote the progression, metastasis, and chemoresistance of GC through various mechanisms, but the effect of GC-MSCs on GC during chemotherapy is still unknown. In this study, flow cytometry, CCK8 assay, migration assay, colony formation assay, and western blot were conducted. We also analyzed GC patients from the cancer genome atlas (TCGA). Our results showed that GC-MSCs were resistant to 5-FU and Taxol at the IC50 concentration for GC cells, and 5-FU could promote the migration of GC-MSCs at low doses. Furthermore, the conditioned medium of GC-MSCs pretreated with chemotherapeutic drugs was more effective in promoting the proliferation, migration, and stemness of GC cell lines than the conditioned medium of GC-MSCs without chemotherapeutic drugs treatment. These effects were dependent on the activation of phosphorylated AKT (p-AKT) in GC cell lines. Correspondingly, the inhibition of p-AKT reversed the tumor-promoting effect of the conditioned medium of GC-MSCs pretreated with chemotherapeutic drugs. Additionally, the expression of AKT1 was higher in GC tissues than in both paracancerous tissues and normal tissues, and patients resistant to chemotherapy expressed more AKT1 compared to those who were sensitive. Taken together, our data demonstrated that GC-MSCs gained more tumor-promoting abilities during chemotherapy.
Collapse
Affiliation(s)
- Jiaqi Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Linjing Cui
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China; NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Miaolin Zhu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical, Jiangsu University, Nanjing 21000, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu, Zhenjiang 212002, China
| | - Mei Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, People's Republic of China, 200433; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical, Jiangsu University, Nanjing 21000, China
| |
Collapse
|
6
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
7
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
8
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
9
|
Chen J, Li X, Mak TK, Wang X, Ren H, Wang K, Kuo ZC, Wu W, Li M, Hao T, Zhang C, He Y. The predictive effect of immune therapy and chemotherapy under T cell-related gene prognostic index for Gastric cancer. Front Cell Dev Biol 2023; 11:1161778. [PMID: 37274740 PMCID: PMC10232754 DOI: 10.3389/fcell.2023.1161778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the most common malignancies in the human digestive tract. CD4+T cells can eliminate tumor cells directly through the mechanism of cytolysis, they can also indirectly attack tumor cells by regulating the tumor TME. A prognostic model of CD4+T cells is urgently needed to improve treatment strategies and explore the specifics of this interaction between CD4+T cells and gastric cancer cells. Methods: The detailed data of GC samples were downloaded from the Cancer Genome Atlas (TCGA), GSE66229, and GSE84437 datasets. CD4+ T cell-related genes were identified to construct a risk-score model by using the Cox regression method and validated with the Gene Expression Omnibus (GEO) dataset. In addition, postoperative pathological tissues of 139 gastric cancer patients were randomly selected for immunohistochemical staining, and their prognostic information were collected for external verification. Immune and molecular characteristics of these samples and their predictive efficacy in immunotherapy and chemotherapy were analysed. Results: The training set and validation set had consistent results, with GC patients of high PROC and SERPINE1 expression having poorer prognosis. In order to improve their clinical application value, we constructed a risk scoring model and established a high-precision nomogram. Low-risk patients had a better overall survival (OS) than high-risk patients, consistent with the results from the GEO cohort. Furthermore, the risk-score model can predict infiltration of immune cells in the tumor microenvironment of GC, as well as the response of immunotherapy. Correlations between the abundance of immune cells with PROC and SERPINE1 genes were shown in the prognostic model according to the training cohort. Finally, sensitive drugs were identified for patients in different risk subgroup. Conclusion: The risk model not only provides a basis for better prognosis in GC patients, but also is a potential prognostic indicator to distinguish the molecular and immune characteristics of the tumor, and its response to immune checkpoint inhibitor (ICI) therapy and chemotherapy.
