1
|
Luo XX, Li SZ, Wang L, Luo AL, Qiu H, Yuan XL. Prognostic role of MUCIN family and its relationship with immune characteristics and tumor biology in diffuse-type gastric cancer. Heliyon 2024; 10:e31403. [PMID: 38803848 PMCID: PMC11129101 DOI: 10.1016/j.heliyon.2024.e31403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The main component of O-glycoproteins, mucin, is known to play important roles in physiological conditions and oncogenic processes, particularly correlated with poor prognosis in different carcinomas. Diffuse-type gastric cancer (DGC) has long been associated with genomic stability and unfavorable clinical outcomes. To investigate further, we obtained clinical information and the RNA-seq data of the TCGA-STAD cohort. Through the use of unsupervised clustering methods and GSEA, we identified two distinct clusters, characterized by higher and lower expression of MUC2 and MUC20, denoted as cluster 1 and cluster 2, respectively. Subsequently, employing CIBERSORT, it was determined that cluster 2 exhibited a higher tumor mutation burden (TMB) and a greater abundance of CD8+ T cells and activated CD4+ memory T cells, in addition to immune checkpoints (ICPs). On the other hand, cluster 1 showed a lower TIDE score estimation, indicating a higher probability of tumor immune escape. Furthermore, overexpression of MUC15 and MUC20 was confirmed through qPCR and Western blotting, and their specific roles in mediating the epithelial-mesenchymal transition (EMT) process of GC cells (SNU484 and Hs746t) were validated via CCK-8 assay and wound healing assay in vitro. These findings highlight the potential prognostic value of MUC20 and offer insights into the prospects of immunotherapy for DGC by targeting MUC20.
Collapse
Affiliation(s)
- Xiao-Xiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Shi-Zhen Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Xiang-Lin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| |
Collapse
|
2
|
Upadhyay S, Rahman M, Rinaldi S, Koelmel J, Lin EZ, Mahesh PA, Beckers J, Johanson G, Pollitt KJG, Palmberg L, Irmler M, Ganguly K. Assessment of wood smoke induced pulmonary toxicity in normal- and chronic bronchitis-like bronchial and alveolar lung mucosa models at air-liquid interface. Respir Res 2024; 25:49. [PMID: 38245732 PMCID: PMC10799428 DOI: 10.1186/s12931-024-02686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Selina Rinaldi
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Gunnar Johanson
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Merikallio H, Pincikova T, Kotortsi I, Karimi R, Li CX, Forsslund H, Mikko M, Nyrén S, Lappi-Blanco E, Wheelock ÅM, Kaarteenaho R, Sköld MC. Mucins 3A and 3B Are Expressed in the Epithelium of Human Large Airway. Int J Mol Sci 2023; 24:13546. [PMID: 37686350 PMCID: PMC10487631 DOI: 10.3390/ijms241713546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant mucus secretion is a hallmark of chronic obstructive pulmonary disease (COPD). Expression of the membrane-tethered mucins 3A and 3B (MUC3A, MUC3B) in human lung is largely unknown. In this observational cross-sectional study, we recruited subjects 45-65 years old from the general population of Stockholm, Sweden, during the years 2007-2011. Bronchial mucosal biopsies, bronchial brushings, and bronchoalveolar lavage fluid (BALF) were retrieved from COPD patients (n = 38), healthy never-smokers (n = 40), and smokers with normal lung function (n = 40). Protein expression of MUC3A and MUC3B in bronchial mucosal biopsies was assessed by immunohistochemical staining. In a subgroup of subjects (n = 28), MUC3A and MUC3B mRNAs were quantified in bronchial brushings using microarray. Non-parametric tests were used to perform correlation and group comparison analyses. A value of p < 0.05 was considered statistically significant. MUC3A and MUC3B immunohistochemical expression was localized to ciliated cells. MUC3B was also expressed in basal cells. MUC3A and MUC3B immunohistochemical expression was equal in all study groups but subjects with emphysema had higher MUC3A expression, compared to those without emphysema. Smokers had higher mRNA levels of MUC3A and MUC3B than non-smokers. MUC3A and MUC3B mRNA were higher in male subjects and correlated negatively with expiratory air flows. MUC3B mRNA correlated positively with total cell concentration and macrophage percentage, and negatively with CD4/CD8 T cell ratio in BALF. We concluded that MUC3A and MUC3B in large airways may be a marker of disease or may play a role in the pathophysiology of airway obstruction.
Collapse
Affiliation(s)
- Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 90570 Oulu, Finland; (H.M.)
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, University Hospital of Oulu, 90220 Oulu, Finland
| | - Terezia Pincikova
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Stockholm CF-Center, Albatross, K56, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Ioanna Kotortsi
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mikael Mikko
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Division of Radiology, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Elisa Lappi-Blanco
- Cancer and Translational Medicine Research Unit, Department of Pathology, University Hospital of Oulu, Oulu University, 90220 Oulu, Finland
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Riitta Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 90570 Oulu, Finland; (H.M.)
