1
|
Fu H, He J, Li C, Chang H. Theaflavin-3,3'-Digallate Protects Liver and Kidney Functions in Diabetic Rats by Up-Regulating Circ-ITCH and Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14630-14639. [PMID: 38634619 DOI: 10.1021/acs.jafc.3c08251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Theaflavin-3,3'-digallate (TFDG) in black tea has a strong antioxidant capacity. However, its effect on diabetic liver and kidney injury and the underlying mechanisms remain unclear. In the present study, our findings indicated that TFDG administration effectively lowers the fasting blood glucose and serum lipid concentrations and enhances the functionality and cellular architecture of the liver and kidney in rats with diabetes. The data also showed that TFDG mitigates oxidative harm in the liver and kidney of rats afflicted with diabetes. Additionally, metformin combined with TFDG was significantly more effective in reducing blood glucose and oxidative stress. Further studies suggested that TFDG upregulates the Nrf2 signal pathway and circ-ITCH (hsa_circ_0001141) expression. Silencing of circ-ITCH by transfection of the interfering plasmid apparently reduces the effects of TFDG on the Nrf2 signal pathway and oxidative stress in high-glucose-treated hepatic and renal cells. In conclusion, the present study highlights the great potential of TFDG in ameliorating diabetic liver and kidney injury by up-regulating circ-ITCH to promote the Nrf2 signal pathway and provides a potential option for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Hongjuan Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jianbo He
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Cong Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
3
|
Liu K, Chai L, Zhao T, Zhang S, Wang J, Yu Y, Niu R, Sun Z. Effects of Treadmill Exercise on Liver Apoptosis in Fluoride-Exposed Mice. Biol Trace Elem Res 2023; 201:5734-5746. [PMID: 36884125 DOI: 10.1007/s12011-023-03619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Hepatotoxicity induced by excessive fluoride (F) exposure has been extensively studied in both humans and animals. Chronic fluorosis can result in liver apoptosis. Meanwhile, moderate exercise alleviates apoptosis caused by pathological factors. However, the effect of moderate exercise on F-induced liver apoptosis remains unclear. In this research, sixty-four three-week-old Institute of Cancer Research (ICR) mice, half male and half female, were randomly divided into four groups: control group (distilled water); exercise group (distilled water and treadmill exercise); F group [100 mg/L sodium fluoride (NaF)]; and exercise plus F group (100 mg/L NaF and treadmill exercise). The liver tissues of mice were taken at 3 months and 6 months, respectively. Hematoxylin-eosin (HE) staining and situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) results showed that nuclear condensation and apoptotic hepatocytes occurred in the F group. However, this phenomenon could be reversed with the intervention of treadmill exercise. The results of QRT-PCR and western blot displayed NaF- induced apoptosis via tumor necrosis factor recpter 1 (TNFR1) signaling pathway, while treadmill exercise could restore the molecular changes caused by excessive NaF exposure.
Collapse
Affiliation(s)
- Ke Liu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Lei Chai
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Taotao Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Shaosan Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
4
|
Chang W, Li W, Li P. The anti-diabetic effects of metformin are mediated by regulating long non-coding RNA. Front Pharmacol 2023; 14:1256705. [PMID: 38053839 PMCID: PMC10694297 DOI: 10.3389/fphar.2023.1256705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with complex etiology and mechanisms. Long non-coding ribonucleic acid (LncRNA) is a novel class of functional long RNA molecules that regulate multiple biological functions through various mechanisms. Studies in the past decade have shown that lncRNAs may play an important role in regulating insulin resistance and the progression of T2D. As a widely used biguanide drug, metformin has been used for glucose lowering effects in clinical practice for more than 60 years. For diabetic therapy, metformin reduces glucose absorption from the intestines, lowers hepatic gluconeogenesis, reduces inflammation, and improves insulin sensitivity. However, despite being widely used as the first-line oral antidiabetic drug, its mechanism of action remains largely elusive. Currently, an increasing number of studies have demonstrated that the anti-diabetic effects of metformin were mediated by the regulation of lncRNAs. Metformin-regulated lncRNAs have been shown to participate in the inhibition of gluconeogenesis, regulation of lipid metabolism, and be anti-inflammatory. Thus, this review focuses on the mechanisms of action of metformin in regulating lncRNAs in diabetes, including pathways altered by metformin via targeting lncRNAs, and the potential targets of metformin through modulation of lncRNAs. Knowledge of the mechanisms of lncRNA modulation by metformin in diabetes will aid the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|