1
|
Panariello BHD, Denucci GC, Tonon CC, Eckert GJ, Witek L, Nayak VV, Coelho PG, Duarte S. Tissue-Safe Low-Temperature Plasma Treatment for Effective Management of Mature Peri-Implantitis Biofilms on Titanium Surfaces. ACS Biomater Sci Eng 2024; 10:7647-7656. [PMID: 39536298 DOI: 10.1021/acsbiomaterials.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The unique screw-shape design and microstructure of implants pose a challenge for mechanical debridement in removing biofilms. Biofilms exhibit increased resistance to antimicrobials relative to single planktonic cells, emphasizing the need for effective biofilm removal during periodontal therapy for peri-implantitis treatment. To tackle this issue, our team evaluated the effectiveness of low-temperature plasma (LTP) for disinfecting titanium discs contaminated with multispecies biofilms associated with peri-implantitis, specifically focusing on biofilms matured for 14 and 21 days as well as biofilms that had formed on StraumannⓇ Ti-SLA implants for 21 days. The biofilms included Actinomyces naeslundii, Porphyromonas gingivalis, Streptococcus oralis, and Veillonella dispar, which were grown in anaerobic conditions. These biofilms were subjected to LTP treatment for 1, 3, and 5 min, using distances of 3 or 10 mm from the LTP nozzle to the samples. Control groups included biofilms formed on Ti discs or implants that received no treatment, exposure to argon flow at 3 or 10 mm of distance for 1, 3, or 5 min, application for 1 min of 14 μg/mL amoxicillin, 140 μg/mL metronidazole, or a blend of both, and treatment with 0.12% chlorhexidine (CHX) for 1 min. For the implants, 21-day-old biofilms were treated with 0.12% CHX 0.12% for 1 min and LTP for 1 min at a distance of 3 mm for each quadrant. Biofilm viability was assessed through bacterial counting and confocal laser scanning microscopy. The impact of LTP was investigated on reconstituted oral epithelia (ROE) contaminated with P. gingivalis, evaluating cytotoxicity, cell viability, and histology. The results showed that a 1 min exposure to LTP at distances of 3 or 10 mm significantly lowered bacterial counts on implants and discs compared to the untreated controls (p < 0.017). LTP exposure yielded lower levels of cytotoxicity relative to the untreated contaminated control after 12 h of contamination (p = 0.038), and cell viability was not affected by LTP (p ≥ 0.05); thus, LTP-treated samples were shown to be safe for tissue applications, with low cytotoxicity and elevated cell viability post-treatment, and these results were validated by qualitative histological analysis. In conclusion, the study's results support the effectiveness of 1 min LTP exposure in successfully disinfecting mature peri-implantitis multispecies biofilms on titanium discs and implants. Moreover, it validated the safety of LTP on ROE, suggesting its potential as an adjunctive treatment for peri-implantitis.
Collapse
Affiliation(s)
- Beatriz H D Panariello
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida 34211, United States
| | - Giovanna C Denucci
- Department of Cariology, Indiana University School of Dentistry, Indianapolis, Indiana 46202, United States
| | - Caroline C Tonon
- School of Dental Medicine, University of Buffalo, Buffalo, New York 14214, United States
| | - George J Eckert
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, New York 10010, United States
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, New York 10017, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, Miller School of Medicine, University of Miami, Miami, Florida 33176, United States
| | - Simone Duarte
- School of Dental Medicine, University of Buffalo, Buffalo, New York 14214, United States
| |
Collapse
|
2
|
Schafer S, Swain T, Parra M, Slavin BV, Mirsky NA, Nayak VV, Witek L, Coelho PG. Nonthermal Atmospheric Pressure Plasma Treatment of Endosteal Implants for Osseointegration and Antimicrobial Efficacy: A Comprehensive Review. Bioengineering (Basel) 2024; 11:320. [PMID: 38671741 PMCID: PMC11048570 DOI: 10.3390/bioengineering11040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The energy state of endosteal implants is dependent on the material, manufacturing technique, cleaning procedure, sterilization method, and surgical manipulation. An implant surface carrying a positive charge renders hydrophilic properties, thereby facilitating the absorption of vital plasma proteins crucial for osteogenic interactions. Techniques to control the surface charge involve processes like oxidation, chemical and topographical adjustments as well as the application of nonthermal plasma (NTP) treatment. NTP at atmospheric pressure and at room temperature can induce chemical and/or physical reactions that enhance wettability through surface energy changes. NTP has thus been used to modify the oxide layer of endosteal implants that interface with adjacent tissue cells and proteins. Results have indicated that if applied prior to implantation, NTP strengthens the interaction with surrounding hard tissue structures during the critical phases of early healing, thereby promoting rapid bone formation. Also, during this time period, NTP has been found to result in enhanced biomechanical fixation. As such, the application of NTP may serve as a practical and reliable method to improve healing outcomes. This review aims to provide an in-depth exploration of the parameters to be considered in the application of NTP on endosteal implants. In addition, the short- and long-term effects of NTP on osseointegration are addressed, as well as recent advances in the utilization of NTP in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tina Swain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, New York University Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Winiecki M, Stepczyńska M, Moraczewski K, Skowronski L, Trzcinski M, Rerek T, Malinowski R. Effect of Low-Temperature Oxygen Plasma Treatment of Titanium Alloy Surface on Tannic Acid Coating Deposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1065. [PMID: 38473537 DOI: 10.3390/ma17051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
In this study, the effect of low-temperature oxygen plasma treatment with various powers of a titanium alloy surface on the structural and morphological properties of a substrate and the deposition of a tannic acid coating was investigated. The surface characteristics of the titanium alloy were evaluated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. Following this, the tannic acid coatings were deposited on the titanium alloy substrates and the structural and morphological properties of the tannic acid coatings deposited were subject to characterization by XPS, SEM, and spectroscopic ellipsometry (SE) measurements. The results show that the low-temperature oxygen plasma treatment of titanium alloys leads to the formation of titanium dioxides that contain -OH groups on the surface being accompanied by a reduction in carbon, which imparts hydrophilicity to the titanium substrate, and the effect increases with the applied plasma power. The performed titanium alloy substrate modification translates into the quality of the deposited tannic acid coating standing out by higher uniformity of the coating, lower number of defects indicating delamination or incomplete bonding of the coating with the substrate, lower number of cracks, thinner cracks, and higher thickness of the tannic acid coatings compared to the non-treated titanium alloy substrate. A similar effect is observed as the applied plasma power increases.
