1
|
Myette RL, Trentin-Sonoda M, Landry C, Holterman CE, Lin T, Burger D, Kennedy CRJ. Damage-Associated Molecular Patterns and Pattern Recognition Receptors in the Podocyte. J Am Soc Nephrol 2025; 36:136-143. [PMID: 39331471 DOI: 10.1681/asn.0000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
Podocytes possess immune system components allowing for a variety of innate responses to endogenous and exogenous stimuli. Recently, several groups have linked inappropriate innate immune signaling to podocyte injury, particularly chronic, sustained injury; however, the immune capabilities of podocytes have not been fully elucidated. Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from damaged cells, including podocytes, and can elicit an inflammatory response and recruit immune cells to areas of injury. This is performed through binding to pattern recognition receptors. Believed largely to be protective and responsive to injury or infection, recent evidence suggests signaling through DAMP pathways can aggravate and promote chronic diseases already associated with inflammation. The purpose of this narrative review was to highlight current knowledge with respect to specific podocyte DAMPs and pattern recognition receptors and to provide insight into ongoing work and possible future research avenues to advance our understanding of podocyte immune mechanisms.
Collapse
Affiliation(s)
- Robert L Myette
- Division of Pediatric Nephrology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mayra Trentin-Sonoda
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Chloé Landry
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chet E Holterman
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Tony Lin
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher R J Kennedy
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Duan R, Wang T, Li Z, Jiang L, Yu X, He D, Tao T, Liu X, Huang Z, Feng L, Su W. Ketogenic diet modulates immune cell transcriptional landscape and ameliorates experimental autoimmune uveitis in mice. J Neuroinflammation 2024; 21:319. [PMID: 39627787 PMCID: PMC11613848 DOI: 10.1186/s12974-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/20/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Uveitis manifests as immune-mediated inflammatory disorders within the eye, posing a serious threat to vision. The ketogenic diet (KD) has emerged as a promising dietary intervention, yet its impact on the immune microenvironments and role in uveitis remains unclear. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) data from lymph node and retina of mice, we conduct a comprehensive investigation into the effects of KD on immune microenvironments. Flow cytometry is conducted to verify the potential mechanisms. RESULTS This study demonstrates that KD alters the composition and function of immune profiles. Specifically, KD promotes the differentiation of Treg cells and elevates its proportion in heathy mice. In response to experimental autoimmune uveitis challenges, KD alleviates the inflammatory symptoms, lowers CD4+ T cell pathogenicity, and corrects the Th17/Treg imbalance. Additionally, KD decreases the proportion of Th17 cell and increases Treg cells in the retina. Analysis of combined retinal and CDLN immune cells reveals that retinal immune cells, particularly CD4+ T cells, exhibit heightened inflammatory responses, which KD partially reverses. CONCLUSIONS The KD induces inhibitory structural and functional alterations in immune cells from lymph nodes to retina, suggesting its potential as a therapy for uveitis.
Collapse
Affiliation(s)
- Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Daquan He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Lei Feng
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Yang X, Liu C, Lei Y, Liu Z, Zhu B, Zhao D. PIM1 signaling in immunoinflammatory diseases: an emerging therapeutic target. Front Immunol 2024; 15:1443784. [PMID: 39372407 PMCID: PMC11449710 DOI: 10.3389/fimmu.2024.1443784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
PIM1, the proviral integration site for Moloney murine leukemia virus, is a member of the serine/threonine protein kinase family. It is involved in many biological events, such as cell survival, cell cycle progression, cell proliferation, and cell migration, and has been widely studied in malignant diseases. However, recent studies have shown that PIM1 plays a prominent role in immunoinflammatory diseases, including autoimmune uveitis, inflammatory bowel disease, asthma, and rheumatoid arthritis. PIM1 can function in inflammatory signal transduction by phosphorylating multiple inflammatory protein substrates and mediating macrophage activation and T lymphocyte cell specification, thus participating in the development of multiple immunoinflammatory diseases. Moreover, the inhibition of PIM1 has been demonstrated to ameliorate certain immunoinflammatory disorders. Based on these studies, we suggest PIM1 as a potential therapeutic target for immunoinflammatory diseases and a valid candidate for future research. Herein, for the first time, we provide a detailed review that focuses on the roles of PIM1 in the pathogenesis of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunming Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Lei
