1
|
Haridevamuthu B, Manjunathan T, Boopathi S, Almutairi MH, Almutairi BO, Kumar TTA, Guru A, Gopinath P, Arockiaraj J. Protective Effect of Sulfur-Containing Heterocyclic Analogs Against Acrylamide-Induced Behavioral and Biochemical Alterations in Zebrafish. Mol Neurobiol 2024:10.1007/s12035-024-04440-w. [PMID: 39162929 DOI: 10.1007/s12035-024-04440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Acrylamide (ACR) is a water-soluble monomer with broad consumer applications, even in foods due to thermal processes. Acute exposure to ACR may lead to neurotoxic effects such as ataxia and skeletal muscle weakness in humans and experimental animals. Oxidative stress is the primary pathway in ACR toxicity; therefore, this study aimed to evaluate the possible protective effect of benzo[b]thiophene analogs as an antioxidant drug for ACR poisoning. For this purpose, adult zebrafish were chosen as the experimental model considering the 3Rs of research. Hydroxyl containing benzo[b]thiophene analogs, 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP) were injected via intraperitoneal (i.p.) route at an effective dose of 5 mg/kg one hour before the exposure of ACR (0.75 mM) for three days. ACR fish showed aberrant socio-behavior with low exploration, tight circling, negative scototaxis, disrupted aggression, and tight shoaling. These results indicated depression comorbid and anxiety-like phenotype. BP and EP partially reduced the aberrant socio-behavior. BP and EP elevated the antioxidant defense and reduced the oxidative damage in the brain caused by ACR. Cellular and tissular alterations caused by ACR were visualized through histopathological study. BP and EP administration reduced and repaired the cellular changes via the antioxidant mechanism. BP and EP altered the axonal growth and regeneration gene and synaptic vesicle cycle gene expression necessary for neurotransmission. This combined gain-of-function of redox mechanism at molecular, cellular, and tissular levels explains the behavioral improvement at the organismal level of the organization.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Tamilvelan Manjunathan
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur Chengalpattu District, 603203, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Pushparathinam Gopinath
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Chengalpattu District, 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur Chengalpattu District, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Muhammad N, Haq IU, Jan MS, AlOmar TS, Rauf A, Wadood A, Almasoud N, Shams S. In-vitro and in-vivo assessment of the anti-diabetic, analgesic, and anti-inflammatory potenstials of metal-based carboxylates derivative. Heliyon 2023; 9:e19160. [PMID: 37636438 PMCID: PMC10458700 DOI: 10.1016/j.heliyon.2023.e19160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the current research work, an amide based metal carboxylate chemical ([((5-((5-(2-hydroxyethyl)-4-methylthiazol-3-ium-3-yl)methyl)-2-methylpyrimidin-4-yl)amino)bis((4-((4-methoxy-2-nitrophenyl)amino)-4-oxobutanoyl)oxy)zinc]) was identified as anti-diabetic analgesic and anti-inflammatory. The identified chemical(MT-1) was tested for acute toxicity (the MT-1 was fund safe), antidiabetic analgesic, and anti-inflammatory potentials. The in-vitro study was conducted for antidiabetic enzyme inhibition (α-amylase and α-glucosidase) and the in-vivo studies included analgesic (acetic acid-induced writing and hot plate model) and anti-inflammatory (carrageenan etc induced edema) effects. The tested compound showed 88.63% (IC50 = 3.23 μg/ml) and 89.10%(IC50 = 5.10 μg/ml) againstα-amylase and α-glucosidase respectively. A significant (p < 0.001) analgesic effect was noted by MT-1 in acetic acid-induced animal models with a percent effect of 86.00, 60.,06, and 55.29 at the tested doses of 20, 1,0, and 5 mg/kg respectively. In the case of the hot plate model, the MT-1 showed a significant (p < 0.001) effect with maximum percent prolongation in latency observed after 60 min.08, 22.2,9, and 11.61) against 20, 1,0, and 5 mg/kg. The analgesic effect in the hot plate model was significantly (p < 0.01) reversed by the injection of naloxone (0.125 mg/kg). The paw edema induced by carrageenan, histamine, bradykinin, arachidonic acid, and PGE2 was significantly antagonized with percent attenuation of 34.09, 33.57, 34.60, 34.14, and 48.04 respectively. Furthermore, to predict the interactions between the MT-1 compound and COX-2 molecular docking was carried out and the result was compared with the standard compound. The docking score of MT-1 was predicted as -6.30 while that of Diclofenac was predicted as -6.82. Both compounds made several hydrogen bond interactions with the active site of the COX-2 enzyme. The docking study revealed the potent inhibitory potential of the compound MT-1 against the COX-2 receptor.
