1
|
Choi D, Boo Y, Park S, Xu L, Kim S, Yi SY, Lee S, Wu R, Kim WJ, Lee J. Ultrasmall High-Entropy-Alloy Nanozyme Catalyzed In Vivo ROS and NO Scavenging for Anti-Inflammatory Therapy. Adv Healthc Mater 2024:e2402005. [PMID: 39641188 DOI: 10.1002/adhm.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Indexed: 12/07/2024]
Abstract
High-entropy alloy (HEA) nanoparticles possess finely tunable and multifunctional catalytic activity due to their extremely diverse adsorption sites. Their unique properties enable HEA nanoparticles to mimic the complex interactions of the redox homeostasis system, which is composed of cascade and multiple enzymatic reactions. The application of HEAs in mimicking complex enzymatic systems remains relatively unexplored, despite the importance of regulating biological redox reactions. Here, it is reported that ultra-small (<10 nm in a diameter) HEA nanozymes consisting of five platinum-group metals with tunable morphologies from planar to dendritic structures are synthesized. The synthesized HEA nanozymes exhibited higher peroxidase-like activity compared to monometallic platinum-group nanoparticles. Additionally, HEA nanoparticles effectively mimicked RONS-regulation metabolism in cascade reactions involving superoxide dismutase and catalase, as well as in multiple reactions including HORAC and NO scavenging. As a result, the HEA nanozyme exhibited superior anti-inflammatory efficacy both in vitro and in vivo. The findings underscore the effectiveness of the high-entropy alloy structure in restoring in vivo enzymatic systems through intrinsic activity enhancements and cascade reaction mechanisms.
Collapse
Affiliation(s)
- Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeonju Boo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Seonhye Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ruopeng Wu
- Department of Mathematics, College of Literature, Science, and the Arts (LSA), University of Michigan, Ann Arbor, East Hall, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Jannatifar R, Piroozmanesh H, Sahraei SS, Verdi A, Asa E. The evaluation effect of nanoliposome-loaded Mito-Tempo on sperm parameters during human sperm cryopreservation. J Assist Reprod Genet 2024; 41:2053-2063. [PMID: 38753089 PMCID: PMC11339217 DOI: 10.1007/s10815-024-03132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 08/22/2024] Open
Abstract
AIM The aim of this study is the evaluation effect of nanoliposome-loaded Mito-Tempo on sperm parameters during human sperm cryopreservation. METHODS Semen samples of 50 Asthenoteratozoospermia men (random) were collected. Sperm parameters were analyzed based on World Health Organization (WHO, 2010) criteria (2021) and each sample was divided into 5 groups (E1-E5). E1 (control group): the sperm was cryopreserved without nanoliposome, and Mito-Tempo. E2: sperm cryopreservation with Mito-Tempo-loaded nanoliposome (Mito-Tempo 0.1 mM) + freezing medium. E3: sperm cryopreservation with Mito-Tempo-loaded nanoliposome (Mito-Tempo 0.2 mM) + freezing medium. E4: in this group, the cryopreservation sperm with Mito-Tempo 0.3 mM + freezing medium. E5: the cryopreservation sperm with Mito-Tempo 0.2 mM + freezing medium. RESULTS The result of this study indicated that sperm parameters and total antioxidant capacity (TAC) significantly increase in E3 and E4 groups, compared to E1, E2, and E5 groups respectively (P < 0.05). The percentage of abnormal morphology, DNA fragmentation index (DFI), malondialdehyde (MDA), and the levels of ROS significantly decrease in E3 and E4 groups, compared to E1, E2, and E5 groups (P < 0.05). In addition, the sperm parameters and stress oxidative factors significantly improve in E3 group compared to other groups (P < 0.05). CONCLUSIONS In conclusion, the combination of Mito-Tempo with nanoliposome due to its ability to cooperate with lipid layers may lead to significant performance in reducing oxidative stress damage and increasing the quality of sperm parameters.
