1
|
Esdaile H, Khan S, Mayet J, Oliver N, Reddy M, Shah ASV. The association between the stress hyperglycaemia ratio and mortality in cardiovascular disease: a meta-analysis and systematic review. Cardiovasc Diabetol 2024; 23:412. [PMID: 39550575 PMCID: PMC11568630 DOI: 10.1186/s12933-024-02454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND A raised stress hyperglycaemia ratio (SHR) has been associated with all-cause mortality and may better discriminate than an absolute glucose value. The aim of this meta analysis and systematic review is to synthesise the evidence assessing the relationship between the SHR and all-cause mortality across three common cardiovascular presentations. METHODS We undertook a comprehensive search of Medline, Embase, Cochrane CENTRAL and Web of Science from the date of inception to 1st March 2024, and selected articles meeting the following criteria: studies of patients hospitalised for acute myocardial infarction, ischaemic stroke or acute heart failure reporting the risk (odds ratio or hazard ratio) for all-cause mortality associated with the SHR. A random effects model was used for primary analysis. Subgroup analysis by diabetes status and of mortality in the short and long term was undertaken. Risk of bias assessment was performed using the Newcastle Ottawa quality assessment scale. RESULTS A total of 32 studies were included: 26 studies provided 31 estimates for the meta-analysis. The total study population in the meta analysis was 80,010. Six further studies were included in the systematic review. Participants admitted to hospital with cardiovascular disease and an SHR in the highest category had a significantly higher risk ratio of all-cause mortality in both the short and longer term compared with those with a lower SHR (RR = 1.67 [95% CI 1.46-1.91], p < 0.001). This finding was driven by studies in the myocardial infarction (RR = 1.75 [95% CI 1.52-2.01]), and ischaemic stroke cohorts (RR = 1.78 [95% CI 1.26-2.50]). The relationship was present amongst those with and without diabetes (diabetes: RR 1.49 [95% CI 1.14-1.94], p < 0.001, no diabetes: RR 1.85 [95% CI 1.49-2.30], p < 0.001) with p = 0.21 for subgroup differences, and amongst studies that reported mortality as a single outcome (RR of 1.51 ([95% CI 1.29-1.77]; p < 0.001) and those that reported mortality as part of a composite outcome (RR 2.02 [95% CI 1.58-2.59]; p < 0.001). On subgroup analysis by length of follow up, higher SHR values were associated with increased risk of mortality at 90 day, 1 year and > 1year follow up, with risk ratios of 1.84 ([95% CI 1.32-2.56], p < 0.001), 1.69 ([95% CI 1.32-2.16], p < 0.001) and 1.58 ([95% CI 1.34-1.86], p < 0.001) respectively. CONCLUSIONS A raised SHR is associated with an increased risk of all-cause mortality following myocardial infarction and ischaemic stroke. Further work is required to define reference values for the SHR, and to investigate the potential effects of relative hypoglycaemia. Interventional trials targeting to the SHR rather than the absolute glucose value should be undertaken. PROSPERO DATABASE REGISTRATION CRD 42023456421 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023456421.
Collapse
Affiliation(s)
- Harriet Esdaile
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK.
| | - Shaila Khan
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Jamil Mayet
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nick Oliver
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Monika Reddy
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Anoop S V Shah
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
- Department of Non Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Dawson LP, Rashid M, Dinh DT, Brennan A, Bloom JE, Biswas S, Lefkovits J, Shaw JA, Chan W, Clark DJ, Oqueli E, Hiew C, Freeman M, Taylor AJ, Reid CM, Ajani AE, Kaye DM, Mamas MA, Stub D. No-Reflow Prediction in Acute Coronary Syndrome During Percutaneous Coronary Intervention: The NORPACS Risk Score. Circ Cardiovasc Interv 2024; 17:e013738. [PMID: 38487882 DOI: 10.1161/circinterventions.123.013738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/31/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Suboptimal coronary reperfusion (no reflow) is common in acute coronary syndrome percutaneous coronary intervention (PCI) and is associated with poor outcomes. We aimed to develop and externally validate a clinical risk score for angiographic no reflow for use following angiography and before PCI. METHODS We developed and externally validated a logistic regression model for prediction of no reflow among adult patients undergoing PCI for acute coronary syndrome using data from the Melbourne Interventional Group PCI registry (2005-2020; development cohort) and the British Cardiovascular Interventional Society PCI registry (2006-2020; external validation cohort). RESULTS A total of 30 561 patients (mean age, 64.1 years; 24% women) were included in the Melbourne Interventional Group development cohort and 440 256 patients (mean age, 64.9 years; 27% women) in the British Cardiovascular Interventional Society external validation cohort. The primary outcome (no reflow) occurred in 4.1% (1249 patients) and 9.4% (41 222 patients) of the development and validation cohorts, respectively. From 33 candidate predictor variables, 6 final variables were selected by an adaptive least absolute shrinkage and selection operator regression model for inclusion (cardiogenic shock, ST-segment-elevation myocardial infarction with symptom onset >195 minutes pre-PCI, estimated stent length ≥20 mm, vessel diameter <2.5 mm, pre-PCI Thrombolysis in Myocardial Infarction flow <3, and lesion location). Model discrimination was very good (development C statistic, 0.808; validation C statistic, 0.741) with excellent calibration. Patients with a score of ≥8 points had a 22% and 27% risk of no reflow in the development and validation cohorts, respectively. CONCLUSIONS The no-reflow prediction in acute coronary syndrome risk score is a simple count-based scoring system based on 6 parameters available before PCI to predict the risk of no reflow. This score could be useful in guiding preventative treatment and future trials.
