1
|
Sanku G, Ricciardi A, Redekar NR, Schaughency P, Lack J, Gazzinelli-Guimaraes PH, Nutman TB. Brugia malayi filarial helminth-derived extracellular vesicles suppress antigen presenting cell function and antigen-specific CD4+ T cell responses. Front Immunol 2024; 15:1436818. [PMID: 39434874 PMCID: PMC11491353 DOI: 10.3389/fimmu.2024.1436818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Live microfilariae (mf) and mf-derived extracellular vesicles (EVs) have been shown to modulate human antigen presenting cell (APC) function, most notably by suppressing the induction of IL-12 (and other pro-inflammatory cytokines) following activation with LPS and interferon-y. Methods To explore further how EVs alter human APC function, we studied the effect of mf and EVs on human elutriated monocyte-derived dendritic cells (DC) following exposure to Mf, mf-derived excretory/secretory (E/S) products, E/S depleted of EVs through ultracentrifugation and purified EVs. After demonstrating that the measurable responses induced by live mf could be recapitulated by EVs and EV-containing E/S, we next performed RNAseq analysis of human DC following exposure to live mf, EVs, E/S, or EV-depleted E/S. Results In our analyses of the data for the DC, using a false discovery rate (FDR)<0.05, EV-exposed DC had induced the expression of 212 differentially expressed genes (DEGs) when compared to unexposed DC and 157 when compared to E/S-depleted EVs. These genes were enriched in GO biological processes associated with neutrophil degranulation and 15 DEGs associated with KEGG Lysosome pathways. IPA analysis point to immune dysregulation. We next aimed to understand the intracellular processes altered by EVs and the effect these have on effector T cells. When SARS CoV-2 Membrane-specific CD4+ TCLs were assessed following EV conditioning of autologous DC and activation with the SARS CoV-2-Membrane peptide pool, we found conditioning reduced the frequency of SARS CoV-2 Membrane-specific CD3+ CD4+ CD154+ cells (p=.015). Similarly, EV-conditioning of SARS CoV-2 Membrane-specific CD3+ CD4+ cells induced fewer cell capable of producing IFN-γ (p=.045). Discussion Taken together, our data suggest a modulatory role of EVs on APC function that likely leads to defects in T cell effector function.
Collapse
Affiliation(s)
- Gayatri Sanku
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alessandra Ricciardi
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Neelam R. Redekar
- Integrated Data Science Section (IDSS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Paul Schaughency
- Integrated Data Science Section (IDSS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Justin Lack
- Integrated Data Science Section (IDSS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pedro H. Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
2
|
Feix AS, Tabaie EZ, Singh AN, Wittenberg NJ, Wilson EH, Joachim A. An in-depth exploration of the multifaceted roles of EVs in the context of pathogenic single-cell microorganisms. Microbiol Mol Biol Rev 2024; 88:e0003724. [PMID: 38869292 PMCID: PMC11426017 DOI: 10.1128/mmbr.00037-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYExtracellular vesicles (EVs) have been recognized throughout scientific communities as potential vehicles of intercellular communication in both eukaryotes and prokaryotes, thereby influencing various physiological and pathological functions of both parent and recipient cells. This review provides an in-depth exploration of the multifaceted roles of EVs in the context of bacteria and protozoan parasite EVs, shedding light on their contributions to physiological processes and disease pathogenesis. These studies highlight EVs as a conserved mechanism of cellular communication, which may lead us to important breakthroughs in our understanding of infection, mechanisms of pathogenesis, and as indicators of disease. Furthermore, EVs are involved in host-microbe interactions, offering insights into the strategies employed by bacteria and protozoan parasites to modulate host responses, evade the immune system, and establish infections.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Emily Z. Tabaie
- Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | - Emma H. Wilson
- Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
3
|
De Lira Silva NS, Schenkman S. Biogenesis of EVs in Trypanosomatids. CURRENT TOPICS IN MEMBRANES 2024; 94:49-83. [PMID: 39370213 DOI: 10.1016/bs.ctm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.
