Xuan X, Zhang S. Exploring the active ingredients and mechanism of Shenzhi Tongxin capsule against microvascular angina based on network pharmacology and molecular docking.
Medicine (Baltimore) 2023;
102:e34190. [PMID:
37390241 PMCID:
PMC10313304 DOI:
10.1097/md.0000000000034190]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND
Microvascular angina (MVA) substantially threatens human health, and the Shenzhi Tongxin (SZTX) capsule demonstrates a remarkable cardioprotective effect, making it a potential treatment option for MVA. However, the precise mechanism of action for this medication remains unclear. This study utilized network pharmacology and molecular docking technology to investigate the active components and potential mechanisms underlying the efficacy of the SZTX capsule in alleviating MVA.
METHODS
The main ingredients of the SZTX capsule, along with their targets proteins and potential disease targets associated with MVA, were extracted from public available databases. This study utilized the STRING database and Cytoscape 3.7.2 software to establish a protein-protein interaction network and determine key signaling pathway targets. Subsequently, the DAVID database was utilized to conduct Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses on the intersection targets. To further investigate the molecular interactions, Autodock and PyMOL software were employed to perform molecular docking and visualize the resulting outcomes.
RESULTS
A total of 130 and 142 bioactive ingredients and intersection targets were identified respectively. Six core targets were obtained through protein-protein interaction network analysis. Gene Ontology enrichment analysis showed that 610 biological processes, 75 cellular components, and 92 molecular functions were involved. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that SZTX capsule molecular mechanism in the treatment of MVA may be related to several pathways, including mitogen-activated protein kinases, PI3K-Akt, HIF-1, and others. The results of molecular docking showed that the 7 key active ingredients of SZTX capsule had good binding ability to 6 core proteins.
CONCLUSION
SZTX capsule potentially exerts its effects by targeting multiple signaling pathways, including the mitogen-activated protein kinases signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway. This multi-target approach enables SZTX capsule to inhibit inflammation, alleviate oxidative stress, regulate angiogenesis, and enhance endothelial function.
Collapse