1
|
Liu Y, Xiao X, Wang L, Fu Y, Yao S, Liu X, Chen B, Gao J, Zhai Y, Shen Z, Yan L, Wang Y, Ji P, Wang B, Liu G. The dose-dependent dual effects of alpha-ketoglutarate (AKG) on cumulus oocyte complexes during in vitro maturation. Cell Commun Signal 2024; 22:472. [PMID: 39363298 PMCID: PMC11448289 DOI: 10.1186/s12964-024-01827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
In this study, we reported for the first time the dose-dependent dual effects of Alpha-Ketoglutarate (AKG) on cumulus oocyte complexes (COCs) during in vitro maturation (IVM). AKG at appropriate concentration (30 µM) has beneficial effects on IVM. This includes improved cumulus expansion, oocyte quality, and embryo development. These effects are mediated through multiple underlying mechanisms. AKG reduced the excessive accumulation of reactive oxygen species (ROS) in cumulus cells, reduced the consumption of GSH and NADPH. Cumulus GSH and NADPH were transported to oocytes via gap junctions, thereby reducing the oxidative stress, apoptosis and maintaining the redox balance in oocytes. In addition, AKG improved the mitochondrial function by regulating the mitochondrial complex 1 related gene expression in oocytes to maintain mitochondrial membrane potential and ATP production. On the other hand, oocyte generated GDF9 could also be transported to cumulus cells to promote cumulus expansion. Conversely, a high concentration of AKG (750 µM) exerted adverse effects on IVM and suppressed the cumulus expansion as well as reduced the oocyte quality. The suppression of the cumulus expansion caused by high concentration of AKG could be rescued with GDF9 supplementation in COCs, indicating the critical role of GDF9 in IVM. The results provide valuable information on the variable effects of AKG at different concentrations on reproductive physiology.
Collapse
Affiliation(s)
- Yunjie Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Xin Xiao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Likai Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Yao Fu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Songyang Yao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Xuening Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Boda Chen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Jiarui Gao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Yaying Zhai
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Zixia Shen
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Laiqing Yan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Yiwei Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Pengyun Ji
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Bingyuan Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China
| | - Guoshi Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West road, Beijing, 100193, China.
| |
Collapse
|
2
|
Qin YC, Jin CL, Hu TC, Zhou JY, Wang XF, Wang XQ, Kong XF, Yan HC. Early Weaning Inhibits Intestinal Stem Cell Expansion to Disrupt the Intestinal Integrity of Duroc Piglets via Regulating the Keap1/Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1188. [PMID: 39456442 PMCID: PMC11505184 DOI: 10.3390/antiox13101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
There are different stress resistance among different breeds of pigs. Changes in intestinal stem cells (ISCs) are still unclear among various breeds of piglets after early weaning. In the current study, Taoyuan Black and Duroc piglets were slaughtered at 21 days of age (early weaning day) and 24 days of age (3 days after early weaning) for 10 piglets in each group. The results showed that the rate of ISC-driven epithelial renewal in local Taoyuan Black pigs hardly changed after weaning for 3 days. However, weaning stress significantly reduced the weight of the duodenum and jejunum in Duroc piglets. Meanwhile, the jejunal villus height, tight junction-related proteins (ZO-1, Occludin, and Claudin1), as well as the trans-epithelial electrical resistance (TEER) values, were down-regulated after weaning for 3 days in Duroc piglets. Moreover, compared with Unweaned Duroc piglets, the numbers of Olfm4+ ISC cells, PCNA+ mitotic cells, SOX9+ secretory progenitor cells, and Villin+ absorptive cells in the jejunum were reduced significantly 3 days after weaning. And ex vivo jejunal crypt-derived organoids exhibited growth disadvantages in weaned Duroc piglets. Notably, the Keap1/Nrf2 signaling activities and the expression of HO-1 were significantly depressed in weaned Duroc piglets compared to Unweaned Duroc piglets. Thus, we can conclude that ISCs of Duroc piglets were more sensitive to weaning stress injury than Taoyuan Black piglets, and Keap1/Nrf2 signaling is involved in this process.
Collapse
Affiliation(s)
- Ying-Chao Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Cheng-Long Jin
- Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Ting-Cai Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| | - Xiang-Feng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-C.Q.); (T.-C.H.); (J.-Y.Z.); (X.-F.W.); (X.-Q.W.)
