1
|
Elhalag RH, Mohamed MS, Abowafia M, Mourid MR, Mahmoud N, Abourady Y, Ghali P, Moussa MH, Shah J, Motawea KR. The role of oral metformin in preventing and treating age-related macular degeneration: A meta-analysis. Medicine (Baltimore) 2024; 103:e38728. [PMID: 38996175 PMCID: PMC11245258 DOI: 10.1097/md.0000000000038728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND We aimed to perform a meta-analysis to evaluate the effect of metformin on age-related macular degeneration. METHODS We searched the following databases: PubMed, Scopus, and Web of Science. We included any randomized control trials, prospective and retrospective cohorts, cross-sectional studies, and case-control studies that investigated the effect of metformin on age-related macular degeneration in our meta-analysis with no age or language restrictions. Review manager software, version 5.4 was used to perform the meta-analysis. RESULTS Ten studies were included in the meta-analysis with 1,447,470 patients included in the analysis. The pooled analysis showed no statistically significant difference between the metformin group and the non-metformin group regarding age-related macular degeneration (odds ratio [OR] = 0.37, confidence interval [CI] = (0.14-1.02), P = .05). Subgroup analysis showed no statistically significant difference between metformin group and non-metformin group regarding age-related macular degeneration in present or past metformin usage (OR = 0.19, CI = (0.03-1.1), P = .06), (OR = 0.61, CI = (0.25-1.45), P = .26), respectively, The pooled analysis showed no statistically significant difference between age-related macular degeneration group and control group regarding metformin usage (OR = 0.86, CI = (0.74-1.00), P = .05). The subgroup analysis showed no statistically significant difference between the age-related macular degeneration group and control group in <2 years of metformin usage and 2 years or more (OR = 0.89, CI = (0.52-1.52), P = .67), (OR = 0.95, CI = (0.82-1.10), P = .47), respectively. CONCLUSION Our study revealed no role of metformin in decreasing age-related macular degeneration risk in past or present usage. More RCTs are needed to support our findings in evaluating the actual role of metformin in age-related macular degeneration.
Collapse
Affiliation(s)
| | | | - Marwan Abowafia
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Nada Mahmoud
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Youmna Abourady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Paula Ghali
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | | |
Collapse
|
2
|
Barreto P, Farinha C, Coimbra R, Cachulo ML, Melo JB, Lechanteur Y, Hoyng CB, Cunha-Vaz J, Silva R. Unveiling Statins and Genetics in Age-Related Macular Degeneration: The Coimbra Eye Study-Report 9. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38935028 PMCID: PMC11216251 DOI: 10.1167/iovs.65.6.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose To assess the association of age-related macular degeneration (AMD) progression and statins, connected with AMD genetic risk, and if there is an interplay between statins and genetics. Methods In this analysis, 682 subjects made two visits (6.5-year follow-up) of the Coimbra Eye Study. Subjects who started taking statins at any time point between the two visits were considered. Progressors were defined as not having AMD at baseline and having any AMD at follow-up. Genetic risk scores (GRSs) were calculated individually with 52 independent variants associated with AMD. Time to progression was estimated using unadjusted Kaplan-Meier curves. An extended Cox model was used for the association between statins and GRS with the risk for AMD progression. Multiplicative and additive interactions were assessed. Results Median survival time was 7.50 years for subjects not taking statins and 7.62 for subjects taking statins (P < 0.001). Statin intake reduced the risk for progression to AMD in 48%, adjusting for age, sex, body mass index, smoking, and diabetes (model 1) and GRS (model 2). The combined effects of not taking statins and having high GRS increased the progression risk fourfold compared to taking statins and having low GRS (hazard ratio [HR] = 4.25; 95% confidence interval [CI], 1.62-11.16; P = 0.003). For subjects not taking statins, an increased risk of progression was found for those subjects with high GRS compared to subjects with low GRS (HR = 1.80; 95% CI, 1.13-2.85; P = 0.013). No statistically significant multiplicative or additive interactions were found. Conclusions Statins seem to be protective against AMD progression, and genetics may play a role in treatment response.