Collapse
Affiliation(s)
- Mariusz Winiecki
- Department of Constructional Materials and Biomaterials, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Polymer Materials Engineering, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Krzysztof Moraczewski
- Department of Polymer Materials Engineering, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Lukasz Skowronski
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Marek Trzcinski
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Tomasz Rerek
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Rafał Malinowski
- Łukasiewicz Research Network-Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Torun, Poland
| |
Collapse
|
4
|
Karthik C, Sarngadharan SC, Thomas V. Low-Temperature Plasma Techniques in Biomedical Applications and Therapeutics: An Overview. Int J Mol Sci 2023; 25:524. [PMID: 38203693 PMCID: PMC10779006 DOI: 10.3390/ijms25010524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Plasma, the fourth fundamental state of matter, comprises charged species and electrons, and it is a fascinating medium that is spread over the entire visible universe. In addition to that, plasma can be generated artificially under appropriate laboratory techniques. Artificially generated thermal or hot plasma has applications in heavy and electronic industries; however, the non-thermal (cold atmospheric or low temperature) plasma finds its applications mainly in biomedicals and therapeutics. One of the important characteristics of LTP is that the constituent particles in the plasma stream can often maintain an overall temperature of nearly room temperature, even though the thermal parameters of the free electrons go up to 1 to 10 keV. The presence of reactive chemical species at ambient temperature and atmospheric pressure makes LTP a bio-tolerant tool in biomedical applications with many advantages over conventional techniques. This review presents some of the important biomedical applications of cold-atmospheric plasma (CAP) or low-temperature plasma (LTP) in modern medicine, showcasing its effect in antimicrobial therapy, cancer treatment, drug/gene delivery, tissue engineering, implant modifications, interaction with biomolecules, etc., and overviews some present challenges in the field of plasma medicine.
Collapse
Affiliation(s)
- Chandrima Karthik
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| | | | - Vinoy Thomas
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| |
Collapse
|
5
|
Chiou LL, Panariello BHD, Hamada Y, Gregory RL, Blanchard S, Duarte S. Comparison of In Vitro Biofilm Formation on Titanium and Zirconia Implants. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8728499. [PMID: 37096222 PMCID: PMC10122594 DOI: 10.1155/2023/8728499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 04/26/2023]
Abstract
Background Peri-implant diseases are emerging issues in contemporary implant dentistry. As biofilms play a critical role in peri-implant diseases, the characteristic of resisting bacterial adhesion would be ideal for dental implants. The aims of the study were to compare titanium (Ti) and zirconia (Zr) implants regarding the amount of biofilm formation at different time frames and assess the distribution of biofilm on different aspects of dental implants. Methods Biofilm was developed on Ti and Zr dental implants with a peri-implant-related multispecies model with Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar, and Porphyromonas gingivalis, for 3 and 14 days. Quantitative assessment was performed with the measurement of total bacterial viability (colony forming units, CFU/mg). Scanning electron microscopy (SEM) was used to evaluate biofilm formation on different aspects of the implants. Results Three-day-old biofilm on Ti implants was significantly higher than that on Zr implants (p < 0.001). The Ti and Zr groups were not significantly different for 14-day-old biofilm. SEM images demonstrated that 3-day-old biofilm on Zr implants was sparse while biofilm growth was more pronounced for 3-day-old biofilm on Ti implants and 14-day-old biofilm groups. It appeared that less biofilm formed on the valley compared to the thread top for 3-day-old biofilm on Zr implants. Differences between the valley and the thread top became indistinguishable with the development of mature biofilm. Conclusion While early formed biofilms show greater accumulation on Ti implants compared to Zr implants, older biofilms between the two groups are comparable. The distribution of biofilms was not uniform on different areas of implant threads during early biofilm development.
Collapse
Affiliation(s)
- Lan-Lin Chiou
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Beatriz H. D. Panariello
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Yusuke Hamada
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Richard L. Gregory
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Steven Blanchard
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Simone Duarte
- American Dental Association Science and Research Institute, Chicago, IL, USA
| |
Collapse
|