| |
Collapse
|
3
|
Lee SE, Lee HB, Yoon JW, Park HJ, Kim SH, Han DH, Lim ES, Kim EY, Park SP. Rapamycin treatment during prolonged in vitro maturation enhances the developmental competence of immature porcine oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:905-919. [PMID: 39398303 PMCID: PMC11466741 DOI: 10.5187/jast.2023.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2024]
Abstract
Porcine oocytes undergo in vitro maturation (IVM) for 42-44 h. During this period, most oocytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently matured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-activated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK level after 52 h of IVM. Oocytes were treated with and without 10 μM rapamycin (10 R and 0 R, respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) activity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. The 10 R group exhibited an increased embryo development rate, a higher total cell number per blastocyst, and decreased DNA fragmentation. The mRNA level of development-related (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment represses ROS production and increases expression of molecular maturation factors. Therefore, this is a good strategy to enhance the developmental capacity in porcine oocytes.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Subtropical Livestock Research Institute,
National Institute of Animal Science, RDA, Jeju 63242,
Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Mirae Cell Bio, Seoul 04795,
Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Mirae Cell Bio, Seoul 04795,
Korea
- Department of Bio Medical Informatic,
College of Applied Life Sciences, Jeju National University,
Jeju 63242, Korea
| |
Collapse
|
4
|
Glanzner WG, da Silva Sousa LR, Gutierrez K, de Macedo MP, Currin L, Perecin F, Bordignon V. NRF2 attenuation aggravates detrimental consequences of metabolic stress on cultured porcine parthenote embryos. Sci Rep 2024; 14:2973. [PMID: 38316940 PMCID: PMC10844622 DOI: 10.1038/s41598-024-53480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor that plays a central role in regulating oxidative stress pathways by binding antioxidant response elements, but its involvement in early embryo development remains largely unexplored. In this study, we demonstrated that NRF2 mRNA is expressed in porcine embryos from day 2 to day 7 of development, showing a decrease in abundance from day 2 to day 3, followed by an increase on day 5 and day 7. Comparable levels of NRF2 mRNA were observed between early-cleaving and more developmental competent embryos and late-cleaving and less developmental competent embryos on day 4 and day 5 of culture. Attenuation of NRF2 mRNA significantly decreased development of parthenote embryos to the blastocyst stage. When NRF2-attenuated embryos were cultured in presence of 3.5 mM or 7 mM glucose, development to the blastocyst stage was dramatically decreased in comparison to the control group (15.9% vs. 27.8% for 3.5 mM glucose, and 5.4% vs. 25.3% for 7 mM glucose). Supplementation of melatonin moderately improved the development of NRF2-attenuated embryos cultured in presence of 0.6 mM glucose. These findings highlight the importance of NRF2 in early embryo development, particularly in embryos cultured under metabolically stressful conditions.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Leticia Rabello da Silva Sousa
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Mariana Priotto de Macedo
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada
| | - Felipe Perecin
- Veterinary Medicine Department, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, 21111, Lakeshore Road, Sainte Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
5
|
Woo SM, Yang SG, Kim YW, Koo DB, Park HJ. Ochratoxin A triggers endoplasmic reticulum stress through PERK/NRF2 signaling and DNA damage during early embryonic developmental competence in pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115757. [PMID: 38064788 DOI: 10.1016/j.ecoenv.2023.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024]
Abstract
Ochratoxin A (OTA), a mycotoxin found in foods, has a deleterious effect on female reproduction owing to its endocrine-disrupting activity mediated through endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the mechanisms of OTA-induced ER stress in pig embryos during in vitro culture (IVC) are not yet fully understood. In the present study, porcine embryos were cultured for two days in an IVC medium supplemented with 0.5, 1.0, and 5.0 μM OTA, which led to an OTA-induced reduction in the developmental rate of blastocysts. The mRNA-seq transcriptome analysis revealed that the reduced blastocyst development ability of OTA-exposed porcine embryos was caused by ER stress, ultimately resulting in the accumulation of ROS and the occurrence of apoptosis. The expression levels of some UPR/PERK signaling-related genes (DDIT3, EIF2AK3, EIF2S1, NFE2L2, ATF4, EIF2A, and KEAP1) were found to differ in OTA-exposed pig embryos. OTA induces DNA damage by triggering an increase in RAD51/γ-H2AX levels and suppressing p-NRF2 activity. This effect is mediated through intracellular ROS and superoxide accumulation in the nuclei of porcine embryos. The cytotoxicity of OTA increased the activation of the PERK signal pathways (p-PERK, PERK, p-eIF2α, eIF2α, ATF4, and CHOP) in porcine embryos, with abnormal distribution of the ER observed around the nucleus. Collectively, our findings indicate that ER stress is a major cause of decline in the development of porcine embryos exposed to OTA. Therefore, OTA exposure induces ER stress and DNA damage via oxidative stress by disrupting PERK/NRF2 signaling activity in the developmental competence of porcine embryos during IVC.