Collapse
Affiliation(s)
- Nadjania Saraiva De Lira Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil.
| |
Collapse
|
4
|
Kozela E, Meneghetti P, Regev-Rudzki N, Torrecilhas AC, Porat Z. Subcellular particles for characterization of host-parasite interactions. Microbes Infect 2024; 26:105314. [PMID: 38367661 DOI: 10.1016/j.micinf.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Parasitic diseases remain a major global health problem for humans. Parasites employ a variety of strategies to invade and survive within their hosts and to manipulate host defense mechanisms, always in the pathogen's favor. Extracellular vesicles (EVs), membrane-bound nanospheres carrying a variety of bioactive compounds, were shown to be released by the parasites during all stages of the infection, enabling growth and expansion within the host and adaptation to frequently changing environmental stressors. In this review, we discuss how the use of existing nanotechnologies and high-resolution imaging tools assisted in revealing the role of EVs during parasitic infections, enabling the quantitation, visualization, and detailed characterization of EVs. We discuss here the cases of malaria, Chagas disease and leishmaniasis as examples of parasitic neglected tropical diseases (NTDs). Unraveling the EVs' role in the NTD pathogenesis may enormously contribute to their early and reliable diagnostic, effective treatment, and prevention.
Collapse
Affiliation(s)
- Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Paula Meneghetti
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Claudia Torrecilhas
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil.
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, WIS, Rehovot, Israel.
| |
Collapse
|
5
|
Barnadas-Carceller B, Del Portillo HA, Fernandez-Becerra C. Extracellular vesicles as biomarkers in parasitic disease diagnosis. CURRENT TOPICS IN MEMBRANES 2024; 94:187-223. [PMID: 39370207 DOI: 10.1016/bs.ctm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Parasitic diseases constitute a major global health problem, affecting millions of people worldwide. Recent advances in the study of extracellular vesicles (EVs) have opened up new strategies for biomarker discovery in protozoan and helminth infections. Analyses of EVs in cultures and biological fluids have identified numerous potential biomarkers that could be useful for early and differential diagnosis, monitoring therapeutic responses, and the overall management and control of these diseases. Despite the potential of these biomarkers, several challenges must be addressed, including limited research, the need for standardized protocols, and the reproducibility of results across studies. In many parasitic infections, EVs have been obtained from various sample types, including plasma from human patients and mouse models, as well as cultures of the parasites at different stages. EVs were isolated by various methods and predominantly characterized through proteomic analysis or RNA sequencing to assess their cargo and identify potential biomarkers. These biomarker candidates were investigated and validated using different assays such as ELISA, Western Blot, and ROC curves. Overall, the use of EVs is considered a promising new diagnostic strategy for parasite infections, but further research with larger cohorts, standardized methods, and additional validation tests are essential for effective diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Berta Barnadas-Carceller
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Pinheiro AAS, Torrecilhas AC, Souza BSDF, Cruz FF, Guedes HLDM, Ramos TD, Lopes‐Pacheco M, Caruso‐Neves C, Rocco PRM. Potential of extracellular vesicles in the pathogenesis, diagnosis and therapy for parasitic diseases. J Extracell Vesicles 2024; 13:e12496. [PMID: 39113589 PMCID: PMC11306921 DOI: 10.1002/jev2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Parasitic diseases have a significant impact on human and animal health, representing a major hazard to the public and causing economic and health damage worldwide. Extracellular vesicles (EVs) have long been recognized as diagnostic and therapeutic tools but are now also known to be implicated in the natural history of parasitic diseases and host immune response modulation. Studies have shown that EVs play a role in parasitic disease development by interacting with parasites and communicating with other types of cells. This review highlights the most recent research on EVs and their role in several aspects of parasite-host interactions in five key parasitic diseases: Chagas disease, malaria, toxoplasmosis, leishmaniasis and helminthiases. We also discuss the potential use of EVs as diagnostic tools or treatment options for these infectious diseases.