Collapse
Affiliation(s)
- Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Cláudia Farinha
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Ophthalmology Department, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
- Faculty of Medicine, Clinical Academic Center of Coimbra (CACC), University of Coimbra, Portugal
| | - Rita Coimbra
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Department of Mathematics, University of Aveiro, Aveiro, Portugal
| | - Maria Luz Cachulo
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Ophthalmology Department, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
- Faculty of Medicine, Clinical Academic Center of Coimbra (CACC), University of Coimbra, Portugal
| | - Joana Barbosa Melo
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Cytogenetics and Genomics Laboratory, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
| | - Yara Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - José Cunha-Vaz
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Rufino Silva
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Ophthalmology Department, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
- Faculty of Medicine, Clinical Academic Center of Coimbra (CACC), University of Coimbra, Portugal
| |
Collapse
|
3
|
Han JED, Subramanian A, Lee WH, Coker J, Denniston AK, Nirantharakumar K, Adderley NJ. Association of sildenafil use with age-related macular degeneration: a retrospective cohort study. BMJ Open Ophthalmol 2024; 9:e001525. [PMID: 38490689 PMCID: PMC10946355 DOI: 10.1136/bmjophth-2023-001525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVE Despite significant advances in clinical care and understanding of the underlying pathophysiology, age-related macular degeneration (AMD)-a major cause of global blindness-lacks effective treatment to prevent the irreversible degeneration of photoreceptors leading to central vision loss. Limited studies suggest phosphodiesterase type 5 (PDE5) inhibitors, such as sildenafil, may prevent AMD by increasing retinal blood flow. This study explores the potential association between sildenafil use and AMD risk in men with erectile dysfunction using UK data. METHODS AND ANALYSIS Using the UK's IQVIA Medical Research Data, the study analysed 31 575 men prescribed sildenafil for erectile dysfunction and no AMD history from 2007 to 2015, matched with a comparator group of 62 155 non-sildenafil users in a 1:2 ratio, over a median follow-up of approximately three years. RESULTS The primary outcome was the incidence of AMD in the two groups. The study found no significant difference in AMD incidence between the sildenafil users and the non-users, with an adjusted hazard ratio (HR) of 0.99 (95% CI 0.84 to 1.16), after accounting for confounders such as age, ethnicity, Townsend deprivation quintile, body mass index category, and diagnosis of hypertension and type 2 diabetes. CONCLUSION The study results indicated no significant association between sildenafil use and AMD prevention in UK men with erectile dysfunction, suggesting sildenafil's protective effect on AMD is likely insignificant.
Collapse
Affiliation(s)
- Ji Eun Diana Han
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | | - Wen Hwa Lee
- Action Against Age-Related Macular Degeneration, London, UK
| | - Jesse Coker
- Action Against Age-Related Macular Degeneration, London, UK
| | - Alastair K Denniston
- Department of Ophthalmology, University Hospitals Birmingham NHSFT, Birmingham, UK
- Moorfields Eye Hospital NHS Foundation Trust and Institute of Ophthalmology, University College London, London, UK
- Health Data Research UK (HDRUK), London, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Birmingham, UK
| | - Krishnarajah Nirantharakumar
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Health Data Research UK (HDRUK), London, UK
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Birmingham, UK
| | - Nicola Jaime Adderley
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Birmingham, UK
| |
Collapse
|
4
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
5
|
Mardani-Nafchi H, Hashemi Rafsanjani SMR, Heidari-Soureshjani S, Abbaszadeh S, Gholamine B, Naghdi N. A Systematic Review and Meta-Analysis of the Effects of Statin Therapy on Heart Transplantation. Rev Recent Clin Trials 2024; 19:256-266. [PMID: 38840403 DOI: 10.2174/0115748871301446240513093612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Most of the mortality after Heart Transplantation (HT) is attributed to severe cardiac allograft vasculopathy (CAV) and rejection. OBJECTIVES This meta-analysis aimed to investigate the effects of postoperative statin therapy on outcomes (mortality, rejection, and CAV in HT patients). METHODS This systematic review and meta-analysis was performed on publications between 1980 and October 2023 in Web of Science, Scopus, PubMed, Cochrane, Science Direct, Google Scholar, and Embase databases. Heterogeneity was assessed using Chi-square, I2, and forest plots. Publication bias was evaluated using Begg's and Egger's tests. Analyses were performed in Stata 15 with significance at p < 0.05. RESULTS This meta-analysis included 17 studies comprising 4,627 participants and conducted between 1995 to 2021. Compared to non-users, the odds of mortality were lower among statin users (OR= 0.49, 95% CI: 0.32-0.75, p < 0.001). The odds of CAV were also reduced with statin use (OR= 0.71, 95% CI: 0.53-0.96, p = 0.027). The odds of rejection were not significantly different (OR= 0.69, 95% CI: 0.41-1.15, p = 0.152). However, rejection odds were lower with statins in RCTs (OR= 0.42, 95% CI: 0.21-0.82, p = 0.012) but not in case-control studies (OR= 0.87, 95% CI: 0.49-1.52, p = 0.615). No publication bias was observed with Begg's test, but Egger's test showed possible bias. CONCLUSION This meta-analysis found postoperative statin use associated with lower mortality and CAV, but not overall rejection, though RCT subgroup analysis showed decreased rejection with statins. Statin therapy may improve prognosis in HT patients.
