1
|
Ochi N, Miyake N, Takeyama M, Yamane H, Fukazawa T, Nagasaki Y, Kawahara T, Ichiyama N, Kosaka Y, Mimura A, Nakanishi H, Hiraki A, Kiura K, Takigawa N. The combined inhibition of SLC1A3 and glutaminase in osimertinib-resistant EGFR mutant cells. Biochim Biophys Acta Gen Subj 2024; 1868:130675. [PMID: 39059510 DOI: 10.1016/j.bbagen.2024.130675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND We investigated the unknown mechanisms of osimertinib-resistant EGFR-mutant lung cancer. METHODS An osimertinib-resistant cell line (PC-9/OsmR2) was established through continuous exposure to osimertinib using an EGFR exon 19 deletion (19Del) lung adenocarcinoma cell line (PC-9). EGFR 19Del (M1), L858R/T790M/C797S (M6), and L858R/C797S (M8) expression vectors were introduced into Ba/F3 cells. A second osimertinib-resistant line (M1/OsmR) was established through continuous exposure to osimertinib using M1 cells. RESULTS SLC1A3 had the highest mRNA expression level in PC-9/OsmR2 compared to PC-9 cells by microarray analysis and SLC1A3 was increased by flow cytometry. In PC-9/OsmR2 cells, osimertinib sensitivity was significantly increased in combination with siSLC1A3. Because SLC1A3 functions in glutamic acid transport, osimertinib with a glutaminase inhibitor (CB-839) or an SLC1A3 inhibitor (TFB-TBOA) increased the sensitivity. Also, CB-839 plus TFB-TBOA without osimertinib resulted in greater susceptibility than did CB-839 or TFB-TBOA plus osimertinib. Comprehensive metabolome analysis showed that the M1/OsmR cells had significantly more glutamine and glutamic acid than M1 cells. CB-839 plus osimertinib exerted a synergistic effect on M6 cells and an additive effect on M8 cells. CONCLUSION Targeting glutaminase and glutamic acid may overcome the osimertinib-resistant EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Nobuaki Ochi
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Noriko Miyake
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan; Kajiki Hospital, Okayama, Japan
| | - Masami Takeyama
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Hiromichi Yamane
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Yasunari Nagasaki
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Tatsuyuki Kawahara
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Naruhiko Ichiyama
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Youko Kosaka
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Ayaka Mimura
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Hidekazu Nakanishi
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | | | | | - Nagio Takigawa
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|
2
|
Hamed MA, Wasinger V, Wang Q, Biazik J, Graham P, Malouf D, Bucci J, Li Y. Optimising Extracellular Vesicle Metabolomic Methodology for Prostate Cancer Biomarker Discovery. Metabolites 2024; 14:367. [PMID: 39057690 PMCID: PMC11279087 DOI: 10.3390/metabo14070367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional diagnostic tools for prostate cancer (PCa), such as prostate-specific antigen (PSA), transrectal ultrasound (TRUS), digital rectal examination (DRE), and tissue biopsy face, limitations in individual risk stratification due to invasiveness or reliability issues. Liquid biopsy is a less invasive and more accurate alternative. Metabolomic analysis of extracellular vesicles (EVs) holds a promise for detecting non-genetic alterations and biomarkers in PCa diagnosis and risk assessment. The current research gap in PCa lies in the lack of accurate biomarkers for early diagnosis and real-time monitoring of cancer progression or metastasis. Establishing a suitable approach for observing dynamic EV metabolic alterations that often occur earlier than being detectable by other omics technologies makes metabolomics valuable for early diagnosis and monitoring of PCa. Using four distinct metabolite extraction approaches, the metabolite cargo of PC3-derived large extracellular vesicles (lEVs) was evaluated using a combination of methanol, cell shearing using microbeads, and size exclusion filtration, as well as two fractionation chemistries (pHILIC and C18 chromatography) that are also examined. The unfiltered methanol-microbeads approach (MB-UF), followed by pHILIC LC-MS/MS for EV metabolite extraction and analysis, is effective. Identified metabolites such as L-glutamic acid, pyruvic acid, lactic acid, and methylmalonic acid have important links to PCa and are discussed. Our study, for the first time, has comprehensively evaluated the extraction and separation methods with a view to downstream sample integrity across omics platforms, and it presents an optimised protocol for EV metabolomics in PCa biomarker discovery.