Collapse
Affiliation(s)
- Seong-Min Woo
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Ye-Won Kim
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Department of Companion Animal Industry, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Hyo-Jin Park
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea; Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
6
|
Jeong PS, Yang HJ, Jeon SB, Gwon MA, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Luteolin supplementation during porcine oocyte maturation improves the developmental competence of parthenogenetic activation and cloned embryos. PeerJ 2023; 11:e15618. [PMID: 37377789 PMCID: PMC10292194 DOI: 10.7717/peerj.15618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (Lut), a polyphenolic compound that belongs to the flavone subclass of flavonoids, possesses anti-inflammatory, cytoprotective, and antioxidant activities. However, little is known regarding its role in mammalian oocyte maturation. This study examined the effect of Lut supplementation during in vitro maturation (IVM) on oocyte maturation and subsequent developmental competence after somatic cell nuclear transfer (SCNT) in pigs. Lut supplementation significantly increased the proportions of complete cumulus cell expansion and metaphase II (MII) oocytes, compared with control oocytes. After parthenogenetic activation or SCNT, the developmental competence of Lut-supplemented MII oocytes was significantly enhanced, as indicated by higher rates of cleavage, blastocyst formation, expanded or hatching blastocysts, and cell survival, as well as increased cell numbers. Lut-supplemented MII oocytes exhibited significantly lower levels of reactive oxygen species and higher levels of glutathione than control MII oocytes. Lut supplementation also activated lipid metabolism, assessed according to the levels of lipid droplets, fatty acids, and ATP. The active mitochondria content and mitochondrial membrane potential were significantly increased, whereas cytochrome c and cleaved caspase-3 levels were significantly decreased, by Lut supplementation. These results suggest that Lut supplementation during IVM improves porcine oocyte maturation through the reduction of oxidative stress and mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Min-Ah Gwon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| |
Collapse
|
7
|
WANG J, JIN QG, LIU RP, WANG XQ, LI YH, KIM NH, XU YN. Dihydromyricetin supplementation during in vitro culture improves porcine oocyte developmental competence by regulating oxidative stress. J Reprod Dev 2023; 69:10-17. [PMID: 36403957 PMCID: PMC9939282 DOI: 10.1262/jrd.2022-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dihydromyricetin (DHM), a dihydroflavonoid compound, exhibits a variety of biological activities, including antitumor activity. However, the effects of DHM on mammalian reproductive processes, especially during early embryonic development, remain unclear. In this study, we added DHM to porcine zygotic medium to explore the influence and underlying mechanisms of DHM on the developmental competence of parthenogenetically activated porcine embryos. Supplementation with 5 μM DHM during in vitro culture (IVC) significantly improved blastocyst formation rate and increased the total number of cells in porcine embryos. Further, DHM supplementation also improved glutathione levels and mitochondrial membrane potential; reduced natural reactive oxygen species levels in blastomeres and apoptosis rate; upregulated Nanog, Oct4, SOD1, SOD2, Sirt1, and Bcl2 expression; and downregulated Beclin1, ATG12, and Bax expression. Collectively, DHM supplementation regulated oxidative stress during IVC and could act as a potential antioxidant during in vitro porcine oocytes maturation.
Collapse
Affiliation(s)
- Jing WANG
- College of Agriculture, Yanbian University, Yanji 133000, China,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Qing-Guo JIN
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Rong-Ping LIU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Xin-Qin WANG
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Ying-Hua LI
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Nam-Hyung KIM
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| | - Yong-Nan XU
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000,
China
| |
Collapse
|
8
|
Wang XQ, Liu RP, Wang J, Luo D, Li YH, Jiang H, Xu YN, Kim NH. Wedelolactone facilitates the early development of parthenogenetically activated porcine embryos by reducing oxidative stress and inhibiting autophagy. PeerJ 2022; 10:e13766. [PMID: 35910774 PMCID: PMC9332323 DOI: 10.7717/peerj.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Wedelolactone (WDL) is a coumaryl ether compound extracted from the traditional Chinese medicinal plant, Eclipta prostrata L. It is a natural polyphenol that exhibits a variety of pharmacological activities, such as anti-inflammatory, anti-free radical, and antioxidant activities in the bone, brain, and ovary. However, its effect on embryonic development remains unknown. The present study explored the influence of WDL supplementation of porcine oocytes culture in vitro on embryonic development and the underlying mechanisms and its effect on the levels of Kelch-like ECH-associated protein 1/nuclear factor-erythroid 2-related factor 2/antioxidant response element (Keap1/Nrf2/ARE). The results showed that WDL (2.5 nM) significantly increased the blastocyst formation rate, mitochondrial activity, and proliferation ability while reducing the reactive oxygen species accumulation, apoptosis, and autophagy. These findings suggested that WDL can enhance the growth and development of early porcine embryos to alleviate oxidative stress and autophagy through regulating NRF2 and microtubule-associated protein 1 light chain 3 (MAP1LC3) gene expression levels.
Collapse
Affiliation(s)
- Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dan Luo
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Hao Jiang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|