Collapse
Affiliation(s)
- Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ihtesham Ul Haq
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan, 24420, Pakistan
| | - Taghrid S. AlOmar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Najla Almasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Mahnashi MH, Alam W, Huneif MA, Abdulwahab A, Alzahrani MJ, Alshaibari KS, Rashid U, Sadiq A, Jan MS. Exploration of Succinimide Derivative as a Multi-Target, Anti-Diabetic Agent: In Vitro and In Vivo Approaches. Molecules 2023; 28:molecules28041589. [PMID: 36838577 PMCID: PMC9964140 DOI: 10.3390/molecules28041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is counted among one of the leading challenges in the recent era, and it is a life-threatening disorder. Compound 4-hydroxy 3-methoxy phenylacetone (compound 1) was previously isolated from Polygonum aviculare. This compound was reacted with N-benzylmaleimide to synthesize the targeted compound 3. The purpose of this research is to exhibit our developed compound 3's ability to concurrently inhibit many targets that are responsible for hyperglycemia. Compound 3 was capable of inhibiting α-amylase, α-glucosidase, and protein tyrosine phosphatase 1 B. Even so, outstanding in vitro inhibition was shown by the compound against dipeptidyl peptidase-4 (DPP-4) with an IC50 value of 0.07 µM. Additionally, by using DPPH in the antioxidant activity, it exhibited good antioxidant potential. Similarly, in the in vivo activity, the experimental mice proved to be safe by treatment with compound 3. After 21 days of examination, the compound 3 activity pattern was found to be effective in experimental mice. Compound 3 decreased the excess peak of total triglycerides, total cholesterol, AST, ALT, ALP, LDL, BUN, and creatinine in the STZ-induced diabetic mice. Likewise, the histopathology of the kidneys, liver, and pancreas of the treated animals was also evaluated. Overall, the succinimde moiety, such as compound 3, can affect several targets simultaneously, and, finally, we were successful in synthesizing a multi-targeted preclinical therapy.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mohammed A. Huneif
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | - Alqahtani Abdulwahab
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | | | - Khaled S. Alshaibari
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | - Umar Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
- Correspondence: (A.S.); (M.S.J.)
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda 24420, Pakistan
- Correspondence: (A.S.); (M.S.J.)
| |
Collapse
|
4
|
Facile synthesis, pharmacological and In silico analysis of succinimide derivatives: An approach towards drug discovery. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Succinimide Derivatives as Antioxidant Anticholinesterases, Anti-α-Amylase, and Anti-α-Glucosidase: In Vitro and In Silico Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6726438. [PMID: 35942378 PMCID: PMC9356783 DOI: 10.1155/2022/6726438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse pharmacological potency and the structural features of succinimide, this research considered to synthesize succinimide derivatives. Moreover, these compounds were estimated for their biological potential in terms of anti-diabetic, anti-cholinesterase, and anti-oxidant capacities. The compounds were synthesized through Michael addition of various ketones to N-aryl maleimides. Similarly, the MOE software was used for the molecular docking study to explore the binding mode of the potent compounds against different enzymes. In the anti-cholinesterase activity, the compounds MSJ2 and MSJ10 exhibited outstanding activity against acetylcholinesterase (AChE), i.e., 91.90, 93.20%, and against butyrylcholinesterase (BChE), i.e., 97.30, 91.36% inhibitory potentials, respectively. The compounds MSJ9 and MSJ10 exhibited prominent α-glucosidase inhibitory potentials, i.e., 87.63 and 89.37 with IC50 value of 32 and 28.04 μM, respectively. Moreover, the compounds MSJ2 and MSJ10 revealed significant scavenging activity against DPPH free radicals with IC50 values of 2.59 and 2.52, while against ABTS displayed excellent scavenging potential with IC50 values 7.32 and 3.29 μM, respectively. The tentative results are added with molecular docking studies in the active sites of enzymes to predict the theoretical protein-ligand binding modes. Further detailed mechanism-based studies in animal models are essential for the in vivo evaluation of the potent compound.
Collapse
|
6
|
Juszczak M, Kluska M, Kosińska A, Rudolf B, Woźniak K. Antioxidant Activity of Ruthenium Cyclopentadienyl Complexes Bearing Succinimidato and Phthalimidato Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092803. [PMID: 35566156 PMCID: PMC9101797 DOI: 10.3390/molecules27092803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
Abstract
In these studies, we investigated the antioxidant activity of three ruthenium cyclopentadienyl complexes bearing different imidato ligands: (η5-cyclopentadienyl)Ru(CO)2-N-methoxysuccinimidato (1), (η5-cyclopentadienyl)Ru(CO)2-N-ethoxysuccinimidato (2), and (η5-cyclopentadienyl)Ru(CO)2-N-phthalimidato (3). We studied the effects of ruthenium complexes 1–3 at a low concentration of 50 µM on the viability and the cell cycle of peripheral blood mononuclear cells (PBMCs) and HL-60 leukemic cells exposed to oxidative stress induced by hydrogen peroxide (H2O2). Moreover, we examined the influence of these complexes on DNA oxidative damage, the level of reactive oxygen species (ROS), and superoxide dismutase (SOD) activity. We have observed that ruthenium complexes 1–3 increase the viability of both normal and cancer cells decreased by H2O2 and also alter the HL-60 cell cycle arrested by H2O2 in the sub-G1 phase. In addition, we have shown that ruthenium complexes reduce the levels of ROS and oxidative DNA damage in both cell types. They also restore SOD activity reduced by H2O2. Our results indicate that ruthenium complexes 1–3 bearing succinimidato and phthalimidato ligands have antioxidant activity without cytotoxic effect at low concentrations. For this reason, the ruthenium complexes studied by us should be considered interesting molecules with clinical potential that require further detailed research.
Collapse
Affiliation(s)
- Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
| | - Magdalena Kluska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
| | - Aneta Kosińska
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Poland; (A.K.); (B.R.)
| | - Bogna Rudolf
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Poland; (A.K.); (B.R.)
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
- Correspondence:
| |
Collapse
|