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yang J, Xiao Y, Zhao N, Pei G, Sun Y, Sun X, Yu K, Miao C, Liu R, Lv J, Chu H, Zhou L, Wang B, Yao Z, Wang Q. PIM1-HDAC2 axis modulates intestinal homeostasis through epigenetic modification. Acta Pharm Sin B 2024; 14:3049-3067. [PMID: 39027246 PMCID: PMC11252454 DOI: 10.1016/j.apsb.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The mucosal barrier is crucial for intestinal homeostasis, and goblet cells are essential for maintaining the mucosal barrier integrity. The proviral integration site for Moloney murine leukemia virus-1 (PIM1) kinase regulates multiple cellular functions, but its role in intestinal homeostasis during colitis is unknown. Here, we demonstrate that PIM1 is prominently elevated in the colonic epithelia of both ulcerative colitis patients and murine models, in the presence of intestinal microbiota. Epithelial PIM1 leads to decreased goblet cells, thus impairing resistance to colitis and colitis-associated colorectal cancer (CAC) in mice. Mechanistically, PIM1 modulates goblet cell differentiation through the Wnt and Notch signaling pathways. Interestingly, PIM1 interacts with histone deacetylase 2 (HDAC2) and downregulates its level via phosphorylation, thereby altering the epigenetic profiles of Wnt signaling pathway genes. Collectively, these findings investigate the unknown function of the PIM1-HDAC2 axis in goblet cell differentiation and ulcerative colitis/CAC pathogenesis, which points to the potential for PIM1-targeted therapies of ulcerative colitis and CAC.
Collapse
Affiliation(s)
- Jianming Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yawen Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ningning Zhao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Geng Pei
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center of Cancer, Tianjin 30060, China
| | - Xinyu Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Kaiyuan Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chunhui Miao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ran Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Junqiang Lv
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Hongyu Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
5
|
Zhao Y, Li Q, Niu J, Guo E, Zhao C, Zhang J, Liu X, Wang L, Rao L, Chen X, Yang K. Neutrophil Membrane-Camouflaged Polyprodrug Nanomedicine for Inflammation Suppression in Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311803. [PMID: 38519052 DOI: 10.1002/adma.202311803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Neuroinflammation has emerged as a major concern in ischemic stroke therapy because it exacebates neurological dysfunction and suppresses neurological recovery after ischemia/reperfusion. Fingolimod hydrochloride (FTY720) is an FDA-approved anti-inflammatory drug which exhibits potential neuroprotective effects in ischemic brain parenchyma. However, delivering a sufficient amount of FTY720 through the blood-brain barrier into brain lesions without inducing severe cardiovascular side effects remains challenging. Here, a neutrophil membrane-camouflaged polyprodrug nanomedicine that can migrate into ischemic brain tissues and in situ release FTY720 in response to elevated levels of reactive oxygen species. This nanomedicine delivers 15.2-fold more FTY720 into the ischemic brain and significantly reduces the risk of cardiotoxicity and infection compared with intravenously administered free drug. In addition, single-cell RNA-sequencing analysis identifies that the nanomedicine attenuates poststroke inflammation by reprogramming microglia toward anti-inflammatory phenotypes, which is realized via modulating Cebpb-regulated activation of NLRP3 inflammasomes and secretion of CXCL2 chemokine. This study offers new insights into the design and fabrication of polyprodrug nanomedicines for effective suppression of inflammation in ischemic stroke therapy.
Collapse
Affiliation(s)
- Ya Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Jingyan Niu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, P. R. China
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Jian Zhang
- Biofunctional Experiment Teaching Center, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Xue Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| |
Collapse
|
6
|
Shao KM, Shao WH. Transcription Factors in the Pathogenesis of Lupus Nephritis and Their Targeted Therapy. Int J Mol Sci 2024; 25:1084. [PMID: 38256157 PMCID: PMC10816397 DOI: 10.3390/ijms25021084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype inflammatory autoimmune disease, characterized by breakdown of immunotolerance to self-antigens. Renal involvement, known as lupus nephritis (LN), is one of the leading causes of morbidity and a significant contributor to mortality in SLE. Despite current pathophysiological advances, further studies are needed to fully understand complex mechanisms underlying the development and progression of LN. Transcription factors (TFs) are proteins that regulate the expression of genes and play a crucial role in the development and progression of LN. The mechanisms of TF promoting or inhibiting gene expression are complex, and studies have just begun to reveal the pathological roles of TFs in LN. Understanding TFs in the pathogenesis of LN can provide valuable insights into this disease's mechanisms and potentially lead to the development of targeted therapies for its management. This review will focus on recent findings on TFs in the pathogenesis of LN and newly developed TF-targeted therapy in renal inflammation.
