1
|
Jinakote M, Jeeratantorn P, Surapolchai L, Dornbunlon P, Yoysungnoen B, Kasiyaphat A. Effects of brisk walking with or without music on body composition, standing balance, cardiovascular parameters, and salivary biomarkers in older women. J Exerc Rehabil 2024; 20:100-111. [PMID: 38973979 PMCID: PMC11222065 DOI: 10.12965/jer.2448154.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 07/09/2024] Open
Abstract
This study aimed to assess and compare changes in body composition, standing balance, cardiovascular parameters, and salivary biomarkers, particularly salivary antioxidant status, after brisk walking training with or without music in older women. Twenty-four subjects were randomly assigned to brisk walking groups: with music (BWM) (n=12) or without music (BW) (n=12). Eighteen subjects completed the exercise training (9 in each group), and their data were used for analysis. The research protocols were classified into three phases: pretraining phase, training phase, and posttraining phase, while the data collection was divided into four sessions: resting condition, during treadmill exercise testing, immediately posttreadmill exercise testing, and 5-min posttreadmill exercise testing defined as after the cool-down session. The results showed that 8 weeks of home-based brisk walking with or without music did not improve standing balance, blood pressure, salivary biomarkers including total protein concentration, and antioxidant status but maintained or prevented the decline of these parameters. Only the BWM group reduced fat mass relative to increasing fat-free mass (P<0.05) and improved recovery heart rate (P<0.05) by modifying cardiac autonomic control in posttreadmill exercise testing. Therefore, brisk walking with preferred music can be a tool to delay the progression of cardiovascular dysfunction in older women. A longer duration of the exercise program and larger groups of participants are needed for further investigation of brisk walking with or without music on physiological and biochemical changes.
Collapse
Affiliation(s)
- Metee Jinakote
- School of Human Kinetics and Health, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok,
Thailand
| | - Punika Jeeratantorn
- School of Human Kinetics and Health, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok,
Thailand
| | - Lapol Surapolchai
- School of Human Kinetics and Health, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok,
Thailand
| | - Punkorn Dornbunlon
- School of Human Kinetics and Health, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok,
Thailand
| | - Bhornprom Yoysungnoen
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani,
Thailand
| | - Atchareeya Kasiyaphat
- School of Human Kinetics and Health, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok,
Thailand
| |
Collapse
|
2
|
Nery GB, de Araujo CAR, da Silva GB, Bittar H, Bordallo VP, Amaral JB, Hardt M, Marti L, Birbrair A, Jimenez M, Bastos MF, Nali LHS, Longo PL, Laurentino GC, Bachi ALL, Heller D. Impact of social distancing from the COVID-19 pandemic on the immuno-inflammatory response of older adults. BMC Geriatr 2024; 24:99. [PMID: 38273281 PMCID: PMC10811891 DOI: 10.1186/s12877-024-04699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Older adults, as the population considered at increased risk for severe COVID-19, were the most impacted by social isolation. Thus, this study aimed to assess the salivary immune/inflammatory response of older adults before and during the COVID-19 pandemic. METHODS A cohort of 11 older adults (mean age 66.8 ± 6.1) was followed at three different time points: before (S1) and after 6 (S2) and 20 months (S3) of the beginning of the COVID-19 pandemic in Brazil. Unstimulated saliva samples were obtained to assess the levels of antibodies (secretory IgA, IgG and IgM) by ELISA and cytokines (IL-2, IL-5, IL-6, IL-8 and IL-10, TSLP, IFN-γ, TNF-α) by multiplex analysis. Significant differences were evaluated using the Kruskal-Wallis test with Dunn's post-test. RESULTS None volunteer presented periodontal disease or caries. All volunteers received at least two doses of the COVID-19 vaccines after S2 and before S3. A tendency to increase salivary levels of SIgA and IgM at S2 and of IgG at S3 were observed compared to the values found at S1 and S2. Significantly decreased levels of IL-2 and IL-5 were found at S2 and S3 (p < 0.001) time points. Lower levels of IFN-γ were found at S2 as compared to the values observed at S1 (p < 0.01). A significant decrease in the IFN-γ/IL-10 ratio was found at S2 (p < 0.01). When assessing the Th1/Th2 ratios, a significant decrease was found in the IFN-γ/TSLP ratio at S2 (p < 0.001) and S3 (p < 0.001) when compared to the values at S1. In addition, a significant increase was observed in the TNF-α/IL-5 ratio at S2 (p < 0.001) and S3 (p < 0.001) in comparison to the values at S1. In a similar way, an increase in the TNF-α/IL-6 ratio (Fig. 5E) was observed at S3 (p < 0.001) when compared to the values at S1. CONCLUSIONS Overall, this study provides valuable insights into the impact of COVID-19-induced social isolation on immune/inflammatory responses in the upper airway mucosa, particularly those present in oral cavity, of older adults. It demonstrates that a controlled shift in Th1 and Th2 immune responses, both during infection and post-vaccination, can create favorable conditions to combat viral infections without exacerbating the immune response or worsening the pathology.