Collapse
Affiliation(s)
- Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoqun Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Ren
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kang Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zi Chong Kuo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenhui Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingzhe Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tengfei Hao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Cui JX, Xu XH, He T, Liu JJ, Xie TY, Tian W, Liu JY. L-kynurenine induces NK cell loss in gastric cancer microenvironment via promoting ferroptosis. J Exp Clin Cancer Res 2023; 42:52. [PMID: 36855135 PMCID: PMC9976385 DOI: 10.1186/s13046-023-02629-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells play a major role in body's fighting against various types of cancers. Their infiltration in the tumor microenvironment (TME) of gastric cancer (GC) are significantly decreased, which has been reported as a robust prognostic marker. However, the causes leading to NK cells loss in GC TME remains poorly understood. METHODS We constructed a non-contact co-culturing system and humanized xenograft tumor mice model to detect the influence of GC microenvironment on NK-92 or primary human NK cells viability by flow cytometry. Then through using the specific inhibitors for different types of cell death and examining the surrogate markers, we confirmed ferroptosis in NK cells. Inspired by the accidental discoveries, we constructed a NK-92 cell strain with high expression of GPX4 and treated the humanized xenograft tumor mice model with the NK-92 cells. RESULTS We found L-KYN, mainly generated through indoleamine 2, 3-dioxygenase (IDO) from GC cells, impaired NK cells viability in TME. Further analysis revealed L-KYN induced ferroptosis in NK cells via an AHR-independent way. Moreover, we found NK cells with higher GPX4 expression showed resistance to L-KYN induced ferroptosis. Based on this, we generated GPX4 over-expressed NK-92 cells, and found these cells showed therapeutic potential towards GC. CONCLUSIONS Our study revealed a novel mechanism to explain the decline of NK cell number in GC TME. Notably, we also developed a potential immunotherapy strategy, which might be beneficial in clinical treatment in the future.
Collapse
Affiliation(s)
- Jian-Xin Cui
- grid.414252.40000 0004 1761 8894Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xian-Hui Xu
- Department of Emergency, No. 971 Hospital of PLAN, Qingdao, 266071 Shandong Province China
| | - Tao He
- grid.410570.70000 0004 1760 6682Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Jia-Jia Liu
- grid.410570.70000 0004 1760 6682Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Tian-Yu Xie
- grid.414252.40000 0004 1761 8894Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Wen Tian
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jun-Yan Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
11
|
Li J, Wu J, Han J. Analysis of Tumor Microenvironment Heterogeneity among Breast Cancer Subtypes to Identify Subtype-Specific Signatures. Genes (Basel) 2022; 14:44. [PMID: 36672784 PMCID: PMC9858482 DOI: 10.3390/genes14010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is one of the most frequent malignancies in women worldwide. According to 50-gene signature, Prediction Analysis of Microarray 50 (PAM50), breast cancer can be categorized into five molecular subtypes, and these subtypes are highly heterogeneous in different molecular characteristics. However, the landscape of their tumor microenvironment (TME) heterogeneity has not been fully researched. Using the multi-omics dataset of breast cancer from the METABRIC cohort (n = 1699), we conducted extensive analyses of TME-related features to investigate TME heterogeneity in each breast cancer subtype. We then developed a cell-based subtype set enrichment analysis to identify the subtype-specific TME cells, and further evaluate their prognostic effects. Our results illustrate that different breast cancer subtypes exhibit different TME patterns. Basal-like and HER2-enriched subtypes are associated with high immune scores, expression of most immune regulatory targets, and immune cell infiltration, suggesting that these subtypes could be defined as "immune hot" tumors and suitable for immune checkpoint blockade (ICB) therapy. In contrast, Luminal A and Luminal B subtypes are associated with low immune scores and immune cell infiltration, suggesting that these subtypes could be defined as "immune cold" tumors. Additionally, the Normal-like subtype has relatively high levels of both immune and stromal features, which indicates that the Normal-like subtype may be suitable for more diverse treatment strategies. Our study reveals the breast cancer tumor microenvironment heterogeneity across subtypes. The comprehensive analysis of breast cancer TME-related characteristics may help us to adopt a tailored treatment strategy for different subtypes of patients.
Collapse
Affiliation(s)
- Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
- Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
12
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
13
|
Xiang Z, Hua M, Hao Z, Biao H, Zhu C, Zhai G, Wu J. The Roles of Mesenchymal Stem Cells in Gastrointestinal Cancers. Front Immunol 2022; 13:844001. [PMID: 35281017 PMCID: PMC8907448 DOI: 10.3389/fimmu.2022.844001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were reported to have strong immunomodulatory ability, and inhibit the proliferation of T cells and their immune response through cell-to-cell interactions and the generation of cytokines. With high differentiation potential and self-renewal ability, MSCs are considered to function in alleviating inflammatory responses, promoting tissue regeneration and inhibiting tissue fibrosis formation. As the most common malignancies, gastrointestinal (GI) cancers have high incidence and mortality. The accurate diagnosis, exact prognosis and treatment of GI cancers have always been a hot topic. Therefore, the potential applications of MSCs in terms of GI cancers are receiving more and more attention. Recently, there is increasing evidence that MSCs may serve as a key point in the growth, metastasis, inhibition, treatment and prognosis of GI cancers. In this review, we summarized the roles of MSCs in GI cancers, mainly focusing on esophageal cancer (EC), gastric cancer (GC), liver cancer (LC), colorectal cancer (CRC) and pancreatic cancer. Besides, we proposed MSCs as potential targets and treatment strategies for the effective treatment of GI cancers, which may provide better guidance for the clinical treatment of GI cancers.
