1
|
Lu Y, Zhuang Y, Jiang Y, Wang J, Dong L, Zhang Y, Wang S. Impact of lipid oxidation products on the digestibility and structural integrity of Myofibrillar proteins during thermal processing. Food Chem 2025; 463:141397. [PMID: 39332378 DOI: 10.1016/j.foodchem.2024.141397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
This study explores the effects of lipid oxidation products (LOPs), specifically CHP, t,t-DDE, and MDA, on the digestibility and structural integrity of myofibrillar proteins (MP) during processing. LOPs were first assessed by heating at 180 °C for 15 min, showing a significant reduction in digestibility in MDA-treated samples (65.40 %), followed by t,t-DDE (45.10 %) and CHP (13.07 %). MALDI-TOF MS analysis revealed decreased peptide abundance and lower average molecular weight in t,t-DDE- and MDA-treated samples. Notably, substantial decreases in α-helix content and increases in random coil structures were detected, particularly in MDA-treated samples. Assessments of surface hydrophobicity and thiol content underscored the detrimental impact of secondary LOPs on MP structure. Higher MDA concentrations led to a substantial reduction in intrinsic fluorescence intensity, along with an increase in Schiff base content. A PLS regression model demonstrated strong predictive capabilities for MP digestibility, highlighting the importance of optimizing meat processing parameters to minimize nutritional degradation.
Collapse
Affiliation(s)
- Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Zhuang
- China National Research Institute of Food & Fermentation Industry Co., Ltd, Beijing 100015, China
| | - Yu Jiang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Rufino Vieira ÉN, Caroline de Oliveira V, Gomes AT, Lourenço MT, do Amaral e Paiva MJ, Santos TC, Guerra DJR, Saldaña MD. Perspectives of high-pressure technology in probiotic food production: A comprehensive review. FOOD BIOSCI 2024; 62:105179. [DOI: 10.1016/j.fbio.2024.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Sojecka AA, Drozd-Rzoska A, Rzoska SJ. Food Preservation in the Industrial Revolution Epoch: Innovative High Pressure Processing (HPP, HPT) for the 21st-Century Sustainable Society. Foods 2024; 13:3028. [PMID: 39410062 PMCID: PMC11475462 DOI: 10.3390/foods13193028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The paper presents the 'progressive review' for high pressure preservation/processing (HPP) (cold pasteurization) of foods and the next-generation high-pressure and high temperature (HPHT, HPT) food sterilization technologies. It recalls the basics of HPP and HPT, showing their key features and advantages. It does not repeat detailed results regarding HPP and HPT implementations for specific foods, available in numerous excellent review papers. This report focuses on HPP and HPT-related issues that remain challenging and can hinder further progress. For HPP implementations, the reliable modeling of microorganisms' number decay after different times of high pressure treatment or product storage is essential. This report indicates significant problems with model equations standard nonlinear fitting paradigm and introduces the distortion-sensitive routine enabling the ultimate validation. An innovative concept based on the barocaloric effect is proposed for the new generation of HPT technology. The required high temperature appears only for a strictly defined short time period controlled by the maximal pressure value. Results of the feasibility test using neopentyl glycol as the barocaloric medium are presented. Attention is also paid to feedback interactions between socioeconomic and technological issues in the ongoing Industrial Revolution epoch. It indicates economic constraints for HPP and HPT developments and emerging business possibilities. The discussion recalls the inherent feedback interactions between technological and socioeconomic innovations as the driving force for the Industrial Revolution epoch.
Collapse
Affiliation(s)
- Agata Angelika Sojecka
- Department of Marketing, University of Economics in Katowice, ul. 1 Maja 50, 40-257 Katowice, Poland;
| | - Aleksandra Drozd-Rzoska
- Institute of High Pressure Physics Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142 Warsaw, Poland;
| | - Sylwester J. Rzoska
- Institute of High Pressure Physics Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142 Warsaw, Poland;
| |
Collapse
|
4
|
Bento de Carvalho T, Silva BN, Tomé E, Teixeira P. Preventing Fungal Spoilage from Raw Materials to Final Product: Innovative Preservation Techniques for Fruit Fillings. Foods 2024; 13:2669. [PMID: 39272437 PMCID: PMC11394069 DOI: 10.3390/foods13172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Spoilage fungi are a significant cause of financial loss in the food and beverage industry each year. These fungi thrive in challenging environments characterized by low acidity, low water activity and high sugar content, all of which are common in fruit fillings used in pastry products. Fruit fillings are therefore highly susceptible to fungal spoilage. Fungal growth can cause sensory defects in foods, such as changes in appearance, odor, flavor or texture, and can pose health risks due to the production of mycotoxins by certain mold species. To reduce food loss and waste and extend product shelf-life, it is critical that we prevent fungal spoilage. Synthetic chemicals such as sorbic acid and potassium sorbate are commonly used as preservatives to prevent fungal spoilage. However, with consumer demand for 'natural' and 'chemical-free' foods, research into clean-label preservative alternatives to replace chemical preservatives has increased. The objectives of this review are (i) to provide an overview of the sources of fungal contamination in fruit filling production systems, from pre-harvest of raw materials to storage of the final product, and to identify key control factors; and (ii) to discuss preservation techniques (both conventional and novel) that can prevent fungal growth and extend the shelf-life of fruit fillings.