Collapse
Affiliation(s)
- Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasDiadema Campus, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaSão PauloBrazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell TherapySão Rafael HospitalSalvadorBrazil
- D'Or Institute for Research and Education (IDOR)SalvadorBrazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Tadeu Diniz Ramos
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Miqueias Lopes‐Pacheco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Deparment of PediatricsCenter for Cystic Fibrosis and Airway Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Celso Caruso‐Neves
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| | - Patricia R. M. Rocco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| |
Collapse
|
7
|
Silva TA, Thomas D, Siqueira-Neto JL, Calvet CM. Pirfenidone Prevents Heart Fibrosis during Chronic Chagas Disease Cardiomyopathy. Int J Mol Sci 2024; 25:7302. [PMID: 39000409 PMCID: PMC11242150 DOI: 10.3390/ijms25137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Cardiac fibrosis is a severe outcome of Chagas disease (CD), caused by the protozoan Trypanosoma cruzi. Clinical evidence revealed a correlation between fibrosis levels with impaired cardiac performance in CD patients. Therefore, we sought to analyze the effect of inhibitors of TGF-β (pirfenidone), p38-MAPK (losmapimod) and c-Jun (SP600125) on the modulation of collagen deposition in cardiac fibroblasts (CF) and in vivo models of T. cruzi chronic infection. Sirius Red/Fast Green dye was used to quantify both collagen expression and total protein amount, assessing cytotoxicity. The compounds were also used to treat C57/Bl6 mice chronically infected with T. cruzi, Brazil strain. We identified an anti-fibrotic effect in vitro for pirfenidone (TGF-β inhibitor, IC50 114.3 μM), losmapimod (p38 inhibitor, IC50 17.6 μM) and SP600125 (c-Jun inhibitor, IC50 3.9 μM). This effect was independent of CF proliferation since these compounds do not affect T. cruzi-induced host cell multiplication as measured by BrdU incorporation. Assays of chronic infection of mice with T. cruzi have shown a reduction in heart collagen by pirfenidone. These results propose a novel approach to fibrosis therapy in CD, with the prospect of repurposing pirfenidone to prevent the onset of ECM accumulation in the hearts of the patients.
Collapse
Affiliation(s)
- Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Diane Thomas
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (J.L.S.-N.)
| | - Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (J.L.S.-N.)
| | - Claudia Magalhaes Calvet
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| |
Collapse
|
8
|
Thangavel H, Dhanyalayam D, Kim M, Lizardo K, Sidrat T, Lopez JG, Wang X, Bansal S, Nagajyothi JF. Adipocyte-released adipomes in Chagas cardiomyopathy: Impact on cardiac metabolic and immune regulation. iScience 2024; 27:109672. [PMID: 38660407 PMCID: PMC11039351 DOI: 10.1016/j.isci.2024.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic Trypanosoma cruzi infection leads to Chagas cardiomyopathy (CCM), with varying manifestations such as inflammatory hypertrophic cardiomyopathy, arrhythmias, and dilated cardiomyopathy. The factors responsible for the increasing risk of progression to CCM are not fully understood. Previous studies link adipocyte loss to CCM progression, but the mechanism triggering CCM pathogenesis remains unexplored. Our study uncovers that T. cruzi infection triggers adipocyte apoptosis, leading to the release of extracellular vesicles named "adipomes". We developed an innovative method to isolate intact adipomes from infected mice's adipose tissue and plasma, showing they carry unique lipid cargoes. Large and Small adipomes, particularly plasma-derived infection-associated L-adipomes (P-ILA), regulate immunometabolic signaling and induce cardiomyopathy. P-ILA treatment induces hypertrophic cardiomyopathy in wild-type mice and worsens cardiomyopathy severity in post-acute-infected mice by regulating adipogenic/lipogenic and mitochondrial functions. These findings highlight adipomes' pivotal role in promoting inflammation and impairing myocardial function during cardiac remodeling in CD.
