1
|
Liao S, Chen Y, Wang S, Wang C, Ye C. Shenkang injection for the treatment of acute kidney injury: a systematic review and meta-analysis. Ren Fail 2024; 46:2338566. [PMID: 38655870 PMCID: PMC11044765 DOI: 10.1080/0886022x.2024.2338566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/30/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE Shenkang injection (SKI) has been widely used in China for many years for the treatment of kidney disease. The objective of this systematic review was to assess the efficacy of Shenkang injection for the treatment of acute kidney injury (AKI). METHODS A search was conducted across seven databases, encompassing data from the inception of each database through October 8th, 2023. Randomized controlled trials comparing SKI-treated AKI patients with control subjects were extracted. The main outcome measure was serum creatinine (SCr) levels. Secondary outcomes included blood urea nitrogen (BUN), serum cystatin C (CysC), 24-h urine protein (24 h-Upro) levels, APACHE II score and adverse reactions. RESULTS This meta-analysis included eleven studies, and the analysis indicated that, compared with the control group, SKI significantly decreased SCr [WMD = -23.31, 95% CI (-28.06, -18.57); p < 0.001]; BUN [WMD = -2.07, 95% CI (-2.56, -1.57); p < 0.001]; CysC [WMD = -0.55, 95% CI (-0.78, -0.32), p < 0.001]; 24-h urine protein [WMD = -0.43, 95% CI (-0.53, -0.34), p < 0.001]; and the APACHE II score [WMD = -3.07, 95% CI (-3.67, -2.48), p < 0.001]. There was no difference in adverse reactions between the SKI group and the control group [RR = 1.32, 95% CI (0.66, 2.63), p = 0.431]. CONCLUSION The use of SKI in AKI patients may reduce SCr, BUN, CysC, 24-h Upro levels, and APACHE II scores in AKI patients. The incidence of adverse reactions did not differ from that in the control group. Additional rigorous clinical trials will be necessary in the future to thoroughly evaluate and establish the effectiveness of SKI in the treatment of AKI.
Collapse
Affiliation(s)
- Shengchun Liao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yurou Chen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuting Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Institute of Traditional Chinese Medicine Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Liang J, Li B, Xia Y. MicroR-380-3p Reduces Sepsis-Induced Acute Kidney Injury via Regulating RAB1P to Restrain NF-κB Pathway. TOHOKU J EXP MED 2024; 263:69-79. [PMID: 38220171 DOI: 10.1620/tjem.2023.j106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Septic acute kidney injury (AKI) is a common complication in critically ill patients with high morbidity and mortality. This study intends to clarify the clinical value and molecular mechanism of microR-380-3p in septic AKI by recruiting patients with septic AKI and establishing septic AKI cell models. Patients with septic AKI were included and human kidney-2 (HK-2) cells were induced by lipopolysaccharide (LPS) to construct the AKI cell model of sepsis. The expression of microR-380-3p was detected by quantitative real-time RT-PCR (qRT-PCR). The expression of Bax, cleaved caspase 3, Bcl-2, p65, and p-p65 was detected by Western blot. The contents of inflammation and oxidation were determined by commercial kits. Bioinformatics predicted the binding target of microR-380-3p and a dual luciferase reporting system was used to verify the regulatory relationship between microR-380-3p and RAP1B. The concentration of microR-380-3p was elevated in patients with septic AKI and appeared to be a biomarker for these patients. Silenced microR-380-3p reversed the damage of LPS on HK-2 cells via promoting viability, inhibiting apoptosis, inflammation, and oxidation. RAP1B was a target of microR-380-3p and microR-380-3p exerted targeted inhibition of RAP1B expression level. Down-regulation of RAP1B reversed the influence of silenced microR-380-3p on HK-2 cells. MicroR-380-3p/RAP1B participated in activating the NF-κB pathway. MicroR-380-3p down-regulated RAP1B to exacerbate septic AKI, providing a potential therapeutic biomarker for septic AKI.
Collapse
Affiliation(s)
- Jifang Liang
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Bo Li
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Yanmei Xia
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
3
|
Zuo Z, Li Q, Zhou S, Yu R, Wu C, Chen J, Xiao Y, Chen H, Song J, Pan Y, Wang W. Berberine ameliorates contrast-induced acute kidney injury by regulating HDAC4-FoxO3a axis-induced autophagy: In vivo and in vitro. Phytother Res 2024; 38:1761-1780. [PMID: 37922559 DOI: 10.1002/ptr.8059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.