Collapse
Affiliation(s)
- Hossein Mardani-Nafchi
- Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Saber Abbaszadeh
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrollah Naghdi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mauschitz MM, Verzijden T, Schuster AK, Elbaz H, Pfeiffer N, Khawaja A, Luben RN, Foster PJ, Rauscher FG, Wirkner K, Kirsten T, Jonas JB, Bikbov MM, Hogg R, Peto T, Cougnard-Grégoire A, Bertelsen G, Erke MG, Topouzis F, Giannoulis DA, Brandl C, Heid IM, Creuzot-Garcher CP, Gabrielle PH, Hense HW, Pauleikhoff D, Barreto P, Coimbra R, Piermarocchi S, Daien V, Holz FG, Delcourt C, Finger RP. Association of lipid-lowering drugs and antidiabetic drugs with age-related macular degeneration: a meta-analysis in Europeans. Br J Ophthalmol 2023; 107:1880-1886. [PMID: 36344262 DOI: 10.1136/bjo-2022-321985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/AIMS To investigate the association of commonly used systemic medications with prevalent age-related macular degeneration (AMD) in the general population. METHODS We included 38 694 adults from 14 population-based and hospital-based studies from the European Eye Epidemiology consortium. We examined associations between the use of systemic medications and any prevalent AMD as well as any late AMD using multivariable logistic regression modelling per study and pooled results using random effects meta-analysis. RESULTS Between studies, mean age ranged from 61.5±7.1 to 82.6±3.8 years and prevalence ranged from 12.1% to 64.5% and from 0.5% to 35.5% for any and late AMD, respectively. In the meta-analysis of fully adjusted multivariable models, lipid-lowering drugs (LLD) and antidiabetic drugs were associated with lower prevalent any AMD (OR 0.85, 95% CI=0.79 to 0.91 and OR 0.78, 95% CI=0.66 to 0.91). We found no association with late AMD or with any other medication. CONCLUSION Our study indicates a potential beneficial effect of LLD and antidiabetic drug use on prevalence of AMD across multiple European cohorts. Our findings support the importance of metabolic processes in the multifactorial aetiology of AMD.
Collapse
Affiliation(s)
| | - Timo Verzijden
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Hisham Elbaz
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Anthony Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Robert N Luben
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Paul J Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
| | - Franziska G Rauscher
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, 04107 Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, 04103 Leipzig, Germany
| | - Kerstin Wirkner
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, 04107 Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, 04103 Leipzig, Germany
| | - Toralf Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, 04107 Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, 04103 Leipzig, Germany
- Leipzig University Medical Center, Medical Informatics Center - Dept. of Medical Data Science, 04107 Leipzig, Germany
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Ruth Hogg
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Tunde Peto
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Audrey Cougnard-Grégoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Team LEHA, F-33000 Bordeaux, France
| | - Geir Bertelsen
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | - Maja Gran Erke
- Directorate of eHealth, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Fotis Topouzis
- Department of Ophthalmology, Aristotle University of Thessaloniki, School of Medicine, AHEPA Hospital, Thessaloniki, Greece
| | - Dimitrios A Giannoulis
- Department of Ophthalmology, Aristotle University of Thessaloniki, School of Medicine, AHEPA Hospital, Thessaloniki, Greece
| | - Caroline Brandl
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | | | | | - Hans-Werner Hense
- University of Münster, Faculty of Medicine, Institute of Epidemiology, Münster, Germany
| | | | - Patricia Barreto
- AIBILI - Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Rita Coimbra
- AIBILI - Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Stefano Piermarocchi
- Padova-Camposampiero Hospital, Padova, Italy
- University of Padova, Department of Neuroscience, Padova, Italy
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, F-34000 Montpellier, France
- Institute for Neurosciences of Montpellier INM, Univ. Montpellier, INSERM, F-34091 Montpellier, France
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Cecile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Team LEHA, F-33000 Bordeaux, France
| | - Robert P Finger