Collapse
Affiliation(s)
- Hariprasad Thangavel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Dhanya Dhanyalayam
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Michelle Kim
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kezia Lizardo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tabinda Sidrat
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | | | - Xiang Wang
- Rutgers University Molecular Imaging Core (RUMIC), Rutgers Translational Sciences, Piscataway, NJ 08854, USA
| | - Shivani Bansal
- Departnment of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
9
|
Tandoh KZ, Ibarra-Meneses AV, Langlais D, Olivier M, Torrecilhas AC, Fernandez-Prada C, Regev-Rudzki N, Duah-Quashie NO. Extracellular Vesicles: Translational Agenda Questions for Three Protozoan Parasites. Traffic 2024; 25:e12935. [PMID: 38629580 DOI: 10.1111/tra.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, Montreal, Canada
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
- IDIGH, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, São Paulo, Brazil
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, Canada
- Department of Microbiology and Immunology, McGill Research Centre on Complex Traits, Montreal, Canada
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy O Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
Meng F, Liu X, Duan H, Li C, Hu Y, Peng X, Zhao G, Lin J. Aspergillus fumigatus-Derived Extracellular Vesicles Mitigate Fungal Keratitis by Modulating the Immune Cell Function. ACS Infect Dis 2024; 10:500-512. [PMID: 38175918 DOI: 10.1021/acsinfecdis.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Fungal keratitis (FK) is a refractory global disease characterized by a high incidence of blindness and a lack of effective therapeutic options, and Aspergillus fumigatus (A. fumigatus, AF) is one of the most common causative fungi. This study aimed to investigate the role of extracellular vesicles (EVs) from A. fumigatus in the immune cell function and their protective role in A. fumigatus keratitis in order to explore their therapeutic potential. First, we isolated and characterized the EVs (AF-derived EVs). In vitro, we stimulated RAW264.7 cells and polymorphonuclear cells with AF-derived EVs. The expression levels of inflammatory factors increased in both immune cells along with an M1 polarization variation of RAW264.7 cells. After being incubated with AF-derived EVs, both immune cells exhibited an increased conidia-phagocytic index and a decreased conidia survival rate. In vivo, we injected EVs subconjunctivally on mice resulting in a heightened production of secretory immunoglobulin A (sIgA) in tear fluid. By the injection of EVs on mice in advance, a significant reduction in severity of A. fumigatus FK was witnessed by lower clinical scores, inflammatory appearances, and mitigated fungal load. Collectively, these results positioned AF-derived EVs as a promising and innovative immune therapy for combating FK, while also providing a platform for further investigation into developing an optimal formulation for modulating inflammation in the context of FK.
Collapse
Affiliation(s)
- Fanyue Meng
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Xing Liu
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Huijin Duan
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Cui Li
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Yingzhe Hu
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Xudong Peng
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Guiqiu Zhao
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| | - Jing Lin
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao City 266000, Shandong Province, China
| |
Collapse
|
11
|
Alfandari D, Cadury S, Morandi MI, Regev-Rudzki N. Transforming parasites into their own foes: parasitic extracellular vesicles as a vaccine platform. Trends Parasitol 2023; 39:913-928. [PMID: 37758631 DOI: 10.1016/j.pt.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Parasitic diseases continue to afflict millions of people globally. However, traditional vaccine development strategies are often difficult to apply to parasites, leaving an immense unmet need for new effective vaccines for the prevention and control of parasitic infections. As parasites commonly use extracellular vesicles (EVs) to interact with, interfere with, or modulate the host immune response from a distance, parasite-derived EVs may provide promising vaccine agents that induce immunity against parasitic infections. We here present achievements to date and the challenges and limitations associated with using parasitic EVs in a clinical context. Despite the many difficulties that need to be overcome, we believe this direction could offer a new and reliable source of therapeutics for various neglected parasitic diseases.
Collapse
Affiliation(s)
- Daniel Alfandari
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Cadury
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia I Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague, Czech Republic.
