1
|
Xiang H, Zhang Y, Li J, Li L, Li Z, Ni R, Peng D, Jiang L, Chen J, Liu Y. Terminalia bellirica (Gaertn.) Roxb. Extracts reshape the perifollicular microenvironment and regulate the MAPK pathway for androgenetic alopecia treatment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118778. [PMID: 39236776 DOI: 10.1016/j.jep.2024.118778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia bellirica (Gaertn.) Roxb. (TBR), a popular herbal remedy in India and Southeast Asia, has been demonstrated to possess multiple pharmacological activities. However, systematic studies on the medicinal effects and mechanism of TBR for the androgenetic alopecia (AGA) treatment are deficient. MATERIALS AND METHODS Human Umbilical Vein Endothelial Cells (HUVECs) and testosterone-induced AGA mice were used to evaluate the hair regrowth activity of TBR extracts. Chemical constituents and potential active components of TBR extracts were analyed by UPLC-Q-TOF-MS in vitro/vivo. The hair regrowth mechanisms of TBR were elucidated through network pharmacology and experimental validation. RESULTS Totally 28 chemical constituents in TBR were identified, of which 15 were predicted as potential active components for AGA therapy. TBR could significantly scavenge ROS, promote VEGF level/cell migration of HUVECs, and inhibiting type II 5α-reductase activity (the inhibit rate: 82.35 ± 1.02 %). Pharmacodynamic evaluation suggested that TBR effectively led to hair regrowth in C57BL6 mice compared to minoxidil. TBR promoted the hair follicle (HF) transition from the telogen phase to anagen phase by decreasing MDA levels, increasing VEFG expression and up-regulating phosphorylated P38/ERK protein levels in the MAPK signalling pathway. CONCLUSIONS TBR reversed AGA via inhibiting SRD5A2 activity and stimulating the MAPK pathway. Meantime, TBR could remodel the follicle microenvironment by reducing oxidative stress and increasing angiogenesis.
Collapse
Affiliation(s)
- Hong Xiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China; School of Medicine, Tibet University, Lhasa, China
| | - Jiaming Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lining Jiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Nguyen NP, Le QG, Truong VN, Nguyen TND, Phan NTT, Tran MH. In vitro inhibition of 5-α reductase and in vivo suppression of benign prostatic hyperplasia by Physalis angulata ethyl acetate extract. Fitoterapia 2024; 175:105950. [PMID: 38599338 DOI: 10.1016/j.fitote.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The inhibitory effect against 5-α reductase of the ethyl acetate (EA) extract from Physalis angulata was evaluated in vitro using mouse prostate homogenates, and the suppression of benign prostatic hyperplasia (BPH) was assessed in a mouse model of testosterone-induced BPH. The EA extract exhibited a potentially inhibitory effect on 5-α reductase with an IC50 of 197 μg/ml. In BPH mice, the EA extract at a dose of 12 mg/kg was comparable to finasteride 5 mg/kg in suppressing BPH in terms of reducing absolute enlarged prostate weight (p < 0.05 vs. BPH group) and mitigating the hypertrophy of glandular elements and prostate connective tissue. Identification of chemical ingredients in the EA extract by UPLC-QTOF-MS revealed 37 substances belonging chiefly to flavonoids and physalins. Further quantification of the EA extract by HPLC-PDA methods revealed that chlorogenic acid, and rutin were the main components. Molecular docking studies of chlorogenic acid and rutin on 5-α reductase showed their high affinity to the enzyme with binding energies of -9.3 and - 9.2 kcal/mol, respectively compared with finasteride (- 10.3 kcal/mol). Additionally, chlorogenic acid inhibited 5-α reductase with an IC50 of 12.07 µM while rutin did not. The presence of chlorogenic acid in the EA extract may explain the inhibitory effects of the EA extract on 5-α reductase, and thus the suppression of BPH.
