1
|
Kaewngam S, Prajit R, Anosri T, Suwannakot K, Saenno R, Sritawan N, Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. The effects of hesperidin on valproic acid-induced reduction in hippocampal neurogenesis through the antioxidant and apoptotic pathways in adult rats. Sci Rep 2024; 14:28864. [PMID: 39572680 PMCID: PMC11582586 DOI: 10.1038/s41598-024-80183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Treatment with valproic acid (VPA) can induce oxidative stress, leading to neuronal degeneration. Hesperidin (HSD) has an antioxidant function that can mitigate oxidative stress, thereby promoting hippocampal neurogenesis. Because brain function and memory are reliant on hippocampal neurogenesis, this work is planned to elucidate the effects of HSD on the VPA-induced alterations in hippocampal neurogenesis and apoptosis via oxidative damage. Twenty-four male Sprague-Dawley rats were grouped into the vehicle, VPA, HSD, and VPA + HSD groups. After administration, the hippocampi and prefrontal cortex were harvested for p21 staining, assessment of MDA, CAT, SOD, and GPx, and Western blotting analysis of Nrf2, Bax, caspase3, and Bcl-2 proteins. The results exhibited a significantly elevated level of p21-positive cells in VPA-treated rats, indicating cell cycle arrest in hippocampal neurogenesis. Additionally, our findings demonstrated a notable rise in oxidative stress, a decrease in antioxidant enzyme activity and the transcription factor Nrf2 in VPA-treated rats. Furthermore, VPA induced apoptotic activities, as substantiated by the upregulation of Bax and caspase3, and the downregulation of Bcl-2. These findings demonstrate that HSD can reduce oxidative stress levels, thereby mitigating the arrest of the cell cycle and apoptotic activity induced by VPA treatment in both the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Soraya Kaewngam
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanaporn Anosri
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kornrawee Suwannakot
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Rasa Saenno
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, the University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Prajit R, Saenno R, Suwannakot K, Kaewngam S, Anosri T, Sritawan N, Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Chrysin mitigates neuronal apoptosis and impaired hippocampal neurogenesis in male rats subjected to D-galactose-induced brain aging. Biogerontology 2024; 25:1275-1284. [PMID: 39300009 PMCID: PMC11486779 DOI: 10.1007/s10522-024-10140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress-induced neuronal apoptosis is primarily involved in brain aging and impaired hippocampal neurogenesis. Long-term D-galactose administration increases oxidative stress related to brain aging. Chrysin, a subtype of flavonoids, exhibits neuroprotective effects, particularly its antioxidant properties. To elucidate the neuroprotection of chrysin on neuronal apoptosis and an impaired hippocampal neurogenesis relevant to oxidative damage in D-galactose-induced brain aging, male Sprague Dawley rats were allocated into vehicle control, D-galactose, chrysin, and cotreated rats. The rats received their respective treatments daily for 8 weeks. The reactions of scavenging enzymes, protein regulating endogenous antioxidant defense, and anti-apoptotic protein expression were significantly reduced in the hippocampus and prefrontal cortex of the animals receiving D-galactose. Conversely, product of oxidative damage and apoptotic protein expressions were significantly elevated in both cortical areas of the D-galactose group. In hippocampal neurogenesis, significant upregulation of cell cycle arrest and decrease in differentiated protein expression were detected after D-galactose administration. Nevertheless, chrysin supplementation significantly mitigated all negative effects in animals receiving D-galactose. This study demonstrates that chrysin likely attenuates brain aging induced by D-galactose by enhancing scavenging enzyme activities and reducing oxidative stress, neuronal apoptosis, and the impaired hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ram Prajit
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rasa Saenno
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kornrawee Suwannakot
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Soraya Kaewngam
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanaporn Anosri
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nataya Sritawan
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anusara Aranarochana
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apiwat Sirichoat
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter Wigmore
- Queen's Medical Centre, School of Life Sciences, Medical School, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jariya Umka Welbat