Collapse
Affiliation(s)
- Kasey M. Shao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
7
|
Zou H, Chen M, Wang X, Yu J, Li X, Xie Y, Liu J, Liu M, Xu L, Zhang Q, Tian X, Zhang F, Guo B. C/EBPβ isoform-specific regulation of podocyte pyroptosis in lupus nephritis-induced renal injury. J Pathol 2023; 261:269-285. [PMID: 37602503 DOI: 10.1002/path.6174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023]
Abstract
As an essential factor in the prognosis of systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease. Podocytes now appear to be a possible direct target in LN in addition to being prone to collateral damage from glomerular capillary lesions induces by immune complexes and inflammatory processes. The NLRP3 inflammasome is regulated by CCAAT/enhancer-binding protein β (C/EBPβ), which is involved in the pathogenesis of SLE. However, the role and mechanism of C/EBPβ in LN remain unclear. In this investigation, glomerular podocytes treated with LN serum and MRL/lpr mice were employed as in vivo and in vitro models of LN, respectively. In vivo, the expression of C/EBPβ isoforms was detected in kidney specimens of humans and mice with LN. Then we assessed the effect of C/EBPβ inhibition on renal structure and function by injecting RNAi adeno-associated virus of C/EBPβ shRNA into MRL/lpr mice. In vitro, glomerular podocytes were treated with LN serum and C/EBPβ siRNA to explore the role of C/EBPβ in the activation of the AIM2 inflammasome and podocyte injury. C/EBPβ-LAP and C/EBPβ-LIP were significantly overexpressed in kidney tissue samples from LN patients and mice, and C/EBPβ inhibition significantly alleviated renal function damage and ameliorated renal structural deficiencies. Inflammatory pathways downstream from the AIM2 inflammasome could be suppressed by C/EBPβ knockdown. Furthermore, the upregulation of C/EBPβ-LAP could activate the AIM2 inflammasome and podocyte pyroptosis by binding to the promoters of AIM2 and CASPASE1 to enhance their expression, and the knockdown of AIM2 or (and) caspase-1 reversed the effects of C/EBPβ-LAP overexpression. Interestingly, C/EBPβ-LIP overexpression could transcriptionally inhibit IRAG and promote Ca2+ release-mediated activation of the AIM2 inflammasome. This finding suggests that C/EBPβ is not only involved in the regulation of the expression of key proteins of the AIM2 inflammasome but also affects the polymerization of key proteins of the AIM2 inflammasome through the regulation of Ca2+ release. In conclusion, this study provides a new idea for studying the regulatory mechanism of C/EBPβ and provides a theoretical basis for the early diagnosis and treatment of LN in the future. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- School of Nursing, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Min Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Xiuhong Wang
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Xiaoying Li
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, PR China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Jun Liu
- Department of Rheumatology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Miao Liu
- Department of Urinary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Qiong Zhang
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Xiaoxue Tian
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
8
|
Qi H, Zheng Z, Liu Q. Activation of BZW1 by CEBPB in macrophages promotes eIF2α phosphorylation-mediated metabolic reprogramming and endoplasmic reticulum stress in MRL/lpr lupus-prone mice. Cell Mol Biol Lett 2023; 28:79. [PMID: 37828427 PMCID: PMC10571419 DOI: 10.1186/s11658-023-00494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is associated with significant mortality and morbidity, while effective therapeutics and biomarkers are limited since the pathogenesis is complex. This study investigated the roles of the CEBPB/BZW1/eIF2α axis in metabolic reprogramming and endoplasmic reticulum stress in LN. METHOD The differentially expressed genes in LN were screened using bioinformatics tools. The expression of CEBPB in the renal tissue of patients with LN and its correlation with the levels of creatinine and urinary protein were analyzed. We used adenoviral vectors to construct LN mice with knockdown CEBPB using MRL/lpr lupus-prone mice and analyzed the physiological and autoimmune indices in mice. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and dual-luciferase reporter assays were conducted to explore the regulation of BZW1 by CEBPB, followed by glycolytic flux analysis, glucose uptake, and enzyme-linked immunosorbent assay (ELISA). Finally, the role of eIF2α phosphorylation by BZW1 in bone marrow-derived macrophages (BMDM) was explored using eIF2α phosphorylation and endoplasmic reticulum stress inhibitors. RESULTS CEBPB was significantly increased in renal tissues of patients with LN and positively correlated with creatinine and urine protein levels in patients. Downregulation of CEBPB alleviated the autoimmune response and the development of nephritis in LN mice. Transcriptional activation of BZW1 by CEBPB-mediated glucose metabolic reprogramming in macrophages, and upregulation of BZW1 reversed the mitigating effect of CEBPB knockdown on LN. Regulation of eIF2α phosphorylation levels by BZW1 promoted endoplasmic reticulum stress-amplified inflammatory responses in BMDM. CONCLUSION Transcriptional activation of BZW1 by CEBPB promoted phosphorylation of eIF2α to promote macrophage glycolysis and endoplasmic reticulum stress in the development of LN.
