1
|
Tong H, Ye C, Fu L, Qu C, Lin W, Yang N, Du Q. Lycopene Inhibits Postoperative Abdominal Adhesion Formation in a Mouse Model. J Surg Res 2024; 304:126-135. [PMID: 39541670 DOI: 10.1016/j.jss.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The prevention of postoperative abdominal adhesions is one of the top concerns of surgeons after abdominal surgery. Therefore, identifying effective interventions to reduce postoperative abdominal adhesions are essential. METHODS Fifty male Bagg's albino/c mice were randomly divided into five groups, and all groups underwent postoperative adhesion model surgery, except for the sham group. The sham and control groups were gavaged with saline solution. Based on the control group, the sodium hyaluronate group was treated with 1 mL sodium hyaluronate (smeared on the modeling site and the abdominal cavity was closed). The other two groups were gavaged with different doses of lycopene (10 μg/kg and 20 μg/kg). Seven d after surgery, the mice were sacrificed and adhesion conditions were assessed using Nair's scoring system. Subsequently, adherent tissues were harvested and the inflammation was assessed by using haematoxylin and eosin staining and enzyme linked immunosorbent assay for interleukin-6 and transforming growth factor-β1. Oxidative stress and collagen deposition condition were also detected in each mouse. Furthermore, a lycopene-induced HMrSV5 cell model was used to explore the possible functional mechanisms. RESULTS 20 μg/kg of lycopene-treated group had a lower Nair's and inflammation score, both with an average score of 1.75. Also, the level of transforming growth factor -β1 and interleukin-6 in the 20 μg/kg of lycopene-treated group was lower than others. Furthermore, 20 μg/kg of lycopene had reduced the reactive oxygen species and malondialdehyde levels in adhesion tissues compared to other groups. Fiber thickness and α-smooth muscle actin expression in adherent tissues were significantly reduced after lycopene treatment. Besides, 20 μg/kg of lycopene treatment can promote the expression of nuclear factor erythroid 2-related factor 2 and silent information regulator 1. In in-vitro studies, lycopene protected mesothelial cells from H2O2 -induced oxidative stress injury. CONCLUSIONS Lycopene can attenuate abdominal adhesion in the mouse model by reducing inflammation and oxidative stress, and the possible mechanism may rely on promoting the expression of nuclear factor erythroid 2-related factor 2 and silent information regulator 1.
Collapse
Affiliation(s)
- HaoChongyang Tong
- Department of General Surgery, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - ChangChun Ye
- Department of General Surgery, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Fu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Chao Qu
- Department of General Surgery, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - WenHao Lin
- Department of General Surgery, The First Affliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ni Yang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - QingGuo Du
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Kulawik A, Cielecka-Piontek J, Czerny B, Kamiński A, Zalewski P. The Relationship Between Lycopene and Metabolic Diseases. Nutrients 2024; 16:3708. [PMID: 39519540 PMCID: PMC11547539 DOI: 10.3390/nu16213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic syndrome, obesity, and type 2 diabetes are closely related. They are characterized by chronic inflammation and oxidative stress. Obesity is the most important risk factor for metabolic syndrome and type 2 diabetes. Metabolic syndrome is characterized by insulin resistance and elevated blood glucose levels, among other conditions. These disorders contribute to the development of type 2 diabetes, which can exacerbate other metabolic problems. Methods: Numerous studies indicate that diet and nutrients can have a major impact on preventing and treating these conditions. One such ingredient is lycopene. It is a naturally occurring carotenoid with a unique chemical structure. It exhibits strong antioxidant and anti-inflammatory properties due to its conjugated double bonds and its ability to neutralize reactive oxygen species. Its properties make lycopene indirectly affect many cellular processes. The article presents studies in animal models and humans on the activity of this carotenoid in metabolic problems. Results: The findings suggest that lycopene's antioxidant and anti-inflammatory activities make it a promising candidate for the prevention and treatment of metabolic syndrome, obesity, and type 2 diabetes. Conclusions: This review underscores the potential of lycopene as a beneficial dietary supplement in improving metabolic health and reducing the risk of associated chronic diseases. The conditions described are population diseases, so research into compounds with properties such as lycopene is growing in popularity.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
3
|
Rayat Pisheh H, Haghdel M, Jahangir M, Hoseinian MS, Rostami Yasuj S, Sarhadi Roodbari A. Effective and new technologies in kidney tissue engineering. Front Bioeng Biotechnol 2024; 12:1476510. [PMID: 39479295 PMCID: PMC11521926 DOI: 10.3389/fbioe.2024.1476510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Kidney disease encompasses a wide spectrum of conditions, ranging from simple infections to chronic kidney disease. When the kidneys are unable to filter blood and remove waste products, these abnormalities can lead to kidney failure. In severe cases of kidney failure, kidney transplantation is considered the only definitive treatment. Worldwide, the World Health Organization (WHO) repeatedly emphasizes the importance of organ donation and increasing transplantation rates. Many countries implement national programs to promote the culture of organ donation and improve patient access to kidney transplantation. The extent to which this procedure is performed varies across countries and is influenced by several factors, including the volume of organ donation, medical infrastructure, access to technology and health policies. However, a kidney transplant comes with challenges and problems that impact its success. Kidney tissue engineering is a new approach that shows promise for repairing and replacing damaged kidney tissue. This article reviews recent advances in kidney tissue engineering, focusing on engineered structures such as hydrogels, electrospinning, 3D bioprinting, and microfluidic systems. By mimicking the extracellular environment of the kidney, these structures provide suitable conditions for the growth and development of kidney cells. The role of these structures in the formation of blood vessels, the mimicry of kidney functions and the challenges in this field were also discussed. The results of this study show that kidney tissue engineering has high potential for treating kidney diseases and reducing the need for kidney transplantation. However, to achieve clinical application of this technology, further research is required to improve the biocompatibility, vascularization and long-term performance of engineered tissues.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboube Jahangir
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Sadat Hoseinian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Rostami Yasuj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sarhadi Roodbari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
5
|
Kulawik A, Cielecka-Piontek J, Zalewski P. The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients 2023; 15:3821. [PMID: 37686853 PMCID: PMC10490373 DOI: 10.3390/nu15173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Lycopene is a compound of colored origin that shows strong antioxidant activity. The positive effect of lycopene is the result of its pleiotropic effect. The ability to neutralize free radicals via lycopene is one of the foundations of its pro-health effect, including the ability to inhibit the development of many civilization diseases. Therefore, this study focuses on the importance of the antioxidant effect of lycopene in inhibiting the development of diseases such as cardiovascular diseases, diseases within the nervous system, diabetes, liver diseases, and ulcerative colitis. According to the research mentioned, lycopene supplementation has significant promise for the treatment of illnesses marked by chronic inflammation and oxidative stress. However, the majority of the supporting data for lycopene's health benefits comes from experimental research, whereas the evidence from clinical studies is both scarcer and less certain of any health benefits. Research on humans is still required to establish its effectiveness.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|