Collapse
Affiliation(s)
- Rahil Jannatifar
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran.
- Infertility Treatment Center of ACECR, Bonyad Street, P.O. box: 3713746611, Qom, Iran.
| | | | - Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| | - Atefeh Verdi
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| | - Elham Asa
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom, Iran
| |
Collapse
|
3
|
Radosavljevic T, Brankovic M, Samardzic J, Djuretić J, Vukicevic D, Vucevic D, Jakovljevic V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants (Basel) 2024; 13:906. [PMID: 39199152 PMCID: PMC11351122 DOI: 10.3390/antiox13080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction. Recent studies underscore the critical role of mitochondrial dysfunction in MASLD's progression. Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes and pharmacological interventions targeting mitochondrial processes. The FDA's approval of resmetirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While resmetirom represents progress, further research is essential to understand MASLD-related mitochondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators, alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD and identify more effective preventive and treatment strategies.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
4
|
Kim MJ, Choi EJ, Choi EJ. Evolving Paradigms in Sepsis Management: A Narrative Review. Cells 2024; 13:1172. [PMID: 39056754 PMCID: PMC11274781 DOI: 10.3390/cells13141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis, a condition characterized by life-threatening organ dysfunction due to a dysregulated host response to infection, significantly impacts global health, with mortality rates varying widely across regions. Traditional therapeutic strategies that target hyperinflammation and immunosuppression have largely failed to improve outcomes, underscoring the need for innovative approaches. This review examines the development of therapeutic agents for sepsis, with a focus on clinical trials addressing hyperinflammation and immunosuppression. It highlights the frequent failures of these trials, explores the underlying reasons, and outlines current research efforts aimed at bridging the gap between theoretical advancements and clinical applications. Although personalized medicine and phenotypic categorization present promising directions, this review emphasizes the importance of understanding the complex pathogenesis of sepsis and developing targeted, effective therapies to enhance patient outcomes. By addressing the multifaceted nature of sepsis, future research can pave the way for more precise and individualized treatment strategies, ultimately improving the management and prognosis of sepsis patients.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea;
| | - Eun-Joo Choi
- Department of Anesthesiology and Pain Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Eun-Jung Choi
- Department of Anatomy, School of Medicine, Daegu Catholic University, Duryugongwon-ro 17gil, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
5
|
Zhang R, Yan Z, Zhong H, Luo R, Liu W, Xiong S, Liu Q, Liu M. Gut microbial metabolites in MASLD: Implications of mitochondrial dysfunction in the pathogenesis and treatment. Hepatol Commun 2024; 8:e0484. [PMID: 38967596 PMCID: PMC11227362 DOI: 10.1097/hc9.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/06/2024] Open
Abstract
With an increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has become a major global health problem. MASLD is well-known as a multifactorial disease. Mitochondrial dysfunction and alterations in the gut bacteria are 2 vital events in MASLD. Recent studies have highlighted the cross-talk between microbiota and mitochondria, and mitochondria are recognized as pivotal targets of the gut microbiota to modulate the host's physiological state. Mitochondrial dysfunction plays a vital role in MASLD and is associated with multiple pathological changes, including hepatocyte steatosis, oxidative stress, inflammation, and fibrosis. Metabolites are crucial mediators of the gut microbiota that influence extraintestinal organs. Additionally, regulation of the composition of gut bacteria may serve as a promising therapeutic strategy for MASLD. This study reviewed the potential roles of several common metabolites in MASLD, emphasizing their impact on mitochondrial function. Finally, we discuss the current treatments for MASLD, including probiotics, prebiotics, antibiotics, and fecal microbiota transplantation. These methods concentrate on restoring the gut microbiota to promote host health.