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Ebrahim NA, Elnagar MR, El-Gamal R, Habotta OA, Albadawi EA, Albadrani M, Bahashwan AS, Hassan HM. Melatonin mitigates doxorubicin induced chemo brain in a rat model in a NRF2/p53-SIRT1 dependent pathway. Heliyon 2024; 10:e38081. [PMID: 39386846 PMCID: PMC11462207 DOI: 10.1016/j.heliyon.2024.e38081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Cancer is a critical health problem, and chemotherapy administration is mandatory for its eradication. However, chemotherapy like doxorubicin (Dox) has serious side-effects including cognitive impairment or chemo brain. Melatonin is a neuroprotective agent that has antioxidant, and anti-inflammatory effects. We aimed to explore melatonin's effect on Dox-induced chemo brain to discover new mechanisms associated with Dox-induced neurotoxicity and try to prevent its occurrence. Thirty-two male albino rats had been equally divided into four groups; control, melatonin-administrated, Dox-induced chemo brain, and melatonin + Dox treated. On the 9th day, brain had been excised after scarification and had been assessed for reactive oxygen species measurement, histopathological analysis, immunohistochemical, gene and protein expressions for the nuclear factor erythroid 2-related factor 2 (Nrf2), p53 and Silent information regulator 2 homolog 1 (SIRT1). Our results show that melatonin coadministration diminished Dox induced hippocampal and prefrontal cortex (PFC) cellular degeneration. It alleviated Nitric Oxide (NO) level and reversed the decline of antioxidant enzyme activities. It also upregulated Nrf2, SIRT1 and downregulated p53 gene expression in rats receiving Dox. Moreover, melatonin elevated the protein expression level of Nrf2, SIRT1 and reduced p53 corresponding to immunohistochemical results. The data suggested that melatonin can mitigate Dox-induced neurotoxicity by aggravating the endogenous antioxidants and inducing neurogenesis through activation of Nrf2/p53-SIRT1signaling pathway in adult rats' PFC. These effects were associated with Nrf2, SIRT1 activation and p53 inhibition. This could be guidance to add melatonin as an adjuvant supplement to Dox regimens to limit its adverse effect on the brain function.
Collapse
Affiliation(s)
- Neven A. Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R. Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Egypt
- Pharmacology Department, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq
| | - Randa El-Gamal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Medical Experimental Research Centre (MERC), Faculty of Medicine, Mansoura University, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Ola Ali Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Emad A. Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Muayad Albadrani
- Department of Family and Community Medicine and Medical Education, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Abdulrahman S. Bahashwan
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, New Mansoura University, Egypt
| |
Collapse
|
4
|
Ates G, Tamer S, Ozkok E, Yorulmaz H, Gundogan GI, Aksu A, Balkis N. Utility of melatonin on brain injury, synaptic transmission, and energy metabolism in rats with sepsis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03337-8. [PMID: 39105798 DOI: 10.1007/s00210-024-03337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Melatonin is a powerful endogenous antioxidant hormone. Its healing effects on energy balance and neuronal damage associated with oxidative metabolism disorders have been reported in pathologic conditions. We aimed to determinate the utility of melatonin on neuronal damage, synaptic transmission, and energy balance in the brain tissue of rats with sepsis induced with LPS. Rats was divided into four groups such as control, LPS (20 mg/kg i.p.), melatonin (10 mg/kg i.p. × 3), and LPS + Melatonin (LPS + Mel). After 6 h from the first injection, rats were decapitated, and also tissue and serum samples were taken. Lipid peroxidation and neuron-specific enolase (NSE) levels were determined from the serum in all group. High energy compounds, creatine, and creatine phosphate are measured by HPLC methods from the homogenized tissue. Counts of living neurons are marked with NeuN (neuronal nuclei), degenerated neurons are marked with S100-ß and synaptic vesicles transmission is analyzed with synaptophysin antibodies immunoreactivities. One-way ANOVA and post hoc Tukey tests were used to statistical analysis. In LPS group, AMP, ATP, creatine, and creatine phosphate levels were significantly decreased (p < 0.05), and also ADP levels were significantly increased compared with the other groups (p < 0.01). Living neurons counts were significantly decreased in LPS (p < 0.01), melatonin, and LPS + Melatonin (p < 0.05) groups compared with control. Degenerated neurons counts were increased in LPS group compared with control (p < 0.01) and also decreased in both of melatonin and LPS + Melatonin groups (p < 0.01). Synaptophysin immunoreactivity was decreased in LPS group compared with the other groups (p < 0.05). We observed that melatonin administration prevents neuronal damage, regulates energy metabolism, and protects synaptic vesicle proteins from sepsis-induced reduction.
