1
|
Li YS, Jiang HC. Integrating molecular pathway with genome-wide association data for causality identification in breast cancer. Discov Oncol 2024; 15:254. [PMID: 38954227 PMCID: PMC11219684 DOI: 10.1007/s12672-024-01125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE The study purpose was to explore the causal association between pyruvate metabolism and breast cancer (BC), as well as the molecular role of key metabolic genes, by using bioinformatics and Mendelian randomization (MR) analysis. METHODS We retrieved and examined diverse datasets from the GEO database to ascertain differentially acting genes (DAGs) in BC via differential expression analysis. Following this, we performed functional and pathway enrichment analyses to ascertain noteworthy molecular functions and metabolic pathways in BC. Employing MR analysis, we established a causal association between pyruvate metabolism and the susceptibility to BC. Additionally, utilizing the DGIdb database, we identified potential targeted medications that act on genes implicated in the pyruvate metabolic pathway and formulated a competing endogenous RNA (ceRNA) regulatory network in BC. RESULTS We collected the datasets GSE54002, GSE70947, and GSE22820, and identified a total of 1127 DEGs between the BC and NC groups. GO and KEGG enrichment analysis showed that the molecular functions of these DEGs mainly included mitotic nuclear division, extracellular matrix, signaling receptor activator activity, etc. Metabolic pathways were mainly concentrated in PI3K-Akt signaling pathway, Cytokine-cytokine receptor binding and Pyruvate, Tyrosine, Propanoate and Phenylalanine metabolism, etc. In addition, MR analysis demonstrated a causal relationship between pyruvate metabolism and BC risk. Finally, we constructed a regulatory network between pathway genes (ADH1B, ACSS2, ACACB, ADH1A, ALDH2, and ADH1C) and targeted drugs, as well as a ceRNA (lncRNA-miRNA-mRNA) regulatory network for BC, further revealing their interactions. CONCLUSIONS Our research revealed a causal association between pyruvate metabolism and BC risk, found that ADH1B, ACSS2, ACACB, ADH1A, ALDH2, and ADH1C takes place an important part in the development of BC in the molecular mechanisms related to pyruvate metabolism, and identified some potential targeted small molecule drugs.
Collapse
Affiliation(s)
- Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hong-Chuan Jiang
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
2
|
Wang M, Li Q, Ren B, Hao D, Guo H, Yang L, Wang Z, Dai L. Ethanolic extract of Arctium lappa leaves alleviates cerebral ischemia reperfusion-induced inflammatory injury via HDAC9-mediated NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155599. [PMID: 38669967 DOI: 10.1016/j.phymed.2024.155599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ischemic stroke (IS) is a major cause of mortality and disability worldwide. Inflammatory response is crucial in the pathogenesis of tissue injury in cerebral infarction. Arctium lappa leaves are traditionally used to treat IS. PURPOSES To investigate the neuroprotective effects and molecular mechanisms of the ethanolic extract of A. lappa leaves (ALLEE) on cerebral ischemia-reperfusion (CIR). METHODS Middle cerebral artery obstruction reperfusion (MCAO/R) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model were used to evaluate ALLEE pharmacodynamics. Various methods, including neurological function, 2,3,5-triphenyltetrazolium chloride, hematoxylin and eosin, and Nissl, enzyme-linked immunosorbent, and TdT-mediated dUTP nick-end labeling assays, were used to analyze the neuroprotective effects of ALLEE in vitro and in vivo. The major chemical components and potential target genes of ALLEE were screened using network pharmacology. Molecular docking, western blotting, and immunofluorescence analyses were performed to confirm the effectiveness of the targets in related pathways. RESULTS ALLEE exerted potent effects on the MCAO/R model by decreasing the neurological scores, infarct volumes, and pathological features (p < 0.01). Furthermore, network pharmacology results revealed that the treatment of IS with ALLEE involved the regulation of various inflammatory pathways, such as the tumor necrosis factor (TNF) and chemokine signaling pathways. ALLEE also played key roles in targeting key molecules, including nuclear factor (NF)-κBIA, NF-κB1, interleukin (IL)-6, TNF-α and IL1β, and regulating the histone deacetylase (HDAC)-9-mediated signaling pathway. In vivo and in vitro analyses revealed that ALLEE significantly regulated the NF-κB pathway, promoted the phosphorylation activation of NF-κB P65, IκB and IKK (p < 0.01 or p < 0.05), and decreased the expression levels of the inflammatory factors, IL-1β, IL-6 and TNF-α (p < 0.01). Moreover, ALLEE significantly decreased the expression of HDAC9 (p < 0.01) that is associated with inflammatory responses. However, HDAC9 overexpression partially reversed the neuroprotective effects of ALLEE and its suppressive effects on inflammation and phosphorylation of NF-κB (p < 0.01). CONCLUSIONS In conclusion, our results revealed that ALLEE ameliorates MCAO/R-induced experimental CIR by modulating inflammatory responses via the inhibition of HDAC9-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Mengmeng Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qingxia Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bingjie Ren
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Danli Hao
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Hui Guo