Collapse
Affiliation(s)
- Ruhan Zhang
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Zhaobo Yan
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Huan Zhong
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Rong Luo
- Department of Acupuncture and Massage Rehabilitation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Weiai Liu
- Department of Acupuncture and Massage Rehabilitation, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shulin Xiong
- Department of Preventive Center, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Qianyan Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Mi Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
6
|
Cao S, Liu M, Han Y, Li S, Zhu X, Li D, Shi Y, Liu B. Effects of Saponins on Lipid Metabolism: The Gut-Liver Axis Plays a Key Role. Nutrients 2024; 16:1514. [PMID: 38794751 PMCID: PMC11124185 DOI: 10.3390/nu16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut-liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives-short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut-liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders.
Collapse
Affiliation(s)
- Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| |
Collapse
|
7
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Pan G, Wu Y, Liu Y, Zhou F, Li S, Yang S. Dachengqi decoction ameliorates sepsis-induced liver injury by inhibiting the TGF-β1/Smad3 pathways. J Tradit Complement Med 2024; 14:256-265. [PMID: 38707919 PMCID: PMC11068991 DOI: 10.1016/j.jtcme.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 05/07/2024] Open
Abstract
Background Sepsis-induced acute liver injury (ALI) is a major contributor to mortality in septic patients. Exploring the pathogenesis and developing effective treatment strategies for sepsis-induced ALI is critical for improving patient outcomes. Dachengqi decoction (DCQD), which is a classic Chinese herbal medicine, has been shown to possess potent anti-inflammatory properties. However, the protective effects and underlying mechanisms of DCQD against sepsis-induced ALI remain unclear. This study aimed to investigate the protective effect of DCQD on sepsis-induced ALI and elucidate the involvement of the TGF-1β/Smad3 pathways. Methods A septic mouse model was established using caecal ligation and puncture (CLP) to evaluate the protective effect of DCQD on sepsis-induced ALI in vivo. An in vitro cellular inflammation model was established using LPS-stimulated LO2 cells to further investigate the underlying mechanism. Results DCQD (2.5, 5.0, and 10.0 g/kg body weight) was administered twice daily for 2 days and exerted a dose-dependent protective effect against sepsis-induced ALI. DCQD treatment significantly inhibited inappropriate inflammatory responses and oxidative stress in liver tissue. Moreover, DCQD maintained liver homeostasis by inhibiting hepatocyte apoptosis and improving sepsis-induced liver damage. In vivo and in vitro studies indicated that the TGF-β1/Smad3 signalling pathway played an important role in sepsis-induced ALI, and DCQD treatment significantly inhibited the activation of this pathway. Conclusions DCQD can effectively suppress excessive inflammatory responses and oxidative stress, leading to a substantial reduction in hepatocyte apoptosis in sepsis-induced ALI.
Collapse
Affiliation(s)
- Guangtao Pan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 224000, Yancheng, Jiangsu Province, PR China
| | - Yanran Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, PR China
| | - Yuhan Liu
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, PR China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, PR China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, PR China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei Province, PR China
| |
Collapse
|
9
|
Kuroshima T, Kawaguchi S, Okada M. Current Perspectives of Mitochondria in Sepsis-Induced Cardiomyopathy. Int J Mol Sci 2024; 25:4710. [PMID: 38731929 PMCID: PMC11083471 DOI: 10.3390/ijms25094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt β-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
| | | | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (T.K.); (S.K.)