Collapse
Affiliation(s)
- Mahmoud Assem Hamed
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia;
| | - Qi Wang
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia;
| | - Peter Graham
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - David Malouf
- Department of Urology, St. George Hospital, Kogarah, NSW 2217, Australia;
| | - Joseph Bucci
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
3
|
Park W, Han JH, Wei S, Yang ES, Cheon SY, Bae SJ, Ryu D, Chung HS, Ha KT. Natural Product-Based Glycolysis Inhibitors as a Therapeutic Strategy for Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:807. [PMID: 38255882 PMCID: PMC10815680 DOI: 10.3390/ijms25020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide. Targeted therapy against the epidermal growth factor receptor (EGFR) is a promising treatment approach for NSCLC. However, resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a major challenge in its clinical management. EGFR mutation elevates the expression of hypoxia-inducible factor-1 alpha to upregulate the production of glycolytic enzymes, increasing glycolysis and tumor resistance. The inhibition of glycolysis can be a potential strategy for overcoming EGFR-TKI resistance and enhancing the effectiveness of EGFR-TKIs. In this review, we specifically explored the effectiveness of pyruvate dehydrogenase kinase inhibitors and lactate dehydrogenase A inhibitors in combating EGFR-TKI resistance. The aim was to summarize the effects of these natural products in preclinical NSCLC models to provide a comprehensive understanding of the potential therapeutic effects. The study findings suggest that natural products can be promising inhibitors of glycolytic enzymes for the treatment of EGFR-TKI-resistant NSCLC. Further investigations through preclinical and clinical studies are required to validate the efficacy of natural product-based glycolytic inhibitors as innovative therapeutic modalities for NSCLC.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Shibo Wei
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea;
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea; (E.-S.Y.); (S.-Y.C.)
| |
Collapse
|
4
|
Mohammad Nezhady MA, Modaresinejad M, Zia A, Chemtob S. Versatile lactate signaling via HCAR1: a multifaceted GPCR involved in many biological processes. Am J Physiol Cell Physiol 2023; 325:C1502-C1515. [PMID: 37899751 DOI: 10.1152/ajpcell.00346.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
G-coupled protein receptors (GPCRs) are the ultimate refuge of pharmacology and medicine as more than 40% of all marketed drugs are directly targeting these receptors. Through cell surface expression, they are at the forefront of cellular communication with the outside world. Metabolites among the conveyors of this communication are becoming more prominent with the recognition of them as ligands for GPCRs. HCAR1 is a GPCR conveyor of lactate. It is a class A GPCR coupled to Gαi which reduces cellular cAMP along with the downstream Gβγ signaling. It was first found to inhibit lipolysis, and lately has been implicated in diverse cellular processes, including neural activities, angiogenesis, inflammation, vision, cardiovascular function, stem cell proliferation, and involved in promoting pathogenesis for different conditions, such as cancer. Other than signaling from the plasma membrane, HCAR1 shows nuclear localization with different location-biased activities therein. Although different functions for HCAR1 are being discovered, its cell and molecular mechanisms are yet ill understood. Here, we provide a comprehensive review on HCAR1, which covers the literature on the subject, and discusses its importance and relevance in various biological phenomena.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Monir Modaresinejad
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Aliabbas Zia
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
How Warburg-Associated Lactic Acidosis Rewires Cancer Cell Energy Metabolism to Resist Glucose Deprivation. Cancers (Basel) 2023; 15:cancers15051417. [PMID: 36900208 PMCID: PMC10000466 DOI: 10.3390/cancers15051417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Lactic acidosis, a hallmark of solid tumour microenvironment, originates from lactate hyperproduction and its co-secretion with protons by cancer cells displaying the Warburg effect. Long considered a side effect of cancer metabolism, lactic acidosis is now known to play a major role in tumour physiology, aggressiveness and treatment efficiency. Growing evidence shows that it promotes cancer cell resistance to glucose deprivation, a common feature of tumours. Here we review the current understanding of how extracellular lactate and acidosis, acting as a combination of enzymatic inhibitors, signal, and nutrient, switch cancer cell metabolism from the Warburg effect to an oxidative metabolic phenotype, which allows cancer cells to withstand glucose deprivation, and makes lactic acidosis a promising anticancer target. We also discuss how the evidence about lactic acidosis' effect could be integrated in the understanding of the whole-tumour metabolism and what perspectives it opens up for future research.
Collapse
|