1
|
Zhang Z, Zhang Z, Liu P, Xue X, Zhang C, Peng L, Shen W, Yang S, Wang F. The Role of Photobiomodulation to Modulate Ion Channels in the Nervous System: A Systematic Review. Cell Mol Neurobiol 2024; 44:79. [PMID: 39579175 PMCID: PMC11585518 DOI: 10.1007/s10571-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Photobiomodulation (PBM) is a safe and effective neurotherapy that modulates cellular pathways by altering cell membrane potentials, leading to beneficial biological effects such as anti-inflammatory and neuroregenerative responses. This review compiles studies from PubMed up to March 2024, investigating the impact of light at wavelengths ranging from 620 to 1270 nm on ion channels. Out of 330 articles screened, 19 met the inclusion criteria. Research indicates that PBM can directly affect various ion channels by influencing neurotransmitter synthesis in neighboring cells, impacting receptors like glutamate and acetylcholine, as well as potassium, sodium channels, and transient receptor potential channels. The diversity of studies hampers a comprehensive meta-analysis for evaluating treatment strategies effectively. This systematic review aims to explore the potential role of optoelectronic signal transduction in PBM, studying the neurobiological mechanisms and therapeutic significance of PBM on ion channels. However, the lack of uniformity in current treatment methods underscores the necessity of establishing standardized and reliable therapeutic approaches.
Collapse
Affiliation(s)
- Zhixin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Graduate School of Medicine, Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Zhiyu Zhang
- School of Physics and Optoelectronic Engineering Xidian University, No.2, South Taibai Road, Xi'an, 710071, Shaanxi, China
| | - Peng Liu
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Graduate School of Medicine, Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinmiao Xue
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Graduate School of Medicine, Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chi Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lili Peng
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weidong Shen
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Fangyuan Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
2
|
Geng N, Fan M, Kuang B, Zhang F, Xian M, Deng L, Chen C, Pan Y, Chen J, Feng N, Liang L, Ye Y, Liu K, Li X, Du Y, Guo F. 10-hydroxy-2-decenoic acid prevents osteoarthritis by targeting aspartyl β hydroxylase and inhibiting chondrocyte senescence in male mice preclinically. Nat Commun 2024; 15:7712. [PMID: 39231947 PMCID: PMC11375154 DOI: 10.1038/s41467-024-51746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl β-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3β/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl β-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Li Liang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Mironov S, Borysova O, Morgunov I, Zhou Z, Moskalev A. A Framework for an Effective Healthy Longevity Clinic. Aging Dis 2024:AD.2024.0328-1. [PMID: 38607731 DOI: 10.14336/ad.2024.0328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
In the context of an aging global population and the imperative for innovative healthcare solutions, the concept of longevity clinics emerges as a timely and vital area of exploration. Unlike traditional medical facilities, longevity clinics offer a unique approach to preclinical prevention, focusing on "prevention of prevention" through the utilization of aging clocks and biomarkers from healthy individuals. This article presents a comprehensive overview of longevity clinics, encompassing descriptions of existing models, the development of a proposed framework, and insights into biomarkers, wearable devices, and therapeutic interventions. Additionally, economic justifications for investing in longevity clinics are examined, highlighting the significant growth potential of the global biotechnology market and its alignment with the goals of achieving active longevity. Anchored by an Analytical Center, the proposed framework underscores the importance of data-driven decision-making and innovation in promoting prolonged and enhanced human life. At present, there is no universally accepted standard model for longevity clinics. This absence highlights the need for additional research and ongoing improvements in this field. Through a synthesis of scientific research and practical considerations, this article aims to stimulate further discussion and innovation in the field of longevity clinics, ultimately contributing to the advancement of healthcare practices aimed at extending and enhancing human life.