| |
Collapse
|
10
|
Li CY, Liu J, Zheng QY, Liu N, Huang XL, Wu YY, Yao XF, Tan QY, Huang Y, Hu CH, Xu CL. The effect of the mitochondria-targeted antioxidant Mito-tempo during sperm ultra-rapid freezing. Cryobiology 2024; 114:104860. [PMID: 38340888 DOI: 10.1016/j.cryobiol.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
During the freeze-thaw process, human spermatozoa are susceptible to oxidative stress, which may cause cryodamage and reduce sperm quality. As a novel mitochondria-targeted antioxidant, Mito-tempo has been used for sperm cryopreservation. However, it is currently unknown what role it will play in the process of sperm ultra-rapid freezing. The purpose of this study was to investigate whether Mito-tempo can improve sperm quality during ultra-rapid freezing. In this study, samples with the addition of Mito-tempo (0, 5, 10, 20, and 40 μM) to sperm freezing medium were selected to evaluate the changes in sperm quality, antioxidant capacity and ultrastructure after ultra-rapid freezing. After ultra-rapid freezing, the quality and antioxidant function of the spermatozoa were significantly reduced and the spermatozoa ultrastructure was destroyed. The addition of 10 μM Mito-tempo significantly increased post thaw sperm motility, viability, plasma membrane integrity and mitochondrial membrane potential (P < 0.05). Moreover, the DNA fragmentation index (DFI), ROS levels and MDA content were reduced, and the antioxidant enzyme (CAT and SOD) activities were enhanced in the 10 μM Mito-tempo group (P < 0.05). Moreover, Mito-tempo protected sperm ultrastructure from damage. In conclusion, Mito-tempo improved the quality and antioxidant function of sperm after ultra-rapid freezing while reducing freezing-induced ultrastructural damage.
Collapse
Affiliation(s)
- Chun-Yuan Li
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China
| | - Juan Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Qi-Yuan Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Nian Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Xi-Ling Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yu-Yin Wu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | | | - Qing-Ying Tan
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China
| | - Ying Huang
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China
| | - Chuan-Huo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| | - Chang-Long Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, China.
| |
Collapse
|
11
|
Lian X, Wang X, Xie Y, Sheng H, He J, Peng T, Xie N, Wang C, Lian Y. ATF5-regulated Mitochondrial Unfolded Protein Response Attenuates Neuronal Damage in Epileptic Rat by Reducing Endoplasmic Reticulum Stress Through Mitochondrial ROS. Neurochem Res 2024; 49:388-401. [PMID: 37847329 DOI: 10.1007/s11064-023-04042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Endoplasmic reticulum (ER) dysfunction caused by excessive ER stress is a crucial mechanism underlying seizures-induced neuronal injury. Studies have shown that mitochondrial reactive oxygen species (ROS) are closely related to ER stress, and our previous study showed that activating transcription factor 5 (ATF5)-regulated mitochondrial unfolded protein response (mtUPR) modulated mitochondrial ROS generation in a hippocampal neuronal culture model of seizures. However, the effects of ATF5-regulated mtUPR on ER stress and the underlying mechanisms remain uncertain in epilepsy. In this study, ATF5 upregulation by lentivirus infection attenuated seizures-induced neuronal damage and apoptosis in a rat model of pilocarpine-induced epilepsy, whereas ATF5 downregulation by lentivirus infection had the opposite effects. ATF5 upregulation potentiated mtUPR by increasing the expression of mitochondrial chaperone heat shock protein 60 (HSP60) and caseinolytic protease proteolytic subunit (ClpP) and reducing mitochondrial ROS generation in pilocarpine-induced seizures in rats. Additionally, upregulation of ATF5 reduced the expression of glucose-regulated protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), suggesting suppression of ER stress; Moreover, ATF5 upregulation attenuated apoptosis-related proteins such as B-cell lymphoma-2 (BCL2) downregulation, BCL2-associated X (BAX) and cleaved-caspase-3 upregulation. However, ATF5 downregulation exerted the opposite effects. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO attenuated the harmful effects of ATF5 downregulation on ER stress and neuronal apoptosis by reducing mitochondrial ROS generation. Overall, our study suggested that ATF5-regulated mtUPR exerted neuroprotective effects against pilocarpine-induced seizures in rats and the underlying mechanisms might involve mitochondrial ROS-mediated ER stress.