Collapse
Affiliation(s)
- Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University/Jiangsu Province Hospital, Nanjing, China
| | - Qingju Li
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Suqin Zhou
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Ran Yu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| | - Caixia Wu
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jiajia Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yao Xiao
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- Jiangsu College of Nursing, Huai'an, China
| | - Haoyu Chen
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Jian Song
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Yan Pan
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
| | - Wanpeng Wang
- Lianshui People's Hospital, Affiliated Kangda College of Nanjing Medical University, Huai'an, China
- School of Clinical Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Jiangsu College of Nursing, Huai'an, China
| |
Collapse
|
4
|
Li H, Guo Z, Xu M, Zhao J, Xu D. Molecular mechanism of miRNA mediated biosynthesis of secondary metabolites in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108524. [PMID: 38518432 DOI: 10.1016/j.plaphy.2024.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Plant secondary metabolites are important raw materials for the pharmaceutical industry, and their biosynthetic processes are subject to diverse and precise regulation by miRNA. The identification of miRNA molecules in medicinal plants and exploration of their mechanisms not only contribute to a deeper understanding of the molecular genetic mechanisms of plant growth, development and resistance to stress, but also provide a theoretical basis for elucidating the pharmacological effects of authentic medicinal materials and constructing bioreactors for the synthesis of medicinal secondary metabolite components. This paper summarizes the research reports on the discovery of miRNA in medicinal plants and their regulatory mechanisms on the synthesis of secondary metabolites by searching the relevant literature in public databases. It summarizes the currently discovered miRNA and their functions in medicinal plants, and summarizes the molecular mechanisms regulating the synthesis and degradation of secondary metabolites. Furthermore, it provides a prospect for the research and development of medicinal plant miRNA. The compiled information contributes to a comprehensive understanding of the research progress on miRNA in medicinal plants and provides a reference for the industrial development of related secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China
| | - Ziyi Guo
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China
| | - Mengwei Xu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China.
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China; Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China.
| |
Collapse
|
5
|
Zeng YF, Li JY, Wei XY, Ma SQ, Wang QG, Qi Z, Duan ZC, Tan L, Tang H. Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: a meta-analysis of animal studies. Front Pharmacol 2023; 14:1310023. [PMID: 38186644 PMCID: PMC10770850 DOI: 10.3389/fphar.2023.1310023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Objective: This study evaluated the reno-protective effects of quercetin in animal models of acute kidney injury (AKI). Methods: We conducted a systematic search of literature published before April 2023 in PubMed, Web of Science, and EMBASE databases. Methodological quality was assessed by SYRCLE's RoB tool. Funnel plot, Egger's test, and Begg's test were used to determine publication bias. Results: A total of 19 studies with 288 animals were included in this meta-analysis. The methodology quality scores of the included studies ranged from 4 to 7. The results indicated that quercetin reduced blood urea nitrogen (SMD = -4.78; 95% CI: 6.45, -3.12; p < 0.01; I2 = 84%) and serum creatinine (SMD: 2.73, 95% CI: 3.66, -1.80; p < 0.01; I2 = 80%) in AKI models. The result of sensitivity analysis was stable, while the results of funnel plot indicated asymmetric. In addition, we further analyzed inflammatory cytokines, oxidative stress levels, and kidney injury scores, and found that quercetin treatment had antioxidant and anti-inflammatory effects and improved kidney injury scores in animal models of AKI. Conclusion: Quercetin exhibited a promising reno-protective effect in AKI animal models. Systematic Review Registration: PROSPERO (CRD42023433333).