Collapse
Affiliation(s)
- Luke P Dawson
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., A.J.T., D.M.K., D.S.)
- The Baker Institute, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., D.M.K., D.S.)
| | - Muhammad Rashid
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Stroke on Trent, United Kingdom (M.R., A.E.A., M.A.M.)
- Department of Cardiovascular Sciences, National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, United Kingdom (M.R., A.E.A.)
- University Hospitals of Leicester National Health Service (NHS) Trust, United Kingdom (M.R., A.E.A.)
| | - Diem T Dinh
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
| | - Angela Brennan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
| | - Jason E Bloom
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., A.J.T., D.M.K., D.S.)
- The Baker Institute, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., D.M.K., D.S.)
| | - Sinjini Biswas
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
| | - Jeffrey Lefkovits
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
- Department of Cardiology, Royal Melbourne Hospital, Victoria, Australia (J.L.)
| | - James A Shaw
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., A.J.T., D.M.K., D.S.)
- The Baker Institute, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., D.M.K., D.S.)
| | - William Chan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
- Department of Medicine, Melbourne University, Victoria, Australia (W.C.)
| | - David J Clark
- Department of Cardiology, Austin Health, Melbourne, Victoria, Australia (D.J.C.)
| | - Ernesto Oqueli
- Department of Cardiology, Grampians Health Ballarat, Victoria, Australia (E.O.)
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia (E.O.)
| | - Chin Hiew
- Department of Cardiology, University Hospital Geelong, Victoria, Australia (C.H.)
| | - Melanie Freeman
- Department of Cardiology, Box Hill Hospital, Melbourne, Victoria, Australia (M.F.)
| | - Andrew J Taylor
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., A.J.T., D.M.K., D.S.)
| | - Christopher M Reid
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
- Centre of Clinical Research and Education, School of Public Health, Curtin University, Perth, Western Australia, Australia (C.M.R.)
| | - Andrew E Ajani
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Stroke on Trent, United Kingdom (M.R., A.E.A., M.A.M.)
- Department of Cardiovascular Sciences, National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, United Kingdom (M.R., A.E.A.)
- University Hospitals of Leicester National Health Service (NHS) Trust, United Kingdom (M.R., A.E.A.)
| | - David M Kaye
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., A.J.T., D.M.K., D.S.)
- The Baker Institute, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., D.M.K., D.S.)
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Stroke on Trent, United Kingdom (M.R., A.E.A., M.A.M.)
| | - Dion Stub
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (L.P.D., D.T.D., A.B., S.B., J.L., W.C., C.M.R., A.E.A., D.S.)
- Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., A.J.T., D.M.K., D.S.)
- The Baker Institute, Melbourne, Victoria, Australia (L.P.D., J.E.B., J.A.S., D.M.K., D.S.)