Collapse
Affiliation(s)
- Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglu Hua
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Hao
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaojie Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
14
|
Mafi S, Mansoori B, Taeb S, Sadeghi H, Abbasi R, Cho WC, Rostamzadeh D. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front Immunol 2022; 12:774103. [PMID: 35250965 PMCID: PMC8894239 DOI: 10.3389/fimmu.2021.774103] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways, which plays a pivotal role in regulating numerous cellular functions including cell growth, proliferation, survival, and metabolism by integrating a variety of extracellular and intracellular signals in the tumor microenvironment (TME). Dysregulation of the mTOR pathway is frequently reported in many types of human tumors, and targeting the PI3K/Akt/mTOR signaling pathway has been considered an attractive potential therapeutic target in cancer. The PI3K/Akt/mTOR signaling transduction pathway is important not only in the development and progression of cancers but also for its critical regulatory role in the tumor microenvironment. Immunologically, mTOR is emerging as a key regulator of immune responses. The mTOR signaling pathway plays an essential regulatory role in the differentiation and function of both innate and adaptive immune cells. Considering the central role of mTOR in metabolic and translational reprogramming, it can affect tumor-associated immune cells to undergo phenotypic and functional reprogramming in TME. The mTOR-mediated inflammatory response can also promote the recruitment of immune cells to TME, resulting in exerting the anti-tumor functions or promoting cancer cell growth, progression, and metastasis. Thus, deregulated mTOR signaling in cancer can modulate the TME, thereby affecting the tumor immune microenvironment. Here, we review the current knowledge regarding the crucial role of the PI3K/Akt/mTOR pathway in controlling and shaping the immune responses in TME.
Collapse
Affiliation(s)
- Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Abbasi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- *Correspondence: Davoud Rostamzadeh, ; ; William C. Cho, ;
| |
Collapse
|
15
|
Harrell CR, Volarevic A, Djonov VG, Jovicic N, Volarevic V. Mesenchymal Stem Cell: A Friend or Foe in Anti-Tumor Immunity. Int J Mol Sci 2021; 22:ijms222212429. [PMID: 34830312 PMCID: PMC8622564 DOI: 10.3390/ijms222212429] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewable, multipotent stem cells that regulate the phenotype and function of all immune cells that participate in anti-tumor immunity. MSCs modulate the antigen-presenting properties of dendritic cells, affect chemokine and cytokine production in macrophages and CD4+ T helper cells, alter the cytotoxicity of CD8+ T lymphocytes and natural killer cells and regulate the generation and expansion of myeloid-derived suppressor cells and T regulatory cells. As plastic cells, MSCs adopt their phenotype and function according to the cytokine profile of neighboring tumor-infiltrated immune cells. Depending on the tumor microenvironment to which they are exposed, MSCs may obtain pro- and anti-tumorigenic phenotypes and may enhance or suppress tumor growth. Due to their tumor-homing properties, MSCs and their exosomes may be used as vehicles for delivering anti-tumorigenic agents in tumor cells, attenuating their viability and invasive characteristics. Since many factors affect the phenotype and function of MSCs in the tumor microenvironment, a better understanding of signaling pathways that regulate the cross-talk between MSCs, immune cells and tumor cells will pave the way for the clinical use of MSCs in cancer immunotherapy. In this review article, we summarize current knowledge on the molecular and cellular mechanisms that are responsible for the MSC-dependent modulation of the anti-tumor immune response and we discuss different insights regarding therapeutic potential of MSCs in the therapy of malignant diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Ana Volarevic
- Department of Cognitive Psychology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| | - Vladislav Volarevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Correspondence: ; Tel./Fax: +381-34306800
| |
Collapse
|