Collapse
Affiliation(s)
- Xiaolei Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Hanqing Sheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Jiao He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Cui Wang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
12
|
Sadowska-Bartosz I, Bartosz G. The Cellular and Organismal Effects of Nitroxides and Nitroxide-Containing Nanoparticles. Int J Mol Sci 2024; 25:1446. [PMID: 38338725 PMCID: PMC10855878 DOI: 10.3390/ijms25031446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Nitroxides are stable free radicals that have antioxidant properties. They react with many types of radicals, including alkyl and peroxyl radicals. They act as mimics of superoxide dismutase and stimulate the catalase activity of hemoproteins. In some situations, they may exhibit pro-oxidant activity, mainly due to the formation of oxoammonium cations as products of their oxidation. In this review, the cellular effects of nitroxides and their effects in animal experiments and clinical trials are discussed, including the beneficial effects in various pathological situations involving oxidative stress, protective effects against UV and ionizing radiation, and prolongation of the life span of cancer-prone mice. Nitroxides were used as active components of various types of nanoparticles. The application of these nanoparticles in cellular and animal experiments is also discussed.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
13
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 164] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
14
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Mulkidjanian AY, Skulachev MV, Shilovsky GA, Lyamzaev KG, Borisov VB, Severin FF, Sadovnichii VA. Six Functions of Respiration: Isn't It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int J Mol Sci 2023; 24:12540. [PMID: 37628720 PMCID: PMC10454651 DOI: 10.3390/ijms241612540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Mikhail Yu. Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | | | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Institute of Mitoengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gregory A. Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Victor A. Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
15
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, AlRashdi AS, Najmaldin SK, Zainel MA. Sinapic Acid Attenuate Liver Injury by Modulating Antioxidant Activity and Inflammatory Cytokines in Thioacetamide-Induced Liver Cirrhosis in Rats. Biomedicines 2023; 11:biomedicines11051447. [PMID: 37239118 DOI: 10.3390/biomedicines11051447] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Sinapic acid (SA) is a natural pharmacological active compound found in berries, nuts, and cereals. The current study aimed to investigate the protective effects of SA against thioacetamide (TAA) fibrosis in rats by histopathological and immunohistochemical assays. The albino rats (30) were randomly divided into five groups (G). G1 was injected with distilled water 3 times/week and fed orally daily with 10% Tween 20 for two months. G2-5 were injected with 200 mg/kg TAA three times weekly for two months and fed with 10% Tween 20, 50 mg/kg silymarin, 20, and 40 mg/kg of SA daily for 2 months, respectively. The results showed that rats treated with SA had fewer hepatocyte injuries with lower liver index (serum bilirubin, total protein, albumin, and liver enzymes (ALP, ALT, and AST) and were similar to that of control and silymarin-treated rats. Acute toxicity for 2 and 4 g/kg SA showed to be safe without any toxic signs in treated rats. Macroscopic examination showed that hepatotoxic liver had an irregular, rough surface with micro and macro nodules and histopathology expressed by Hematoxylin and Eosin, and Masson Trichrome revealed severe inflammation and infiltration of focal necrosis, fibrosis, lymphocytes, and proliferation bile duct. In contrast, rats fed with SA had significantly lower TAA toxicity in gross and histology and liver tissues as presented by less liver tissue disruption, lesser fibrosis, and minimum in filtered hepatocytes. Immunohistochemistry of rats receiving SA showed significant up-regulation of HSP 70% and down-regulation of alpha-smooth muscle actin (α-SMA) protein expression compared to positive control rats. The homogenized liver tissues showed a notable rise in the antioxidant enzymes (SOD and CAT) actions with significantly lower malondialdehyde (MDA) levels compared to that of the positive control group. Furthermore, the SA-treated rats had significantly lower TNF-a, IL-6, and higher IL-10 levels than the positive control rats. Thus, the findings suggest SA as a hepatoprotective compound due to its inhibitory effects on fibrosis, hepatotoxicity, liver cell proliferation, up-regulation of HSP 70, and downregulation of α-SMA expression, inhibiting lipid peroxidation (MDA), while retaining the liver index and antioxidant enzymes to normal.