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Yu Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si-Qing Ma
- Department of Pharmacy, Hunan Chest Hospital, Changsha Medical University, Changsha, China
| | - Qiu-Guo Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Cheng Duan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Rizk S, Abdel Moneim AE, Abdel-Gaber RA, Alquraishi MI, Santourlidis S, Dkhil MA. Nephroprotective Efficacy of Echinops spinosus against a Glycerol-Induced Acute Kidney Injury Model. ACS OMEGA 2023; 8:41865-41875. [PMID: 37969968 PMCID: PMC10633848 DOI: 10.1021/acsomega.3c06792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
Nephroprotection or renal rescue is to revive and restore kidney function after damage, with no need for further dialysis. During acute kidney injury (AKI), sudden and recent reductions in kidney functions occur. Causes are multiple, and prompt intervention can be critical to diminish or prevent morbidity. Echinops spinosus (ES) is a curative plant with proven pharmacological and biological effects including anti-inflammatory, antioxidant, and antibacterial competencies. The principal goal of this research is to scrutinize the nephroprotective features of E. spinosa extract (ESE) against glycerol-induced AKI. Male Wistar albino rats were equally divided into five separated groups: negative control rats (vehicle-injected), ESE control rats (ESE-treated rats), positive control rats, glycerol-induced AKI-model rats (single IM injection of 50% glycerol), and 2 groups of diseased rats but pretreated with different concentrations of ESE for 7 days (ESE150 + AKI rats and ESE250 + AKI rats). Kidney tissues were collected and used for histopathology analysis. The relative kidney weight percentage was assessed. ESE effects were investigated via scanning several biomarkers, such as serum urea and creatinine, as kidney function biomarkers. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities were examined as rhabdomyolysis (RM) indicators. Kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) were also examined to investigate kidney injury. Enzymatic and nonenzymatic oxidative stress markers were analyzed, namely, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione GSH. Proinflammatory cytokine [tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β)] and the renal proapoptotic protein (Bax) and antiapoptotic protein (Bcl-2) levels were evaluated. Statistical analysis for the resulting data revealed that ESE pretreatment turned AKI-induced biological antioxidant levels to an extent comparable to normal results. Furthermore, ESE decreased kidney function markers and RM-related biomarkers (LDH, CK, Kim-1, and NGAL) compared to those in untreated AKI-model rats. ESE treatment dropped the apoptotic renal Bax levels, enhanced antiapoptotic Bcl-2 manufacture, and disallowed the release of IL-1β and TNF-α. This study revealed the protective effect of ESE as therapeutic medicine against AKI-encouraged oxidative stress, inflammation, and apoptosis. It can be effectively used as adjuvant therapy, helping in renal rescue, and for kidney healing in cases with risk factors of AKI.
Collapse
Affiliation(s)
- Sara Rizk
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 4034572, Egypt
| | - Ahmed Esmat Abdel Moneim
- Department
of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 4034572, Egypt
| | | | - Mohammed I. Alquraishi
- Department
of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Simeon Santourlidis
- Epigenetics
Core Laboratory, Institute of Transplantation Diagnostics and Cell
Therapeutics, Heinrich-Heine-University, Duesseldorf 40225, Germany
| | - Mohamed A. Dkhil
- Department
of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 4034572, Egypt
- Applied Science
Research Center, Applied Science Private
University, Amman 11937, Jordan
| |
Collapse
|
7
|
Shi Y, Shi X, Zhao M, Chang M, Ma S, Zhang Y. Ferroptosis: A new mechanism of traditional Chinese medicine compounds for treating acute kidney injury. Biomed Pharmacother 2023; 163:114849. [PMID: 37172334 DOI: 10.1016/j.biopha.2023.114849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023] Open
Abstract
Acute kidney injury (AKI) is a major health concern owing to its high morbidity and mortality rates, to which there are no drugs or treatment methods, except for renal replacement therapy. Therefore, identifying novel therapeutic targets and drugs for treating AKI is urgent. Ferroptosis is an iron-dependent and lipid-peroxidation-driven regulatory form of cell death and is closely associated with the occurrence and development of AKI. Traditional Chinese medicine (TCM) has unique advantages in treating AKI due to its natural origin and efficacy. In this review, we summarize the mechanisms underlying ferroptosis and its role in AKI, and TCM compounds that play essential roles in the prevention and treatment of AKI by inhibiting ferroptosis. This review suggests ferroptosis as a potential therapeutic target for AKI, and that TCM compounds show broad prospects in the treatment of AKI by targeting ferroptosis.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Sijia Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
8
|
Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D, Liu Z. Novel Insight into Ferroptosis in Kidney Diseases. Am J Nephrol 2023; 54:184-199. [PMID: 37231767 DOI: 10.1159/000530882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Various kidney diseases such as acute kidney injury, chronic kidney disease, polycystic kidney disease, renal cancer, and kidney stones, are an important part of the global burden, bringing a huge economic burden to people around the world. Ferroptosis is a type of nonapoptotic iron-dependent cell death caused by the excess of iron-dependent lipid peroxides and accompanied by abnormal iron metabolism and oxidative stress. Over the past few decades, several studies have shown that ferroptosis is associated with many types of kidney diseases. Studying the mechanism of ferroptosis and related agonists and inhibitors may provide new ideas and directions for the treatment of various kidney diseases. SUMMARY In this review, we discuss the differences between ferroptosis and other types of cell death such as apoptosis, necroptosis, pyroptosis, cuprotosis, pathophysiological features of the kidney, and ferroptosis-induced kidney injury. We also provide an overview of the molecular mechanisms involved in ferroptosis and events that lead to ferroptosis. Furthermore, we summarize the possible clinical applications of this mechanism among various kidney diseases. KEY MESSAGE The current research suggests that future therapeutic efforts to treat kidney ailments would benefit from a focus on ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China,
- Henan Province Research Center for Kidney Disease, Zhengzhou, China,
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
9
|
Li J, Li T, Li Z, Song Z, Gong X. Potential therapeutic effects of Chinese meteria medica in mitigating drug-induced acute kidney injury. Front Pharmacol 2023; 14:1153297. [PMID: 37077810 PMCID: PMC10106589 DOI: 10.3389/fphar.2023.1153297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Drug-induced acute kidney injury (DI-AKI) is one of the leading causes of kidney injury, is associated with high mortality and morbidity, and limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressants, non-steroidal anti-inflammatory drugs, and contrast media. In recent years, numerous studies have shown that many Chinese meteria medica, metabolites derived from botanical drugs, and Chinese medicinal formulas confer protective effects against DI-AKI by targeting a variety of cellular or molecular mechanisms, such as oxidative stress, inflammatory, cell necrosis, apoptosis, and autophagy. This review summarizes the research status of common DI-AKI with Chinese meteria medica interventions, including cisplatin, gentamicin, contrast agents, methotrexate, and acetaminophen. At the same time, this review introduces the metabolites with application prospects represented by ginseng saponins, tetramethylpyrazine, panax notoginseng saponins, and curcumin. Overall, this review provides a reference for the development of promising nephroprotectants.