Collapse
Affiliation(s)
- Ngoc Phuc Nguyen
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Quoc Giang Le
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Vinh Nghi Truong
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam
| | - Thi Ngoc Dung Nguyen
- Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | | | - Manh Hung Tran
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
3
|
Ghaderian E, Esboei BR, Mousavi P, Pourhajibagher M, Homayouni MM, Zeinali M. Anti-leishmanial effects of Eryngium planum and Ecbilliun elaterum methanolic extract against Leishmania major. AMB Express 2024; 14:3. [PMID: 38170375 PMCID: PMC10764691 DOI: 10.1186/s13568-023-01656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Leishmaniasis is a vector-borne disease, one of the most important neglected tropical diseases. Existing anti-leishmanial treatments are not effective for a long time and associated with toxic side effects so searching for a new, effective and safe alternative treatments against infectious diseases is greatly needed. This study is aimed to assess the leishmaniacidal effects of methanolic extracts of Eryngium planum (E. planum) and Ecbilliun elaterum (E. elaterum) on Leishmania major (L. major), In vitro. The selected plants were collected from northern areas of Iran. The methanolic extract from the aerial parts of plants were prepared using maceration methods. GC- Mass analysis was used to determine the compounds of the plants. Promastigotes of L. major was cultured in RPMI-1640 medium and the anti-leishmanial and cytotoxicity effects of extracts at concentrations of 100, 200, 400 and 800 µg/ml were assessed using MTT assay. The data obtained from gas chromatography revealed that α-Pinene, Caryophyllene oxide, β-Caryophyllene, Bicyclogermacrene and α-Bisabolol are the main compounds extracted from E. planum and α-Pinene, Germacrene D, Caryophyllene oxide, γ-Eudesmol and α-Bisabolol are the main components of E. elaterum. The results of MTT Assay revealed that E. planum at concentrations of 800 µg/ml after 24 h at 400 µg/ml after 48 h and the E. elaterium at concentrations of 800 µg/ml after 48 h at 400 µg/ml after 72 h had similar anti-leishmanial effects to the positive control. These results indicated that E. planum and E. elaterum are the potential sources for the discovery of novel anti-leishmanial treatments.
Collapse
Affiliation(s)
- Erfan Ghaderian
- Department of Parasitology and Mycology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Bahman Rahimi Esboei
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parisa Mousavi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohsen Homayouni
- Department of Parasitology and Mycology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
- Medical Parasitology, Department of Parasitology and Mycology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| | - Mohammad Zeinali
- Center for Communicable Diseases Management, Ministry of Health Treatment and Medical Education, Tehran, Iran
| |
Collapse
|
4
|
Rasheed RA, Sadek AS, Khattab RT, Elkhamisy FAA, Abdelfattah HA, Elshaer MMA, Almutairi SM, Hussein DS, Embaby AS, Almoatasem MAM. Diacerein provokes apoptosis, improves redox balance, and downregulates PCNA and TNF-α in a rat model of testosterone-induced benign prostatic hyperplasia: A new non-invasive approach. PLoS One 2023; 18:e0293682. [PMID: 37943844 PMCID: PMC10635502 DOI: 10.1371/journal.pone.0293682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
One of the most prevalent chronic conditions affecting older men is benign prostatic hyperplasia (BPH), causing severe annoyance and embarrassment to patients. The pathogenesis of BPH has been connected to epithelial proliferation, inflammation, deranged redox balance, and apoptosis. Diacerein (DIA), the anthraquinone derivative, is a non-steroidal anti-inflammatory drug. This study intended to investigate the ameliorative effect of DIA on the prostatic histology in testosterone-induced BPH in rats. BPH was experimentally induced by daily subcutaneous injection of testosterone propionate for four weeks. The treated group received DIA daily for a further two weeks after induction of BPH. Rats' body and prostate weights, serum-free testosterone, dihydrotestosterone, and PSA were evaluated. Prostatic tissue was processed for measuring redox balance and histopathological examination. The BPH group had increased body and prostate weights, serum testosterone, dihydrotestosterone, PSA, and oxidative stress. Histologically, there were marked acinar epithelial and stromal hyperplasia, inflammatory infiltrates, and increased collagen deposition. An immunohistochemical study showed an increase in the inflammatory TNF-α and the proliferative PCNA markers. Treatment with DIA markedly decreased the prostate weight and plasma hormones, improved tissue redox balance, repaired the histological changes, and increased the proapoptotic caspase 3 expression besides the substantial reduction in TNF-α and PCNA expression. In conclusion, our study underscored DIA's potential to alleviate the prostatic hyperplastic and inflammatory changes in BPH through its antioxidant, anti-inflammatory, antiproliferative, and apoptosis-inducing effects, rendering it an effective, innovative treatment for BPH.
Collapse
Affiliation(s)
- Rabab Ahmed Rasheed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - A. S. Sadek
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - R. T. Khattab
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Mohamed M. A. Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dina S. Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, United States of America
| | - Azza Saleh Embaby
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mai A. M. Almoatasem
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|