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, University Hospital of Oulu, 90220 Oulu, Finland
| | - Magnus C. Sköld
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 77 Stockholm, Sweden
| |
Collapse
|
4
|
Albano GD, Longo V, Montalbano AM, Aloi N, Barone R, Cibella F, Profita M, Paolo C. Extracellular vesicles from PBDE-47 treated M(LPS) THP-1 macrophages modulate the expression of markers of epithelial integrity, EMT, inflammation and muco-secretion in ALI culture of airway epithelium. Life Sci 2023; 322:121616. [PMID: 36958434 DOI: 10.1016/j.lfs.2023.121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
AIMS The lung epithelial cells form a physical barrier to the external environment acting as the first line of defence against potentially harmful environmental stimuli. These cells interact with several other cellular components, of which macrophages are some of the most relevant. We analysed the effects of the PBDE-47 on the microRNA cargo of THP-1 macrophage like derived small Extracellular Vesicles (sEVs) and the effects on A549 lung epithelial cells. MAIN METHODS sEVs from M(LPS) THP-1 macrophage-like cells after PBDE-47 treatment (sEVsPBDE+LPS) were characterized by nanoparticle tracking analysis and their microRNA cargo studied by qPCR. Confocal microscopy was applied to study sEVs cellular uptake by A549 cells. The expression of tight junctions (TJs), adhesion molecules, inflammation markers and mucus production in A549 cultured in air liquid interface (ALI) conditions were studied by Real Time PCR and confocal microscopy. KEY FINDINGS sEVsPBDE+LPS microRNA cargo analysis showed that the PBDE-47 modulated the expression of the miR-15a-5p, miR29a-3p, miR-143-3p and miR-122-5p. Furthermore, ALI cultured A549 cells incubated with sEVsPBDE+LPS showed that zonula occludens-1 (p ≤ 0.04), claudin (p ≤ 0.02), E-cadherin (p ≤ 0.006) and Vimentin (p ≤ 0.0008) mRNAs were increased in A549 cells after sEVsPBDE+LPS treatment. Indeed, Interleukin (IL)-8 (p ≤ 0.008) and mucin (MUC5AC and MUC5B) (p ≤ 0.03 and p ≤ 0.0001) mRNA expression were up- and down-regulated, respectively. SIGNIFICANCE PBDE-47 treated macrophages secrete sEVs with altered microRNA cargo that affect the mRNA expression of TJs, adhesion molecules, cytokines and EMT markers damaging the normal function of the lung epithelium, potentially contributing to the development of lung diseases.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology, National Research Council of Italy (IFT-CNR), Palermo, Italy
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Institute of Translational Pharmacology, National Research Council of Italy (IFT-CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Mirella Profita
- Institute of Translational Pharmacology, National Research Council of Italy (IFT-CNR), Palermo, Italy.
| | - Colombo Paolo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy.
| |
Collapse
|
5
|
Chen Q, Lu L, Ma W. Efficacy, Safety, and Challenges of CAR T-Cells in the Treatment of Solid Tumors. Cancers (Basel) 2022; 14:cancers14235983. [PMID: 36497465 PMCID: PMC9739567 DOI: 10.3390/cancers14235983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been the fifth pillar of cancer treatment in the past decade. Chimeric antigen receptor (CAR) T-cell therapy is a newly designed adoptive immunotherapy that is able to target and further eliminate cancer cells by engaging with MHC-independent tumor-antigens. CAR T-cell therapy has exhibited conspicuous clinical efficacy in hematological malignancies, but more than half of patients will relapse. Of note, the efficacy of CAR T-cell therapy has been even more disappointing in solid tumors. These challenges mainly include (1) the failures of CAR T-cells to treat highly heterogeneous solid tumors due to the difficulty in identifying unique tumor antigen targets, (2) the expression of target antigens in non-cancer cells, (3) the inability of CAR T-cells to effectively infiltrate solid tumors, (4) the short lifespan and lack of persistence of CAR T-cells, and (5) cytokine release syndrome and neurotoxicity. In combination with these characteristics, the ideal CAR T-cell therapy for solid tumors should maintain adequate T-cell response over a long term while sparing healthy tissues. This article reviewed the status, clinical application, efficacy, safety, and challenges of CAR T-cell therapies, as well as the latest progress of CAR T-cell therapies for solid tumors. In addition, the potential strategies to improve the efficacy of CAR T-cells and prevent side effects in solid tumors were also explored.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou 313000, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, School of Medicine, Yale School of Public Health, New Haven, CT 06520, USA
- Yale Cancer Center and Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Wenxue Ma
- Sanford Stem Cell Clinical Center, Moores Cancer Center, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-246-1477
| |
Collapse
|