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
13
|
Cornet-Gomez A, Moreira LR, Gomez-Samblás M, Osuna A. Extracellular vesicles of Trypanosoma cruzi and immune complexes they form with sialylated and non-sialylated IgGs increase small peritoneal macrophage subpopulation and elicit different cytokines profiles. Front Immunol 2023; 14:1215913. [PMID: 37600828 PMCID: PMC10434529 DOI: 10.3389/fimmu.2023.1215913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
American trypanosomiasis, or Chagas disease, is caused by the protozoan parasite Trypanosoma cruzi and is characterized by the presence of cardiac or gastrointestinal symptoms in a large number of patients during the chronic phase of the disease. Although the origin of the symptoms is not clear, several mechanisms have been described involving factors related to T. cruzi and the host immune response. In this sense, the extracellular vesicles (EVs) secreted by the parasite and the immune complexes (ICs) formed after their recognition by host IgGs (EVs-IgGs) may play an important role in the immune response during infection. The aim of the present work is to elucidate the modulation of the immune response exerted by EVs and the ICs they form by analyzing the variation in the subpopulations of small and large peritoneal macrophages after intraperitoneal inoculation in mice and to evaluate the role of the sialylation of the host IgGs in this immunomodulation. Both macrophage subpopulations were purified and subjected to cytokine expression analysis by RT-qPCR. The results showed an increase in the small peritoneal macrophage subpopulation after intraperitoneal injection of parasite EVs, but a greater increase in this subpopulation was observed when sialylated and non-sialylated ICs were injected, which was similar to inoculation with the trypomastigote stage of the parasite. The cytokine expression results showed the ability of both subpopulations to express inflammatory and non-inflammatory cytokines. These results suggest the role of free EVs in the acute phase of the disease and the possible role of immune complexes in the immune response in the chronic phase of the disease, when the levels of antibodies against the parasite allow the formation of immune complexes. The differential expression of interleukins showed after the inoculation of immune complexes formed with sialylated and non-sialylated IgGs and the interleukins expression induced by EVs, demonstrates that the IgG glycosilation is involved in the type of immune response that dominates in each of the phases of the Chagas disease.
Collapse
Affiliation(s)
- Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Lissette Retana Moreira
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Mercedes Gomez-Samblás
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| |
Collapse
|
14
|
Garcez EM, Gomes N, Moraes AS, Pogue R, Uenishi RH, Hecht M, Carvalho JL. Extracellular vesicles in the context of Chagas Disease - A systematic review. Acta Trop 2023; 242:106899. [PMID: 36935050 DOI: 10.1016/j.actatropica.2023.106899] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicle (EVs) traffic is considered an important cellular communication process between cells that can be part of a single organism or belong to different living beings. The relevance of EV-mediated cellular communication is increasingly studied and appreciated, especially in relation to pathological conditions, including parasitic disorders, in which the EV release and uptake processes have been documented. In the context of Chagas Disease (CD), EVs have been explored, however, current data have not been systematically revised in order to provide an overview of the published literature and the main results obtained thus far. In this systematic review, 25 studies involving the investigation of EVs in CD were identified. The studies involved Trypanosoma cruzi (Tc)-derived EVs (Tc-EVs), as well as EVs derived from T. cruzi-infected mammalian cells-derived EVs, mainly isolated by ultracentrifugation and poorly characterized. The objectives of the identified studies included the characterization of the protein and RNA cargo of Tc-EVs, as well as investigation of EVs in parasitic infections and immune-related processes. Overall, our systematic review reveals that EVs play critical roles in several mechanisms related to the interaction between T. cruzi and mammalian hosts, their contribution to immune system evasion by the parasite, and to chronic inflammation in the host. Future studies will benefit from the consolidation of isolation and characterization methods, as well as the elucidation of the role of EVs in CD.