Collapse
Affiliation(s)
- Gulten Ates
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Yilanlı Ayazma St, Cevizlibag, Istanbul, 34010, Turkey.
| | - Sule Tamer
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hatice Yorulmaz
- Faculty of Health Science, Halic University, Istanbul, Turkey
| | - Gul Ipek Gundogan
- Department of Histology and Embryology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Abdullah Aksu
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - Nuray Balkis
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Lin X, Wang H, Zou L, Yang B, Chen W, Rong X, Zhang X, He L, Li X, Peng Y. The NRF2 activator RTA-408 ameliorates chronic alcohol exposure-induced cognitive impairment and NLRP3 inflammasome activation by modulating impaired mitophagy initiation. Free Radic Biol Med 2024; 220:15-27. [PMID: 38679301 DOI: 10.1016/j.freeradbiomed.2024.04.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Chronic alcohol exposure induces cognitive impairment and NLRP3 inflammasome activation in the mPFC (medial prefrontal cortex). Mitophagy plays a crucial role in neuroinflammation, and dysregulated mitophagy is associated with behavioral deficits. However, the potential relationships among mitophagy, inflammation, and cognitive impairment in the context of alcohol exposure have not yet been studied. NRF2 promotes the process of mitophagy, while alcohol inhibits NRF2 expression. Whether NRF2 activation can ameliorate defective mitophagy and neuroinflammation in the presence of alcohol remains unknown. METHODS BV2 cells and primary microglia were treated with alcohol. C57BL/6J mice were repeatedly administered alcohol intragastrically. BNIP3-siRNA, PINK1-siRNA, CCCP and bafilomycin A1 were used to regulate mitophagy in BV2 cells. RTA-408 acted as an NRF2 activator. Mitochondrial dysfunction, mitophagy and NLRP3 inflammasome activation were assayed. Behavioral tests were used to assess cognition. RESULTS Chronic alcohol exposure impaired the initiation of both receptor-mediated mitophagy and PINK1-mediated mitophagy in the mPFC and in vitro microglial cells. Silencing BNIP3 or PINK1 induced mitochondrial dysfunction and aggravated alcohol-induced NLRP3 inflammasome activation in BV2 cells. In addition, alcohol exposure inhibited the NRF2 expression both in vivo and in vitro. NRF2 activation by RTA-408 ameliorated NLRP3 inflammasome activation and mitophagy downregulation in microglia, ultimately improving cognitive impairment in the presence of alcohol. CONCLUSION Chronic alcohol exposure-induced impaired mitophagy initiation contributed to NLRP3 inflammasome activation and cognitive deficits, which could be alleviated by NRF2 activation via RTA-408.
Collapse
Affiliation(s)
- Xinrou Lin
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lubin Zou
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Biying Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wanru Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Lei He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516400, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
6
|
Lee YJ, Lin CM, Chang YC, Yang MY, Wang CJ, Hsu LS. Nelumbo nucifera leaves extract ameliorated scopolamine-induced cognition impairment via enhanced adult hippocampus neurogenesis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3198-3210. [PMID: 38351887 DOI: 10.1002/tox.24175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 04/17/2024]
Abstract
In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Pathology, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Mao Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mon-Yuan Yang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Chau-Jong Wang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Behairy A, Elkomy A, Elsayed F, Gaballa MMS, Soliman A, Aboubakr M. Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1875-1888. [PMID: 37773524 PMCID: PMC10858838 DOI: 10.1007/s00210-023-02739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
The objective of this study was to investigate whether the neurotoxic effects caused by methotrexate (MTX), a frequently used chemotherapy drug, could be improved by administering Spirulina platensis (SP) and/or thymoquinone (TQ). Seven groups of seven rats were assigned randomly for duration of 21 days. The groups consisted of a control group that was given saline only. The second group was given 500 mg/kg of SP orally; the third group was given 10 mg/kg of TQ orally. The fourth group was given a single IP dose of 20 mg/kg of MTX on the 15th day of the experiment. The fifth group was given both SP and MTX, the sixth group was given both TQ and MTX, and the seventh group was given SP, TQ, and MTX. After MTX exposure, the study found that AChE inhibition, depletion of glutathione, and increased levels of MDA occurred. MTX also decreased the activity of SOD and CAT, as well as the levels of inflammatory mediators such as IL-1, IL-6, and tumor necrosis factor-α. MTX induced apoptosis in brain tissue. However, when MTX was combined with either SP or TQ, the harmful effects on the body were significantly reduced. This combination treatment resulted in a faster return to normal levels of biochemical, oxidative markers, inflammatory responses, and cell death. In conclusion, supplementation with SP or TQ could potentially alleviate MTX-induced neuronal injury, likely due to their antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Alaa Behairy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Faten Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt
| | - Ahmed Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaliobiya, Egypt.