Collapse
|
10
|
Wu X, Wang J, Li B, Gong M, Cao C, Song L, Qin L, Wang Y, Zhang Y, Li Y. Chlorogenic acid, rutin, and quercetin from Lysimachia christinae alleviate triptolide-induced multi-organ injury in vivo by modulating immunity and AKT/mTOR signal pathway to inhibit ferroptosis and apoptosis. Toxicol Appl Pharmacol 2023; 467:116479. [PMID: 36963520 DOI: 10.1016/j.taap.2023.116479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Drug-induced organ injury is one of the key factors causing organ failure and death in the global public. Triptolide (TP) is the main immunosuppressive component of Tripterygium wilfordii Hook. f. (Leigongteng, LGT) for the first-line management of autoimmune conditions, but it can cause serious multi-organ injury. Lysimachia christinae (Jinqiancao, JQC) is a detoxifying Chinese medicine and could suppress LGT's toxicity. It contains many immune enhancement and organ protection components including chlorogenic acid (CA), rutin (Rut), and quercetin (Que). This study aimed to explore the protection of combined treatments of these organ-protective ingredients of JQC on TP-induced liver, kidney, and heart injury and initially explore the mechanisms. Molecular docking showed that CA, Rut, and Que. bound AKT/mTOR pathway-related molecules intimately and might competitively antagonize TP. Corresponding in vivo results showed that the combination activated TP-inhibited protein of AKT/mTOR pathway, and reversed TP-induced excessive ferroptosis (excessive Fe 2+ and lipid peroxidation malondialdehyde accumulation, decreased levels of antioxidant enzymes catalase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and superoxide dismutase, and down-regulated P62/nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway), and apoptosis (activated apoptotic factor Fas and Bax and inhibited Bcl-2) in the organ of mice to varying degrees. In conclusion, the combined treatments of CA, Rut, and Que. from JQC inhibited TP-induced multi-organ injury in vivo, and the mechanism may largely involve immunomodulation and activation of the AKT/mTOR pathway-mediated cell death reduction including ferroptosis and apoptosis inhibition.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Can Cao
- College of Chinese medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
11
|
Bian Z, Wang X, Zhu R, Chen S. miR-21-5p in extracellular vesicles obtained from adipose tissue-derived stromal cells facilitates tubular epithelial cell repair in acute kidney injury. Cytotherapy 2023; 25:310-322. [PMID: 36244909 DOI: 10.1016/j.jcyt.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Acute kidney injury (AKI) is often associated with poor patient outcomes. Extracellular vesicles (EVs) have a marked therapeutic effect on renal recovery. This study sought to explore the functional mechanism of EVs from adipose tissue-derived stromal cells (ADSCs) in tubular epithelial cell (TEC) repair in AKI. METHODS ADSCs were cultured and EVs were isolated and identified. In vivo and in vitro AKI models were established using lipopolysaccharide (LPS). RESULTS EVs increased human kidney 2 (HK-2) cell viability; decreased terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and levels of kidney injury molecule 1, cleaved caspase-1, apoptosis-associated speck-like protein containing a CARD, gasdermin D-N, IL-18 and IL-1β; and elevated pro-caspase-1. EVs carried miR-21-5p into LPS-induced HK-2 cells. Silencing miR-21-5p partly eliminated the ability of EVs to suppress HK-2 cell pyroptosis and inflammation. miR-21-5p targeted toll-like receptor 4 (TLR4) and inhibited TEC pyroptosis and inflammation after AKI by inhibiting TLR4. TLR4 overexpression blocked the inhibitory effects of EVs on TEC pyroptosis and inflammation. EVs suppressed the nuclear factor-κB/NOD-like receptor family pyrin domain-containing 3 (NF-κB/NLRP3) pathway via miR-21-5p/TLR4. Finally, AKI mouse models were established and in vivo assays verified that ADSC-EVs reduced TEC pyroptosis and inflammatory response and potentiated cell repair by mediating miR-21-5p in AKI mice. CONCLUSIONS ADSC-EVs inhibited inflammation and TEC pyroptosis and promoted TEC repair in AKI by mediating miR-21-5p to target TLR4 and inhibiting the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Zhixiang Bian
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiangxiang Wang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Rui Zhu