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lianhe Yang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhimin Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan 450046, China; Henan University of Chinese Medicine, Zhengzhou, Henan, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Liping Dai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan 450046, China; Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Liao W, Wang P, He Y, Liu Z, Wang L. Investigation of the underlying mechanism of Buyang Huanwu decoction in ischemic stroke by integrating systems pharmacology-proteomics and in vivo experiments. Fitoterapia 2024; 175:105935. [PMID: 38580032 DOI: 10.1016/j.fitote.2024.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Buyang Huanwu Decoction (BHD) has been effective in treating ischemic stroke (IS). However, its mechanism of action remains unclear. The study intended to explore the potential mechanism of BHD against IS using systems pharmacology, proteomics, and animal experiments. The active components of BHD were identified from UPLC-Q-TOF-MS and literature mining. Systems pharmacology and proteomics were employed to investigate the underlying mechanism of BHD against IS. The AutoDock tool was used for molecular docking. A middle cerebral artery occlusion (MCAO) model rat was utilized to explore the therapeutic benefits of BHD. The rats were divided into sham, model, BHD (5, 10, 20 g/kg, ig) groups. The neurological scores, pathological section characteristics, brain infarct volumes, inflammatory cytokines, and signaling pathways were investigated in vivo experiments. The results of systems pharmacology showed that 13 active compounds and 112 common targets were screened in BHD. The docking results suggested that the active compounds in BHD had a high affinity for the key targets. In vivo experiments demonstrated that BHD exhibited neuroprotective benefits by lowering the neurological score, the volume of the cerebral infarct, the release of inflammatory cytokines, and reducing neuroinflammatory damage in MCAO rats. Furthermore, BHD decreased TNF-α and CD38 levels while increasing ATP2B2, PDE1A, CaMK4, p-PI3K, and p-AKT. Combined with systems pharmacology and proteomic studies, we confirmed that PI3K-Akt and calcium signaling pathways are the key mechanisms for BHD against IS. Furthermore, this study demonstrated the feasibility of combining proteomics with systems pharmacology to study the mechanism of herbal medicine.
Collapse
Affiliation(s)
- Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China
| | - Pengcheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 51006, People's Republic of China
| | - Yingying He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China; Guangzhou HanFang Pharmaceutical Company Limited, National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, Guangdong Provincial Key Laboratory of Medicinal Lipid, Guangzhou 510240, China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong 523000, People's Republic of China.
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 51006, People's Republic of China.
| |
Collapse
|
4
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
5
|
Saima, Latha S, Sharma R, Kumar A. Role of Network Pharmacology in Prediction of Mechanism of Neuroprotective Compounds. Methods Mol Biol 2024; 2761:159-179. [PMID: 38427237 DOI: 10.1007/978-1-0716-3662-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Network pharmacology is an emerging pioneering approach in the drug discovery process, which is used to predict the therapeutic mechanism of compounds using various bioinformatic tools and databases. Emerging studies have indicated the use of network pharmacological approaches in various research fields, particularly in the identification of possible mechanisms of herbal compounds/ayurvedic formulations in the management of various diseases. These techniques could also play an important role in the prediction of the possible mechanisms of neuroprotective compounds. The first part of the chapter includes an introduction on neuroprotective compounds based on literature. Further, network pharmacological approaches are briefly discussed. The use of network pharmacology in the prediction of the neuroprotective mechanism of compounds is discussed in detail with suitable examples. Finally, the chapter concludes with the current challenges and future prospectives.
Collapse
Affiliation(s)
- Saima
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - S Latha
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| |
Collapse
|
6
|
Xie C, Gao X, Liu G, Tang H, Li C. USP10 is a potential mediator for vagus nerve stimulation to alleviate neuroinflammation in ischaemic stroke by inhibiting NF-κB signalling pathway. Front Immunol 2023; 14:1130697. [PMID: 37153558 PMCID: PMC10157167 DOI: 10.3389/fimmu.2023.1130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Vagus nerve stimulation (VNS) has a protective effect on neurological recovery in ischaemic stroke. However, its underlying mechanism remains to be clarified. Ubiquitin-specific protease 10 (USP10), a member of the ubiquitin-specific protease family, has been shown to inhibit the activation of the NF-κB signalling pathway. Therefore, this study investigated whether USP10 plays a key role in the protective effect of VNS against ischemic stroke and explore its mechanism. Methods Ischaemic stroke model was constructed by transient middle cerebral artery occlusion (tMCAO) in mice. VNS was performed at 30 min, 24hr, and 48hr after the establishment of tMCAO model. USP10 expression induced by VNS after tMCAO was measured. LV-shUSP10 was used to establish the model with low expression of USP10 by stereotaxic injection technique. The effects of VNS with or without USP10 silencing on neurological deficits, cerebral infarct volume, NF-κB pathway activation, glial cell activation, and release of pro-inflammation cytokines were assessed. Results VNS enhanced the expression of USP10 following tMCAO. VNS ameliorated neurological deficits and reduced cerebral infarct volume, but this effect was inhibited by silencing of USP10. Activation of the NF-κB pathway and the expression of inflammatory cytokines induced by tMCAO were suppressed by VNS. Moreover, VNS promoted the pro-to-anti-inflammatory response of microglia and inhibited activation of astrocytes, while silencing of USP10 prevented the neuroprotective and anti-neuroinflammatory effects of VNS. Conclusion USP10 is a potential mediator for VNS to alleviate neurological deficits, neuroinflammation, and glial cell activation in ischaemic stroke by inhibiting NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Geriatrics, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Changqing Li,
| |
Collapse
|