Collapse
Affiliation(s)
- Giulia Beletato Nery
- Post Graduate Program in Dentistry, Cruzeiro Do Sul University, São Paulo, Brazil
| | | | | | - Helena Bittar
- Post Graduate Program in Dentistry, Cruzeiro Do Sul University, São Paulo, Brazil
| | | | - Jônatas B Amaral
- Department of Otorhinolaryngology, ENT Lab, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Markus Hardt
- Center for Salivary Diagnostics, The Forsyth Institute, Cambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Luciana Marti
- Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Manuel Jimenez
- Departamento de Didáctica de La Educación Física y Salud, Universidad Internacional de La Rioja, Logroño, Spain
| | - Marta Ferreira Bastos
- Postgraduate Program in Aging Sciences, São Judas Tadeu University, São Paulo, Brazil
| | - Luiz Henrique Silva Nali
- Department of Otorhinolaryngology, ENT Lab, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduate Program in Health Science, Santo Amaro University (UNISA), Santo Amaro, Brazil
| | | | | | - André L L Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil.
- Post-Graduate Program in Health Science, Santo Amaro University (UNISA), Santo Amaro, Brazil.
| | - Debora Heller
- Post Graduate Program in Dentistry, Cruzeiro Do Sul University, São Paulo, Brazil.
- Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.
- Department of Periodontology, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Han Y, Jia Q, Tian Y, Yan Y, He K, Zhao X. Multi-omics reveals changed energy metabolism of liver and muscle by caffeine after mice swimming. PeerJ 2024; 12:e16677. [PMID: 38188177 PMCID: PMC10771084 DOI: 10.7717/peerj.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, numerous studies have investigated the effects of caffeine on exercise, and provide convincing evidence for its ergogenic effects on exercise performance. However, the precise mechanisms underlying these ergogenic effects remain unclear. In this study, an exercise swimming model was conducted to investigate the effects of orally administered with caffeine before swimming on the alterations of proteome and energy metabolome of liver and muscle after swimming. We found proteins in liver, such as S100a8, S100a9, Gabpa, Igfbp1 and Sdc4, were significantly up-regulated, while Rbp4 and Tf decreased after swimming were further down-regulated in caffeine group. The glycolysis and pentose phosphate pathways in liver and muscle were both significantly down-regulated in caffeine group. The pyruvate carboxylase and amino acid levels in liver, including cysteine, serine and tyrosine, were markedly up-regulated in caffeine group, exhibiting a strong correlation with the increased pyruvic acid and oxaloacetate levels in muscle. Moreover, caffeine significantly decreased the lactate levels in both liver and muscle after swimming, potentially benefiting exercise performance.
Collapse
Affiliation(s)
- Yang Han
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qian Jia
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yu Tian
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yan Yan
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Translational Medical Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Jia D, Tian Z, Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev 2023; 91:102087. [PMID: 37832607 DOI: 10.1016/j.arr.2023.102087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
The benefits of regular physical activity are related to delaying and reversing the onset of ageing and age-related disorders, including cardiomyopathy, neurodegenerative diseases, cancer, obesity, diabetes, and fatty liver diseases. However, the molecular mechanisms of the benefits of exercise or physical activity on ageing and age-related disorders remain poorly understood. Mitochondrial dysfunction is implicated in the pathogenesis of ageing and age-related metabolic diseases. Mitochondrial health is an important mediator of cellular function. Therefore, exercise alleviates metabolic diseases in individuals with advancing ageing and age-related diseases by the remarkable promotion of mitochondrial biogenesis and function. Exerkines are identified as signaling moieties released in response to exercise. Exerkines released by exercise have potential roles in improving mitochondrial dysfunction in response to age-related disorders. This review comprehensive summarizes the benefits of exercise in metabolic diseases, linking mitochondrial dysfunction to the onset of age-related diseases. Using relevant examples utilizing this approach, the possibility of designing therapeutic interventions based on these molecular mechanisms is addressed.
Collapse
Affiliation(s)
- Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Ong MLY, Green CG, Rowland SN, Heaney LM. Mass Sportrometry: An annual look back at applications of mass spectrometry in sport and exercise science. ANALYTICAL SCIENCE ADVANCES 2023; 4:60-80. [PMID: 38715927 PMCID: PMC10989560 DOI: 10.1002/ansa.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 11/17/2024]
Abstract
Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of 'omics' to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.
Collapse
Affiliation(s)
- Marilyn LY Ong
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
- School of Health SciencesExercise and Sports Science ProgrammeUniversiti Sains MalaysiaKota BharuMalaysia
| | - Christopher G Green
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Samantha N Rowland
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M Heaney
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|