Collapse
Affiliation(s)
- Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Zaenah Zuhair Alamri
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Sciences, Cihan University-Erbil, Erbil 44001, Iraq
| | - Ahmed S AlRashdi
- Central Public Health Laboratories, Ministry of Health, P.O. Box 2294, Muscat 111, Oman
| | - Soran Kayfi Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Iraq
| | | |
Collapse
|
16
|
Ghorbanpour A, Salari S, Baluchnejadmojarad T, Roghani M. Capsaicin protects against septic acute liver injury by attenuation of apoptosis and mitochondrial dysfunction. Heliyon 2023; 9:e14205. [PMID: 36938442 PMCID: PMC10018474 DOI: 10.1016/j.heliyon.2023.e14205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Capsaicin is the main pungent bioactive constituent in red chili with promising therapeutic properties due to its anti-oxidative and anti-inflammatory effects. No evidence exists on the beneficial effect of capsaicin on apoptosis and mitochondrial function in acute liver injury (ALI) under septic conditions. For inducing septic ALI, lipopolysaccharide (LPS, 50 μg/kg) and d-galactose (D-Gal, 400 mg/kg) was intraperitoneally injected and capsaicin was given orally at 5 or 20 mg/kg. Functional markers of liver function and mitochondrial dysfunction were determined as well as hepatic assessment of apoptotic, oxidative, and inflammatory factors. Capsaicin at the higher dose appropriately decreased serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in addition to reducing hepatic level of malondialdehyde (MDA), reactive oxygen species (ROS), nitrite, NF-kB, TLR4, IL-1β, TNF-α, caspase 3, DNA fragmentation and boosting sirtuin 1, Nrf2, superoxide dismutase (SOD) activity, and heme oxygenase (HO-1). These beneficial effects of capsaicin were associated with reversal and/or improvement of gene expression for pro-apoptotic Bax, anti-apoptotic Bcl2, mitochondrial and metabolic regulators PGC-1α, sirtuin 1, and AMPK, and inflammation-associated factors. Additionally, capsaicin exerted a hepatoprotective effect, as revealed by its reduction of liver histopathological changes. These findings evidently indicate hepatoprotective property of capsaicin under septic conditions that can be attributed to its down-regulation of oxidative and inflammatory processes besides its potential to attenuate mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
| | | | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
- Corresponding author.
| |
Collapse
|
17
|
Xie T, Xin Q, Cao X, Chen R, Ren H, Liu C, Zhang J. Clinical characteristics and construction of a predictive model for patients with sepsis related liver injury. Clin Chim Acta 2022; 537:80-86. [DOI: 10.1016/j.cca.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
18
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Gong G. Inhibition of mitochondrial superoxide promotes the development of hiPS-CMs during differentiation. Free Radic Biol Med 2022; 190:94-104. [PMID: 35952922 DOI: 10.1016/j.freeradbiomed.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
The redox state is a crucial determinant of the maturation transition of cardiomyocytes in vivo. Mitochondria, the primary site of superoxide generation, are very sensitive to various stimulations, including oxygen and nutrient supply. How mitochondrial superoxide affects the differentiation and development of induced pluripotent stem cell (iPSC)-derived cardiac myocytes (iPS-CMs) is not completely clear. To address the questions, we monitored the superoxide level during the differentiation and development of human iPS-CMs using MitoSOX. Mitochondria-targeted antioxidant Mito-TEMPO was used to treat hiPS-CMs in the differentiation period. We found that mitochondrial superoxide generation was dramatically enhanced during the differentiation and early development of iPS-CMs. Increased oxidative stress induced oxidative damage to macromolecules in iPS-CMs, such as lipids, proteins, and DNA. Mito-TEMPO protected mitochondrial functions, alleviated oxidative damage to lipids, proteins, and DNA and improved cellular structure and fatty acid utilization. Our findings confirmed that iPS-CM suffered from oxidative stress during differentiation and that mitochondrial-targeted antioxidant is beneficial for the maturation of iPS-CMs.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|