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Park C, Kim DH, Kim TH, Jeong SU, Yoon JH, Moon SK, Kwon CY, Park SH, Hong SH, Shim JH, Kim GY, Choi YH. Improvement of Oxidative Stress-induced Cytotoxicity of Angelica keiskei (Miq.) Koidz. Leaves Extract through Activation of Heme Oxygenase-1 in C2C12 Murine Myoblasts. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Bibliometric analysis of ferroptosis in acute kidney injury from 2014 to 2022. Int Urol Nephrol 2023; 55:1509-1521. [PMID: 36611104 DOI: 10.1007/s11255-022-03456-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Acute kidney injury (AKI) is a global disease with high morbidity and mortality. At present, the treatment of AKI still lacks targeted measures. Ferroptosis, a form of regulated cell death, plays an essential role in the initiation and progression of AKI. Current evidence proves that targeting ferroptosis is supposed to be a novel potential strategy to cure AKI. In this study, we aim to use bibliometric analysis to identify research trends and hotspots in the field of "ferroptosis in AKI". METHODS We chose the Science Citation Index Expanded (SCI-EXPANDED) index of the Web of Science Core Collection (WoSCC) as the source database for data retrieval. Data were retrieved from the WoSCC on May 24, 2022. Full records and cited references of all the documents in WoSCC were collected. The R software and the Online Analysis Platform of Literature Metrology were used for data analysis and visual analysis. RESULTS There were 120 documents on "ferroptosis in AKI" in the WOSCC from 2014 to 2022 (May 24, 2022). There was a clear upward trend each year in the number of documents published. According to WoS report, China, the United States, and Germany were the top three countries involved in this research area, the majority of publications were included in the subject area "Cell Biology". Technical University of Dresden contributed the most publications, followed by Central South University and University of Pittsburgh. The Journal of Cell Death and Disease had the highest H-index and contributed the most publications. Linkermann A authored 16 articles and had the highest H-index. Multifactorial analysis of the keywords show that the research field is divided into two clusters. The most contributing publications and the most cited publications were also determined by factorial analysis. CONCLUSION This bibliometric analysis provides a comprehensive analysis of research trends and hot spots on the topic of "ferroptosis in AKI". The study of ferroptosis-related AKI research remains in its early stages. There will be a dramatically increasing number of publications on this field. Further research should focus on exploring the mechanisms of crosstalk between ferroptosis and other programmed cell deaths, and improves clinical applications and therapeutic effects against AKI.
Collapse
|
14
|
Research progress of traditional Chinese medicine in ferroptosis-related diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Liu T, Jin Q, Ren F, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Potential therapeutic effects of natural compounds targeting autophagy to alleviate podocyte injury in glomerular diseases. Biomed Pharmacother 2022; 155:113670. [PMID: 36116248 DOI: 10.1016/j.biopha.2022.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Podocyte injury is a common cause of proteinuric kidney diseases. Uncontrollable progressive podocyte loss accelerates glomerulosclerosis and increases the risk of end-stage renal disease. To date, owing to the complex pathological mechanism, effective therapies for podocyte injury have been limited. Accumulating evidence supports the indispensable role of autophagy in the maintenance of podocyte homeostasis. A variety of natural compounds and their derivatives have been found to regulate autophagy through multiple targets, including promotes nuclear transfer of transcription factor EB and lysosomal repair. Here, we reviewed the recent studies on the use of natural compounds and their derivatives as autophagy regulators and discussed their potential applications in ameliorating podocyte injury. Several known natural compounds with autophagy-regulatory properties, such as quercetin, silibinin, kaempferol, and artemisinin, and their medical uses were also discussed. This review will help in improving the understanding of the podocyte protective mechanism of natural compounds and promote their development for clinical use.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|