Collapse
Affiliation(s)
- Sergey Mironov
- Longaevus Technologies LTD, London, United Kingdom
- Human and health division, DEKRA Automobil GmbH, Chemnitz, Germany
| | | | | | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Alexey Moskalev
- Longaevus Technologies LTD, London, United Kingdom
- Institute of biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Gerontological Research and Clinical Center, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Wang Q, Cui C, Zhang N, Lin W, Chai S, Chow SKH, Wong RMY, Hu Y, Law SW, Cheung WH. Effects of physical exercise on neuromuscular junction degeneration during ageing: A systematic review. J Orthop Translat 2024; 46:91-102. [PMID: 38817243 PMCID: PMC11137388 DOI: 10.1016/j.jot.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/01/2024] Open
Abstract
The neuromuscular junction (NMJ) is a specialized chemical synapse that converts neural impulses into muscle action. Age-associated NMJ degeneration, which involves nerve terminal and postsynaptic decline, denervation, and loss of motor units, significantly contributes to muscle weakness and dysfunction. Although physical training has been shown to make substantial modifications in NMJ of both young and aged animals, the results are often influenced by methodological variables in existing studies. Moreover, there is still lack of strong consensus on the specific effects of exercise on improving the morphology and function of the ageing NMJ. Consequently, the purpose of this study was to conduct a systematic review to elucidate the effects of exercise training on NMJ compartments in the elderly. We conducted a systematic review using PubMed, Embase, and Web of Science databases, employing relevant keywords. Two independent reviewers selected studies that detailed NMJ changes during exercise in ageing, written in English, and available in full text. In total, 20 papers were included. We examined the altered adaptation of the NMJ to exercise, focusing on presynaptic and postsynaptic structures and myofibers in older animals or humans. Our findings indicated that aged NMJs exhibited different adaptive responses to physical exercise compared to younger counterparts. Endurance training, compared with resistance and voluntary exercise regimens, was found to have a more pronounced effect on NMJ structural remodeling, particularly in fast twitch muscle fibers. Physical exercise was observed to promote the formation and maintenance of acetylcholine receptor (AChR) clusters by increasing the recombinant docking protein 7 (Dok7) expression and stabilizing Agrin and lipoprotein receptor-related protein 4 (LRP4). These insights suggest that research on exercise-related therapies could potentially attenuate the progression of neuromuscular degeneration. Translational potential of this article: This systematic review provides a detailed overview of the effects of different types of physical exercise on improving NMJ in the elderly, providing scientific support for the timely intervention of muscle degeneration in the elderly by physical exercise, and providing help for the development of new therapeutic interventions in the future.
Collapse
Affiliation(s)
- Qianjin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wujian Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Senlin Chai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sheung Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
5
|
Sha Y, Zhang B, Chen L, Hong H, Chi Q. Mechano Growth Factor Accelerates ACL Repair and Improves Cell Mobility of Mechanically Injured Human ACL Fibroblasts by Targeting Rac1-PAK1/2 and RhoA-ROCK1 Pathways. Int J Mol Sci 2022; 23:ijms23084331. [PMID: 35457148 PMCID: PMC9026312 DOI: 10.3390/ijms23084331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Exceeded mechanical stress leads to a sublethal injury to anterior cruciate ligament (ACL) fibroblasts, and it will hinder cell mobility and ACL regeneration, and even induce osteoarthritis. The mechano growth factor (MGF) could be responsible for mechanical stress and weakening its negative effects on cell physiological behaviors. In this study, effects of MGF on cell mobility and relevant molecules expression in injured ACL fibroblasts were detected. After an injurious mechanical stretch, the analysis carried out, at 0 and 24 h, respectively, showed that the cell area, roundness, migration, and adhesion of ACL fibroblasts were reduced. MGF (10, 100 ng/mL) treatment could improve cell area, roundness and promote cell migration and adhesion capacity compared with the injured group without MGF. Further study indicated that cell mobility-relevant molecules (PAK1/2, Cdc42, Rac1, RhoA, and ROCK1) expression in ACL fibroblasts was down-regulated at 0 or 24 h after injurious stretch (except Rac1 and RhoA at 0 h). Similarly, MGF improved cell mobility-relevant molecule expression, especially the ROCK1 expression level in ACL fibroblasts at 0 or 24 h after injurious stretch. Protein expression of ROCK1 in injured ACL fibroblasts was also reduced and could be recovered by MGF treatment. In a rabbit partial ACL transection (ACLT) model, ACL exhibited poor regenerative capacity in collagen and extracellular matrix (ECM) synthesis after partial ACLT for 2 or 4 weeks, and MGF remarkably accelerated ACL regeneration and restored its mechanical loading capacity after partial ACLT for four weeks. Our findings suggest that MGF weakens the effects of pathological stress on cell mobility of ACL fibroblasts and accelerates ACL repair, and might be applied as a future treatment approach to ACL rupture in the clinic.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
- Correspondence:
| | - Beibei Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Liping Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Huhai Hong
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Qingjia Chi
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|