Collapse
Affiliation(s)
- Huimeng Qi
- Department of General Practice, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, People's Republic of China
| | - Zhaoguo Zheng
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China
| | - Qiang Liu
- Department of Nephrology, Guangdong Second Provincial General Hospital, Haizhu District, No. 466, Xingang Zhong, Guangzhou, 510317, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Zhang Z, Xie S, Qian J, Gao F, Jin W, Wang L, Yan L, Chen H, Yao W, Li M, Wang X, Zhu L. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl - efflux signaling pathway. J Transl Med 2023; 21:452. [PMID: 37422640 PMCID: PMC10329339 DOI: 10.1186/s12967-023-04313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), in which macrophage-driven synovitis is considered closely related to cartilage destruction and could occur at any stage, is an inflammatory arthritis. However, there are no effective targets to cure the progression of OA. The NOD-, LRR-,and pyrin domain-containing protein 3 (NLRP3) inflammasome in synovial macrophages participates in the pathological inflammatory process and treatment strategies targeting it are considered to be an effective approach for OA. PIM-1 kinase, as a downstream effector of many cytokine signaling pathways, plays a pro-inflammatory role in inflammatory disease. METHODS In this study, we evaluated the expression of the PIM-1 and the infiltration of synovial macrophages in the human OA synovium. The effects and mechanism of PIM-1 were investigated in mice and human macrophages stimulated by lipopolysaccharide (LPS) and different agonists such as nigericin, ATP, Monosodium urate (MSU), and Aluminum salt (Alum). The protective effects on chondrocytes were assessed by a modified co-culture system induced by macrophage condition medium (CM). The therapeutic effect in vivo was confirmed by the medial meniscus (DMM)-induced OA in mice. RESULTS The expression of PIM-1 was increased in the human OA synovium which was accompanied by the infiltration of synovial macrophages. In vitro experiments, suppression of PIM-1 by SMI-4a, a specific inhibitor, rapidly inhibited the NLRP3 inflammasome activation in mice and human macrophages and gasdermin-D (GSDME)-mediated pyroptosis. Furthermore, PIM-1 inhibition specifically blocked the apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization in the assembly stage. Mechanistically, PIM-1 inhibition alleviated the mitochondrial reactive oxygen species (ROS)/chloride intracellular channel proteins (CLICs)-dependent Cl- efflux signaling pathway, which eventually resulted in the blockade of the ASC oligomerization and NLRP3 inflammasome activation. Furthermore, PIM-1 suppression showed chondroprotective effects in the modified co-culture system. Finally, SMI-4a significantly suppressed the expression of PIM-1 in the synovium and reduced the synovitis scores and the Osteoarthritis Research Society International (OARSI) score in the DMM-induced OA model. CONCLUSIONS Therefore, PIM-1 represented a new class of promising targets as a treatment of OA to target these mechanisms in macrophages and widened the road to therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, 310006, Hangzhou, China
| | - Jin Qian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Fengqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjian Jin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Lingqiao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Lili Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Wangxiang Yao
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China.
| |
Collapse
|