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Zhang Y, Huang J, Liang Y, Huang J, Fu Y, Chen N, Lu B, Zhao C. Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy 2023; 19:2668-2681. [PMID: 37266932 PMCID: PMC10472852 DOI: 10.1080/15548627.2023.2220540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly, and there is currently no clinical treatment targeting the primary impairment of AMD. The earliest clinical hallmark of AMD is drusen, which are yellowish spots mainly composed of lipid droplets (LDs) accumulated under the retinal pigment epithelium (RPE). However, the potential pathogenic role of this excessive LD accumulation in AMD is yet to be determined, partially due to a lack of chemical tools to manipulate LDs specifically. Here, we employed our recently developed Lipid Droplets·AuTophagy Tethering Compounds (LD∙ATTECs) to degrade LDs and to evaluate its consequence on the AMD-like phenotypes in apoe-/- (apolipoprotein E; B6/JGpt-Apoeem1Cd82/Gpt) mouse model. apoe-/- mice fed with high-fat diet (apoe-/--HFD) exhibited excessive LD accumulation in the retina, particularly with AMD-like phenotypes including RPE degeneration, Bruch's membrane (BrM) thickening, drusen-like deposits, and photoreceptor dysfunction. LD·ATTEC treatment significantly cleared LDs in RPE/choroidal tissues without perturbing lipid synthesis-related proteins and rescued RPE degeneration and photoreceptor dysfunction in apoe-/--HFD mice. This observation implied a causal relationship between LD accumulation and AMD-relevant phenotypes. Mechanically, the apoe-/--HFD mice exhibited elevated oxidative stress and inflammatory signals, both of which were mitigated by the LD·ATTEC treatment. Collectively, this study demonstrated that LD accumulation was a trigger for the process of AMD and provided entry points for the treatment of the initial insult of AMD by degrading LDs.Abbreviations: AMD: age-related macular degeneration; APOE: apolipoprotein E; ATTECs: autophagy-tethering compounds; BODIPY: boron-dipyrromethene; BrM: Bruch's membrane; ERG: electroretinogram; HFD: high-fat diet; LD·ATTECs: Lipid Droplets·AuTophagy Tethering Compounds; LDs: lipid droplets; OA: oleic acid; OPL: outer plexiform layer; ROS: reactive oxygen species; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Yuelu Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiancheng Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuhua Fu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ningxie Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Lymperopoulou C, Kandarakis SA, Tzanaki I, Mylona I, Xanthos T, Agouridis AP. The Effect of Statins on Ocular Disorders: A Systematic Review of Randomized Controlled Trials. Pharmaceuticals (Basel) 2023; 16:ph16050711. [PMID: 37242493 DOI: 10.3390/ph16050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
AIM Statins have been established in the market not only due to their ability to lower plasma cholesterol levels but also due to their pleiotropic effects. In the literature, there is a controversy regarding the role of statins in ophthalmology. We aimed to systematically address the possible effect of statin therapy on ocular diseases and to identify if there is a beneficial relationship. METHODS We searched PubMed and Cochrane Library databases up to 31 December 2022 for studies evaluating the effect of statins on ocular diseases. We included all relevant Randomized Control Trials (RCTs) that have been conducted in the adult population. PROSPERO registration number: CRD42022364328. RESULTS Nineteen RCTs were finally considered eligible for this systematic review, with a total of 28,940 participants. Ten studies investigated the role of simvastatin, suggesting a lack of cataractogenic effect and a possible protective role in cataract formation, retinal vascular diseases, and especially diabetic retinopathy, age-related macular disease progression, and non-infectious uveitis. Four studies investigated lovastatin, showing no cataractogenic effect. Three studies examined atorvastatin, revealing conflicting results regarding diabetic retinopathy. Two studies examined rosuvastatin, indicating a possibly harmful effect on lenses and a significant protective effect on retinal microvasculature. CONCLUSIONS Based on our findings, we believe that statins have no cataractogenic effect. There are indications that statins may have a protective role against cataract formation, AMD, diabetic retinopathy progression, and non-infectious uveitis. However, our results were insufficient for any robust conclusion. Future RCTs, with large sample sizes, on the current topic are therefore recommended to provide more solid evidence.
Collapse
Affiliation(s)
| | - Stylianos A Kandarakis
- Department of ophthalmology, National and Kapodistrian University of Athens, 1st University Eye Clinic, G. Gennimatas General Hospital, 11527 Athens, Greece
| | - Ismini Tzanaki
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Ioanna Mylona
- Department of Ophthalmology, General Hospital of Serres, 62210 Serres, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, 10434 Athens, Greece
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol 4108, Cyprus
| |
Collapse
|