Collapse
Affiliation(s)
- Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Nélio Gomes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Aline Silva Moraes
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Robert Pogue
- Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil
| | - Rosa Harumi Uenishi
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Mariana Hecht
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, 70910-900, Brasília, DF, Brazil; Genomic Sciences and Biotechnology Program. Catholic University of Brasília, 71966-700, Brasília, DF, Brazil.
| |
Collapse
|
15
|
Moreira RS, Calomeno NA, das Neves GB, do Nascimento LFN, Filho VB, Wagner G, Miletti LC. Trypanosoma evansi secretome carries potential biomarkers for Surra diagnosis. J Proteomics 2023; 272:104789. [PMID: 36464092 DOI: 10.1016/j.jprot.2022.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Trypanosoma evansi is a parasite that is phylogenetically close to Trypanosoma brucei and is the causative agent of a disease known as surra. Surra is responsible for a high mortality rate in livestock and large economic losses in the Americas, Africa, and Asia. This work aimed to analyze in vitro secreted proteins from T. evansi and identify potential treatment and diagnostic biomarkers for surra diagnosis. Two groups were used. In one group the parasites were purified using a DEAE-Cellulose column and maintained in a secretion medium while in the other group the parasites were not purified. Each group was further divided to be maintained at either 37 °C or 27 °C. We identified 246 proteins through mass spectrometry and found that the temperature appears to modulate protein secretion. We found minimal variations in the protein pools from pure and non-purified sets. We observed an emphasis on proteins associated to vesicles, glycolysis, and cellular homeostasis through the enrichment of GO. Also, we found that most secretome proteins share homologous proteins with T. b. brucei, T. b. gambiense, T. vivax, T. equiperdum, and T. b. rhodesiense secretome but unique T. evansi epitopes with potential biomarkers for surra diagnosis were detected. SIGNIFICANCE: Trypanosoma evansi is a parasite of African origin that is phylogenetically close to Trypanosoma brucei. As with other trypanosomatids and blood parasites, its infection causes non-pathognomonic symptoms, which makes its diagnosis difficult. One great problem is the fact that no diagnostic test differentiates between Trypanosoma equiperdum and T. evansi, which is a problem in South America and Asia, and Africa. Thus, it is urgent to study the biochemistry of the parasite to discover proteins that can be used for differential diagnosis or be possible therapeutic targets. In addition, the study of the secretome can point out proteins that are used by the parasite in its interactions with the host, helping to understand the progression of the disease.
Collapse
Affiliation(s)
- Renato Simões Moreira
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil; Instituto Federal de Santa Catarina (IFSC), Campus Gaspar, R. Adriano Kormann, 510 - Bela Vista, Gaspar, SC 89111-009, Brazil
| | - Nathália Anderson Calomeno
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil
| | - Gabriella Bassi das Neves
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil
| | - Luiz Flávio Nepomuceno do Nascimento
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil
| | - Vilmar Benetti Filho
- Laboratório de Bioinformática, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Setor F, Bloco A, Sala 318, Caixa postal 476, Trindade, Florianópolis, SC 88040-970, Brazil
| | - Glauber Wagner
- Laboratório de Bioinformática, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Setor F, Bloco A, Sala 318, Caixa postal 476, Trindade, Florianópolis, SC 88040-970, Brazil
| | - Luiz Claudio Miletti
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil.
| |
Collapse
|
16
|
Gutierrez BC, Ancarola ME, Volpato-Rossi I, Marcilla A, Ramirez MI, Rosenzvit MC, Cucher M, Poncini CV. Extracellular vesicles from Trypanosoma cruzi-dendritic cell interaction show modulatory properties and confer resistance to lethal infection as a cell-free based therapy strategy. Front Cell Infect Microbiol 2022; 12:980817. [PMID: 36467728 PMCID: PMC9710384 DOI: 10.3389/fcimb.2022.980817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.
Collapse
Affiliation(s)
- Brenda Celeste Gutierrez
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Izadora Volpato-Rossi
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Antonio Marcilla
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de Valencia, Valencia, Spain
| | - Marcel Ivan Ramirez
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|