| |
Collapse
|
8
|
Qi Q, Yang J, Li S, Liu J, Xu D, Wang G, Feng L, Pan X. Melatonin alleviates oxidative stress damage in mouse testes induced by bisphenol A. Front Cell Dev Biol 2024; 12:1338828. [PMID: 38440074 PMCID: PMC10910031 DOI: 10.3389/fcell.2024.1338828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
We investigated the effect of melatonin on bisphenol A (BPA)-induced oxidative stress damage in testicular tissue and Leydig cells. Mice were gavaged with 50 mg/kg BPA for 30 days, and concurrently, were injected with melatonin (10 mg/kg and 20 mg/kg). Leydig cells were treated with 10 μmol/L of BPA and melatonin. The morphology and organ index of the testis and epididymis were observed and calculated. The sperm viability and density were determined. The expressions of melatonin receptor 1A and luteinizing hormone receptor, and the levels of malonaldehyde, antioxidant enzymes, glutathione, steroid hormone synthases, aromatase, luteinizing hormone, testosterone, and estradiol were measured. TUNEL assay was utilized to detect testicular cell apoptosis. The administration of melatonin at 20 mg/kg significantly improved the testicular index and epididymis index in mice treated with BPA. Additionally, melatonin promoted the development of seminiferous tubules in the testes. Furthermore, the treatment with 20 mg/kg melatonin significantly increased sperm viability and sperm density in mice, while also promoting the expressions of melatonin receptor 1A and luteinizing hormone receptor in Leydig cells of BPA-treated mice. Significantly, melatonin reduced the level of malonaldehyde in testicular tissue and increased the expression of antioxidant enzymes (superoxide dismutase 1, superoxide dismutase 2, and catalase) as well as the content of glutathione. Moreover, melatonin also reduced the number of apoptotic Leydig cells and spermatogonia, aromatase expression, and estradiol level, while increasing the expression of steroid hormone synthases (steroidogenic acute regulatory protein, cytochrome P450 family 17a1, cytochrome P450 17α-hydroxylase/20-lyase, and, 17β-hydroxysteroid dehydrogenase) and the level of testosterone. Melatonin exhibited significant potential in alleviating testicular oxidative stress damage caused by BPA. These beneficial effects may be attributed to melatonin's ability to enhance the antioxidant capacity of testicular tissue, promote testosterone synthesis, and reduce testicular cell apoptosis.
