1
|
Zhou A, Li X, Zou J, Wu L, Cheng B, Wang J. Discovery of potential quality markers of Fritillariae thunbergii bulbus in pneumonia by combining UPLC-QTOF-MS, network pharmacology, and molecular docking. Mol Divers 2024; 28:787-804. [PMID: 36843054 PMCID: PMC9968501 DOI: 10.1007/s11030-023-10620-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
Fritillariae thunbergii bulbus (FTB) is a popular Chinese herbal medicine with various applications in respiratory diseases. The quality evaluation of FTB has been insufficient to date, as the active ingredients and mechanisms of action of FTB remain unclear. This study proposes a novel strategy for exploring the quality markers (Q-markers) of FTB based on UPLC-QTOF-MS analysis, network pharmacology, molecular docking, and molecular dynamics (MD) simulation. A total of 26 compounds in FTB were identified by UPLC-QTOF-MS. Ten of these compounds were screened as Q-markers based on network pharmacology for their anti-pneumonia effects, including imperialine, peimisine, peiminine, ebeiedinone, zhebeirine, puqiedine, 9-hydroxy-10,12-octadecadienoic acid, (9Z,12Z,15Z)-13-hydroxy-9,12,15-octadecatrienoic acid, 9,12,15-octadecatrienoic acid, and (2E,4Z,7Z,10Z,13Z,16Z,19Z)-2,4,7,10,13,16,19-docosaheptaenoic acid methyl ester (DAME). These Q-markers were predicted to act on multiple targets and pathways associated with pneumonia. Molecular docking results revealed that most of the Q-markers showed high affinity with at least one of the main targets of pneumonia, and the top ten complexes were confirmed with MD simulation. Network pharmacology indicated that FTB may act on the TNF signaling pathway, HIF-1 signaling pathway, JAK-STAT signaling pathway, etc. The results demonstrated that imperialine (P8), peimisine (P9), peiminine (P11), ebeiedine (P15), zhebeirine (P16), and puqiedine (P18) may be potential Q-markers of FTB, and AKT1, IL-6, VEGFA, TP53, EGFR, STAT3, PPARG, MMP9, and CASP3 may be promising therapeutic targets for pneumonia treatment that are worthy of further research.
Collapse
Affiliation(s)
- Aizhen Zhou
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China
| | - Xudong Li
- Ningbo Kunpeng Biotech Co., LTD, Ningbo, Zhejiang, People's Republic of China
| | - Jie Zou
- Ningbo Haishu Traditional Chinese Medicine Hospital, Ningbo, People's Republic of China
| | - Lingling Wu
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China.
| | - Juan Wang
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China.
| |
Collapse
|
2
|
Chen T, Du H, Zhou H, He Y, Yang J, Li C, Wei C, Yu D, Wan H. Yinhuapinggan granule ameliorates lung injury caused by multidrug-resistant Acinetobacter baumannii via inhibiting NF-κB/NLRP3 pathway. Heliyon 2023; 9:e21871. [PMID: 38027639 PMCID: PMC10661428 DOI: 10.1016/j.heliyon.2023.e21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Yinhuapinggan granule (YHPG) is a traditional Chinese medicine prescription with rich clinical experience for the treatment of colds and coughs. The aim of this study is to investigate the protective effect of YHPG on multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) infection in vivo and its potential anti-inflammatory mechanism. BALB/c mice were intranasally inoculated with MDR A. baumannii strain to establish the pneumonia infection model, and received intraperitoneally cyclophosphamide to form immunosuppression before attack. YHPG (6, 12 and 18 g/kg) was administered by gavage once a day for 3 consecutive days after infection. The protective effect of YHPG was evaluated by lung index, spleen index, thymus index, pathological changes of lung tissue and inflammatory factors (IL-1β, IL-6 and TNF-α) in serum. The expression of key targets of NF-κB/NLRP3 signaling pathway in vivo was analyzed by immunohistochemistry, immunofluorescence, reverse transcription quantitative PCR (RT-qPCR) and Western blot. The results showed that YHPG improved the lung index and its inhibition rate, immune organ indexes and lung pathological changes in infected mice, and significantly reduced IL-1β, IL-6 and TNF-α levels in serum. In addition, YHPG significantly down-regulated the mRNA and protein expression of NF-κB p65, NLRP3, ASC, Caspase-1, TNF-α, IL-6 and IL-1β in mice lung tissue. The results of the current study demonstrated that YHPG has significant protective effects on mice infected with MDR A.baumannii, which may be related to the regulation of inflammatory factors and NF-κB/NLRP3 signaling pathway, indicating that YHPG has a wide range of clinical application value and provides a theoretical basis for its treatment of MDR A.baumannii infection.
