1
|
肖 林, 段 婷, 夏 勇, 陈 悦, 孙 洋, 许 轶, 徐 磊, 闫 兴, 胡 建. [Linarin inhibits microglia activation-mediated neuroinflammation and neuronal apoptosis in mouse spinal cord injury by inhibiting the TLR4/NF-κB pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1589-1598. [PMID: 39276055 PMCID: PMC11378057 DOI: 10.12122/j.issn.1673-4254.2024.08.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the mechanism underlying the neuroprotective effect of linarin (LIN) against microglia activation-mediated inflammation and neuronal apoptosis following spinal cord injury (SCI). METHODS Fifty C57BL/6J mice (8- 10 weeks old) were randomized to receive sham operation, SCI and linarin treatment at 12.5, 25, and 50 mg/kg following SCI (n=10). Locomotor function recovery of the SCI mice was assessed using the Basso Mouse Scale, inclined plane test, and footprint analysis, and spinal cord tissue damage and myelination were evaluated using HE and LFB staining. Nissl staining, immunofluorescence assay and Western blotting were used to observe surviving anterior horn motor neurons in injured spinal cord tissue. In cultured BV2 cells, the effects of linarin against lipopolysaccharide (LPS)‑induced microglia activation, inflammatory factor release and signaling pathway changes were assessed with immunofluorescence staining, Western blotting, RT-qPCR, and ELISA. In a BV2 and HT22 cell co-culture system, Western blotting was performed to examine the effect of linarin against HT22 cell apoptosis mediated by LPS-induced microglia activation. RESULTS Linarin treatment significantly improved locomotor function (P < 0.05), reduced spinal cord damage area, increased spinal cord myelination, and increased the number of motor neurons in the anterior horn of the SCI mice (P < 0.05). In both SCI mice and cultured BV2 cells, linarin effectively inhibited glial cell activation and suppressed the release of iNOS, COX-2, TNF-α, IL-6, and IL-1β, resulting also in reduced neuronal apoptosis in SCI mice (P < 0.05). Western blotting suggested that linarin-induced microglial activation inhibition was mediated by inhibition of the TLR4/NF- κB signaling pathway. In the cell co-culture experiments, linarin treatment significantly decreased inflammation-mediated apoptosis of HT22 cells (P < 0.05). CONCLUSION The neuroprotective effect of linarin is medicated by inhibition of microglia activation via suppressing the TLR4/NF‑κB signaling pathway, which mitigates neural inflammation and reduce neuronal apoptosis to enhance motor function of the SCI mice.
Collapse
|
2
|
Jiang A, Liu L, Wang J, Liu Y, Deng S, Jiang T. Linarin Ameliorates Restenosis After Vascular Injury in Type 2 Diabetes Mellitus via Regulating ADAM10-Mediated Notch Signaling Pathway. Cardiovasc Toxicol 2024; 24:587-597. [PMID: 38691303 DOI: 10.1007/s12012-024-09863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.
Collapse
MESH Headings
- Animals
- ADAM10 Protein/metabolism
- Signal Transduction
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/enzymology
- Cell Proliferation/drug effects
- Male
- Rats, Sprague-Dawley
- Neointima
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Amyloid Precursor Protein Secretases/metabolism
- Cells, Cultured
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/enzymology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Hyperplasia
- Receptors, Notch/metabolism
- Receptor, Notch1/metabolism
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Disease Models, Animal
- Rats
- Coronary Restenosis/pathology
- Coronary Restenosis/etiology
- Coronary Restenosis/metabolism
- Coronary Restenosis/prevention & control
Collapse
Affiliation(s)
- Aihua Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Lin Liu
- Department of Gastroenterology, Hengyang Central Hospital, Hengyang, 421001, China
| | - Jianping Wang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Yinglan Liu
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Shanshan Deng
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China
| | - Tao Jiang
- Department of Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Road, Zhengxiang District, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
3
|
Xu J, Li S, Wehbe A, Ji X, Yang Y, Yang Y, Qin L, Liu FY, Ding Y, Ren C. Abdominal Aortic Occlusion and the Inflammatory Effects in Heart and Brain. Mediators Inflamm 2023; 2023:2730841. [PMID: 38131062 PMCID: PMC10735730 DOI: 10.1155/2023/2730841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2023] Open
Abstract
Background Abdominal aortic occlusion (AAO) occurs frequently and causes ischemia/reperfusion (I/R) injury to distant organs. In this study, we aimed to investigate whether AAO induced I/R injury and subsequent damage in cardiac and neurologic tissue. We also aimed to investigate the how length of ischemic time in AAO influences reactive oxygen species (ROS) production and inflammatory marker levels in the heart, brain, and serum. Methods Sixty male C57BL/6 mice were used in this study. The mice were randomly divided into either sham group or AAO group. The AAO group was further subdivided into 1-4 hr groups of aortic occlusion times. The infrarenal abdominal aorta was clamped for 1-4 hr depending on the AAO group and was then reperfused for 24 hr after clamp removal. Serum, hippocampus, and left ventricle tissue samples were then subjected to biochemical and histopathological analyses. Results AAO-induced I/R injury had no effect on cell necrosis, cell apoptosis, or ROS production. However, serum and hippocampus levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) increased in AAO groups when compared to sham group. Superoxide dismutase and total antioxidant capacity decreased in the serum, hippocampus, and left ventricle. In the serum, AAO increased the level of inducible nitric oxide synthase (iNOS) and decreased the levels of anti-inflammatory factors (such as arginase-1), transforming growth factor- β1 (TGF-β1), interleukin 4 (IL-4), and interleukin 10 (IL-10). In the hippocampus, AAO increased the levels of tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), IL-4, and IL-6, and decreased the level of TGF-β1. In the left ventricle, AAO increased the level of iNOS and decreased the levels of TGF-β1, IL-4, and IL-10. Conclusions AAO did not induce cell necrosis or apoptosis in cardiac or neurologic tissue, but it can cause inflammation in the serum, brain, and heart.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Yu Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Linhui Qin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| |
Collapse
|