Collapse
Affiliation(s)
- Qi Qi
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jiaxin Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Shuang Li
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jingjing Liu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Da Xu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Guoqing Wang
- School of Medical Technology, Beihua University, Jilin, China
| | - Lei Feng
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
9
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Lim HS, Lee SH, Seo H, Park G. Changes in RBM47 expression based on the timing of melatonin administration and its effects on Nrf2 activity in the hippocampus. Free Radic Biol Med 2023; 208:794-806. [PMID: 37751802 DOI: 10.1016/j.freeradbiomed.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Melatonin is an endogenous indoleamine that plays a significant role in various physiological processes, including the sleep-wake cycle, anxiety, immunity, and circadian rhythms. However, it is important to clarify that melatonin does not directly control circadian rhythms. Circadian rhythms are primarily synchronized by light, which acts on the suprachiasmatic nucleus (SCN) and subsequently regulates melatonin production. This light-mediated synchronization of circadian rhythms is essential for maintaining the alignment of the body with the light-dark cycle. In this study, we investigated the efficacy of melatonin administration during different times of the day or night and explored its neuroprotective effects. Furthermore, we aimed to apply these findings to rodent models of dementia, aging, and neuro-inflammation for potential therapeutic applications. Our study uncovered novel evidence suggesting the involvement of RNA-binding motif protein (RBM)-47 and Nrf2 in the signaling pathways associated with melatonin administration during both day and night. We examined the role of RBM47 in Nrf2 activity through siRNA or CRISPR-mediated knockdown experiments using hippocampal neuronal cells and lentivirus injections in mice. In 5xFAD/aging/neuroinflammatory mouse models, antioxidant effects were enhanced when melatonin was administered during the day compared to nighttime administration. Furthermore, mRNA analysis and molecular biology experiments revealed the differential expression of RBM47 depending on the timing of melatonin administration. These findings suggest that a decrease in RBM47 expression may improve the antioxidant defense system in the hippocampus. Consequently, administering melatonin during the day rather than at night may present a plausible therapeutic strategy as an antioxidant.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.
| | - Seung Hoon Lee
- Department of Biochemistry, Research Institute for Medical Science, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major, Campus of Korea Institute of Oriental Medicine, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|
12
|
Correia AS, Cardoso A, Vale N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants (Basel) 2023; 12:470. [PMID: 36830028 PMCID: PMC9951986 DOI: 10.3390/antiox12020470] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Depression is a prevalent, complex, and highly debilitating disease. The full comprehension of this disease is still a global challenge. Indeed, relapse, recurrency, and therapeutic resistance are serious challenges in the fight against depression. Nevertheless, abnormal functioning of the stress response, inflammatory processes, neurotransmission, neurogenesis, and synaptic plasticity are known to underlie the pathophysiology of this mental disorder. The role of oxidative stress in disease and, particularly, in depression is widely recognized, being important for both its onset and development. Indeed, excessive generation of reactive oxygen species and lack of efficient antioxidant response trigger processes such as inflammation, neurodegeneration, and neuronal death. Keeping in mind the importance of a detailed study about cellular and molecular mechanisms that are present in depression, this review focuses on the link between oxidative stress and the stress response, neuroinflammation, serotonergic pathways, neurogenesis, and synaptic plasticity's imbalances present in depression. The study of these mechanisms is important to lead to a new era of treatment and knowledge about this highly complex disease.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Chunchai T, Pintana H, Arinno A, Ongnok B, Pantiya P, Khuanjing T, Prathumsap N, Maneechote C, Chattipakorn N, Chattipakorn SC. Melatonin and metformin counteract cognitive dysfunction equally in male rats with doxorubicin-induced chemobrain. Neurotoxicology 2023; 94:158-171. [PMID: 36463981 DOI: 10.1016/j.neuro.