Collapse
Affiliation(s)
- Tianhang Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haixia Du
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenxing Wei
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Daojun Yu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
3
|
Yan X, Jin L, Zhou H, Wan H, Wan H, Yang J. Amygdalin Reverses Macrophage PANoptosis Induced by Drug-Resistant Escherichia coli. J Microbiol Biotechnol 2023; 33:1281-1291. [PMID: 37559205 PMCID: PMC10619555 DOI: 10.4014/jmb.2306.06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Infectious diseases caused by drug-resistant Escherichia coli (E. coli) pose a critical concern for medical institutions as they can lead to high morbidity and mortality rates. In this study, amygdalin exhibited anti-inflammatory and antioxidant activities, as well as other potentials. However, whether it could influence the drug-resistant E. coli-infected cells remained unanswered. Amygdalin was therefore tested in a cellular model in which human macrophages were exposed to resistant E. coli. Apoptosis was measured by flow cytometry and the lactate dehydrogenase (LDH) assay. Western immunoblotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to quantify interleukin-18 (IL-18), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The production of reactive oxygen species (ROS) in macrophages was detected by ROS kit. The expression of panapoptotic proteins in macrophages was measured by qRT-PCR and Western immunoblotting. Drug-Resistant E. coli inhibited cell viability and enhanced apoptosis in the cellular model. In cells treated with amygdalin, this compound can inhibit cell apoptosis and reduce the expression of pro - inflammatory cytokines such as IL-1β, IL-18 and IL-6. Additionally, it decreases the production of PANoptosis proteins, Furthermore, amygdalin lowered the levels of reactive oxygen species induced by drug-resistant E. coli, in cells, demonstrating its antioxidant effects. Amygdalin, a drug with a protective role, alleviated cell damage caused by drug-resistant E. coli in human macrophages by inhibiting the PANoptosis signaling pathway.
Collapse
Affiliation(s)
- Xue Yan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Liang Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Huifen Zhou
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haofang Wan
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jiehong Yang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
4
|
Guan X, Jin L, Zhou H, Chen J, Wan H, Bao Y, Yang J, Yu D, Wan H. Polydatin prevent lung epithelial cell from Carbapenem-resistant Klebsiella pneumoniae injury by inhibiting biofilm formation and oxidative stress. Sci Rep 2023; 13:17736. [PMID: 37853059 PMCID: PMC10584862 DOI: 10.1038/s41598-023-44836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes severe inflammation in various infectious diseases, such as bloodstream infections, respiratory and urinary tract infections, which leads to high mortality. Polydatin (PD), an active ingredient of Yinhuapinggan granule, has attracted worldwide attention for its powerful antioxidant, anti-inflammatory, antitumor, and antibacterial capacity. However, very little is known about the effect of PD on CRKP. In this research, we evaluated the inhibitory effects of PD on both the bacterial level and the bacterial-cell co-culture level on anti-biofilm and efflux pumps and the other was the inhibitory effect on apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) after CRKP induction. Additionally, we validated the mechanism of action by qRT-PCR and western blot in human lung epithelial cells. Firstly, PD was observed to have an inhibitory effect on the biofilm of CRKP and the efflux pump AcrAB-TolC. Mechanically, CRKP not only inhibited the activation of Nuclear Factor erythroid 2-Related Factor 2 (Nrf-2) but also increased the level of ROS in cells. These results showed that PD could inhibit ROS and activate Nrf-2 production. Together, our research demonstrated that PD inhibited bacterial biofilm formation and efflux pump AcrAB-TolC expression and inhibited CRKP-induced cell damage by regulating ROS and Nrf-2-regulated antioxidant pathways.
Collapse
Affiliation(s)
- Xiaodan Guan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Liang Jin
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jing Chen
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haofang Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yida Bao
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Daojun Yu
- Hangzhou First People's Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Zhang L, Ye X, Liu Y, Zhang Z, Xia X, Dong S. Research progress on the effect of traditional Chinese medicine on the activation of PRRs-mediated NF-κB signaling pathway to inhibit influenza pneumonia. Front Pharmacol 2023; 14:1132388. [PMID: 37089926 PMCID: PMC10119400 DOI: 10.3389/fphar.2023.1132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Influenza pneumonia has challenged public health and social development. One of the hallmarks of severe influenza pneumonia is overproduction of pro-inflammatory cytokines and chemokines, which result from the continuous activation of intracellular signaling pathways, such as the NF-κB pathway, mediated by the interplay between viruses and host pattern recognition receptors (PRRs). It has been reported that traditional Chinese medicines (TCMs) can not only inhibit viral replication and inflammatory responses but also affect the expression of key components of PRRs and NF-κB signaling pathways. However, whether the antiviral and anti-inflammatory roles of TCM are related with its effects on NF-κB signaling pathway activated by PRRs remains unclear. Here, we reviewed the mechanism of PRRs-mediated activation of NF-κB signaling pathway following influenza virus infection and summarized the influence of anti-influenza TCMs on inflammatory responses and the PRRs/NF-κB signaling pathway, so as to provide better understanding of the mode of action of TCMs in the treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Ling Zhang
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Ye
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Xueshan Xia
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Shuwei Dong
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| |
Collapse
|