Collapse
Affiliation(s)
- Teresa Bento de Carvalho
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Beatriz Nunes Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Elisabetta Tomé
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
5
|
Ying X, Li T, Deng S, Brennan C, Benjakul S, Liu H, Wang F, Xie X, Liu D, Li J, Xiao G, Ma L. Advancements in nonthermal physical field technologies for prefabricated aquatic food: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13290. [PMID: 38284591 DOI: 10.1111/1541-4337.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Huifan Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Gan X, Chen Z, Wang L, Liu W, Ma Q, Li R, Wang J, Mu J. Evaluation of Ultra-High-Pressure Sterilization in Terms of Bactericidal Effect, Qualities, and Shelf Life of 'Xinli No. 7' ( Pyrus sinkiangensis) Pear Juice. Foods 2023; 12:2729. [PMID: 37509821 PMCID: PMC10379016 DOI: 10.3390/foods12142729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, ultra-high-pressure sterilization (UHPS) of Xinli No. 7 juice (XL7) was explored and optimized. A challenge to implement UHPS in juice as a full alternative to thermal treatment could be represented by the adoption of a pressure level of up to 500 MPa for 20 min at one cycle followed by the packaging in aseptic conditions. It was found that UHPS and HS treatments could effectively kill the microorganisms in XL7 juice but HS treatment would inevitably lose the nutritional quality in the juice, while UHPS treatment could better maintain the glyconic acid content, functional components, and antioxidant activity and reduce Browning degree and improve the stability of XL7 juice. The deterioration rate of UHPS and HS-treated XL7 juice increased with the increased storage temperature. The predicted shelf life of UHPS and HS-treated XL7 juice was 68 and 41 days at 4 °C, respectively. Collectively, UHPS treatment combined with low-temperature storage might be an effective way to prolong the shelf life of XL7 juice.
Collapse
Affiliation(s)
- Xiaojing Gan
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Zhizhou Chen
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China
| | - Liwen Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenhui Liu
- Beijing Huiyuan Food and Beverage Co., Ltd., Beijing 101314, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Rongbin Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Nawawi NIM, Ijod G, Senevirathna SSJ, Aadil RM, Yusof NL, Yusoff MM, Adzahan NM, Azman EM. Comparison of high pressure and thermal pasteurization on the quality parameters of strawberry products: a review. Food Sci Biotechnol 2023; 32:729-747. [PMID: 37041805 PMCID: PMC10082863 DOI: 10.1007/s10068-023-01276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Strawberry (Fragaria ananassa) is rich in bioactive compounds with high antioxidant activity. High pressure processing (HPP) is an efficient alternative to preserve these bioactive compounds in terms of microbial inactivation and shelf-life stability. This review compares the effects of pasteurization methods using high pressure or thermal pasteurization (TP) on the quality parameters of various strawberry-based products. To summarize, most of the high pressure-treated products are microbiologically stable and showed minimum degradation of thermolabile compounds than TP-treated ones. However, some studies reported that high pressure did not have an advantage over TP especially in the preservation of phenolic phytochemicals during storage. The insufficient enzyme inactivation and high residual activity of enzymes after high pressure treatment could cause anthocyanins degradation thus affecting the product quality. Overall, this review could be valuable to potential processors in evaluating the effective commercialization of high pressure-treated strawberry products.
Collapse
Affiliation(s)
- Nur Izzati Mohamed Nawawi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Giroon Ijod
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Sri Sampath Janaka Senevirathna
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Department of Agriculture, P.O. Box. 01, Peradeniya, 20400 Sri Lanka
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Noor Liyana Yusof
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Masni Mat Yusoff
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
8
|
Zarzecka U, Zadernowska A, Chajęcka-Wierzchowska W, Adamski P. Effect of high pressure processing on changes in antibiotic resistance genes expression among strains from commercial starter cultures. Food Microbiol 2023; 110:104169. [DOI: 10.1016/j.fm.2022.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|