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Melatonin (Mel) and metformin (Met) show beneficial effects in various brain pathologies. However, the effects of Mel and Met on doxorubicin (DOX)-induced chemobrain remain in need of elucidation. We aimed to investigate whether Mel and Met provide neuroprotective effects on glial dysmorphologies, brain inflammation, oxidative stress, brain mitochondrial dysfunction, apoptosis, necroptosis, neurogenesis, hippocampal dysplasticity, and cognitive dysfunction in rats with DOX-induced chemobrain. Thirty-two male Wistar rats were divided into 2 groups and received normal saline (NSS, as control, n = 8) or DOX (3 mg/kg/day; n = 24) by intraperitoneal (i.p.) injection on days 0, 4, 8, 15, 22, and 29. The DOX-treated group was divided into 3 subgroups receiving either vehicle (NSS; n = 8), Mel (10 mg/kg/day; n = 8), or Met (250 mg/kg/day; n = 8) by gavage for 30 consecutive days. Following this, cognitive function was assessed in all rats. The number of glial cells and their fluorescence intensity had decreased, while the glial morphology in DOX-treated rats showed a lower process complexity. Brain mitochondrial dysfunction, an increase in brain inflammation, oxidative stress, apoptosis and necroptosis, a decrease in the number of hippocampal dendritic spines and neurogenesis, and cognitive decline were also observed in DOX-treated rats. Mel and Met equally improved those brain pathologies, resulting in cognitive improvement in DOX-treated rats. In conclusion, concomitant treatment with either Mel or Met counteract DOX-induced chemobrain by preservation of glial morphology, brain inflammation, brain oxidative stress, brain mitochondrial function, hippocampal plasticity, and brain apoptosis. This study highlighted the role of the glia as key mediators in DOX-induced chemobrain.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiranya Pintana
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
14
|
Amraie E, Pouraboli I, Salehi H, Rajaei Z. Treadmill running and Levisticum Officinale extract protect against LPS-induced memory deficits by modulating neurogenesis, neuroinflammation and oxidative stress. Metab Brain Dis 2022; 38:999-1011. [PMID: 36478529 DOI: 10.1007/s11011-022-01140-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Neuroinflammation plays an essential role in the pathogenesis of Alzheimer's disease. The preventive effect of physical exercise on attenuating neuroinflammation has not been completely defined. Levisticum officinale is known as a medicinal plant with antioxidant and anti-inflammatory properties. The current study was designed to investigate the neuroprotective impacts of treadmill running and Levisticum officinale on lipopolysaccharide (LPS)-induced learning and memory impairments and neuroinflammation in rats. Male Wistar rats ran on a treadmill and/or were pretreated with Levisticum officinale extract at a dose of 100 mg/kg for a week. Then, rats received intraperitoneal injection of LPS at a dose of 1 mg/kg. Treadmill running and/or treatment of extract lasted three more weeks. Behavioral, molecular, biochemical and immunohistochemical assessments were carried out after the end of the experiment. LPS administration resulted in spatial learning and memory impairments along with increased mRNA expression of interleukin-6 and malondialdehyde levels, as well as decreased superoxide dismutase activity and neurogenesis in the hippocampus. Moreover, treadmill running for four weeks, alone and in combination with Levisticum officinale extract attenuated spatial learning and memory deficits, decreased the mRNA expression of interleukin-6 and malondialdehyde levels, and enhanced superoxide dismutase activity and neurogenesis in the hippocampus. In conclusion, the advantageous effects of running exercise and Levisticum officinale extract on LPS-induced memory impairments are possibly due to the antioxidant and anti-inflammatory activity and enhancing neurogenesis.
Collapse
Affiliation(s)
- Esmaeil Amraie
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iran Pouraboli
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
15
|
Miranda-Riestra A, Estrada-Reyes R, Torres-Sanchez ED, Carreño-García S, Ortiz GG, Benítez-King G. Melatonin: A Neurotrophic Factor? Molecules 2022; 27:7742. [PMID: 36431847 PMCID: PMC9698771 DOI: 10.3390/molecules27227742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Melatonin, N-acetyl-5-hydroxytryptamine, is a hormone that synchronizes the internal environment with the photoperiod. It is synthesized in the pineal gland and greatly depends on the endogenous circadian clock located in the suprachiasmatic nucleus and the retina's exposure to different light intensities. Among its most studied functions are the regulation of the waking-sleep rhythm and body temperature. Furthermore, melatonin has pleiotropic actions, which affect, for instance, the modulation of the immune and the cardiovascular systems, as well as the neuroprotection achieved by scavenging free radicals. Recent research has supported that melatonin contributes to neuronal survival, proliferation, and differentiation, such as dendritogenesis and axogenesis, and its processes are similar to those caused by Nerve Growth Factor, Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4/5. Furthermore, this indolamine has apoptotic and anti-inflammatory actions in specific brain regions akin to those exerted by neurotrophic factors. This review presents evidence suggesting melatonin's role as a neurotrophic factor, describes the signaling pathways involved in these processes, and, lastly, highlights the therapeutic implications involved.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Erandis D. Torres-Sanchez
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Jalisco, Mexico
| | - Silvia Carreño-García
- Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Genaro Gabriel Ortiz
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Jalisco, Mexico
- Departamento de Disciplinas Filosóficas y Metodológicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| |
Collapse
|