| |
Collapse
|
3
|
Ma J, Wang M, Wu P, Ma X, Chen D, Jia S, Yan N. Predictive effect of triglyceride-glucose index on No-Reflow Phenomenon in patients with type 2 diabetes mellitus and acute myocardial infarction undergoing primary percutaneous coronary intervention. Diabetol Metab Syndr 2024; 16:67. [PMID: 38481310 PMCID: PMC10938834 DOI: 10.1186/s13098-024-01306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVE Triglyceride glucose (TyG) index is considered as a new alternative marker of insulin resistance and a clinical predictor of type 2 diabetes mellitus (T2DM) combined with coronary artery disease. However, the prognostic value of TyG index on No-Reflow (NR) Phenomenon in T2DM patients with acute myocardial infarction (AMI) remains unclear. METHODS In this retrospective study, 1683 patients with T2DM and AMI underwent primary percutaneous coronary intervention (PCI) were consecutively included between January 2014 and December 2019. The study population was divided into two groups as follows: Reflow (n = 1277) and No-reflow (n = 406) group. The TyG index was calculated as the ln [fasting triglycerides (mg/dL)×fasting plasma glucose (mg/dL)/2].Multivariable logistic regression models and receiver-operating characteristic curve analysis were conducted to predict the possible risk of no-reflow. Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI) were calculated to determine the ability of the TyG index to contribute to the baseline risk model. RESULTS Multivariable logistic regression models revealed that the TyG index was positively associated with NR[OR,95%CI:5.03,(2.72,9.28),p<0.001] in patients with T2DM and AMI. The area under the curve (AUC) of the TyG index predicting the occurrence of NR was 0.645 (95% CI 0.615-0.673; p < 0.001)], with the cut-off value of 8.98. The addition of TyG index to a baseline risk model had an incremental effect on the predictive value for NR [net reclassification improvement (NRI): 0.077(0.043to 0.111), integrated discrimination improvement (IDI): 0.070 (0.031to 0.108), all p < 0.001]. CONCLUSIONS High TyG index was associated with an increased risk of no-reflow after PCI in AMI patients with T2DM. The TyG index may be a valid predictor of NR phenomenon of patients with T2DM and AMI. Early recognition of NR is critical to improve outcomes with AMI and T2DM patients.
Collapse
Affiliation(s)
- Juan Ma
- School of Clinical Medicine, Ningxia Medical University, 750004, Yinchuan, People's Republic of China
| | - Mohan Wang
- School of Clinical Medicine, Ningxia Medical University, 750004, Yinchuan, People's Republic of China
| | - Peng Wu
- School of Clinical Medicine, Ningxia Medical University, 750004, Yinchuan, People's Republic of China
| | - Xueping Ma
- Heart Centre, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, 750004, Yinchuan, Ningxia, People's Republic of China
| | - Dapeng Chen
- Heart Centre, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, 750004, Yinchuan, Ningxia, People's Republic of China
| | - Shaobin Jia
- Heart Centre, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, 750004, Yinchuan, Ningxia, People's Republic of China.
| | - Ning Yan
- Heart Centre, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, 750004, Yinchuan, Ningxia, People's Republic of China.
| |
Collapse
|
4
|
Jafari Afshar E, Gholami N, Samimisedeh P, MozafaryBazargany M, Tayebi A, Memari A, Yazdani S, Rastad H. Utility of electrocardiogram to predict the occurrence of the no-reflow phenomenon in patients undergoing primary percutaneous coronary intervention (PPCI): a systematic review and meta-analysis. Front Cardiovasc Med 2024; 10:1295964. [PMID: 38283173 PMCID: PMC10813196 DOI: 10.3389/fcvm.2023.1295964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Background The no-reflow phenomenon affects about one out of five patients undergoing Primary Percutaneous Coronary Intervention (PPCI). As the prolonged no-reflow phenomenon is linked with unfavorable outcomes, making early recognition is crucial for effective management and improved clinical outcomes in these patients. Our review study aimed to determine whether electrocardiogram (ECG) findings before PCI could serve as predictors for the occurrence of the no-reflow phenomenon. Methods and materials We systematically searched MEDLINE, Scopus, and Embase to identify relevant studies. The random-effect model using inverse variance and Mantel-Haenszel methods were used to pool the standardized mean differences (SMD) and odds ratios (OR), respectively. Result Sixteen eligible articles (1,473 cases and 4,264 controls) were included in this study. Based on our meta-analysis of baseline ECG findings, the no-reflow group compared to the control group significantly had a higher frequency of fragmented QRS complexes (fQRS) (OR (95% CI): 1.35 (0.32-2.38), P-value = 0.01), and Q-waves (OR (95% CI): 1.97 (1.01-2.94), P-value <0.001). Also, a longer QRS duration (QRSD) (SMD (95% CI): 0.72 (0.21, 1.23), p-value <0.001) and R wave peak time (RWPT) (SMD (95% CI): 1.36 (0.8, 1.93), P < 0.001) were seen in the no-reflow group. The two groups had no significant difference regarding P wave peak time (PWPT), and P wave maximum duration (Pmax) on baseline ECG. Conclusion Our findings suggest that prolonged QRSD, delayed RWPT, higher fQRS prevalence, and the presence of a Q wave on baseline ECG may predict the occurrence of the no-reflow phenomenon in patients undergoing PPCI.
Collapse
Affiliation(s)
- Elmira Jafari Afshar
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Niloofar Gholami
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | | | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Amirhossein Memari
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Shahrooz Yazdani
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| |
Collapse
|