1
|
Öztürk D, Aydoğan S, Kök İ, Akın Bülbül I, Özdemir S, Özdemir S, Akay D. Linguistic summarization of visual attention and developmental functioning of young children with autism spectrum disorder. Health Inf Sci Syst 2024; 12:39. [PMID: 39022602 PMCID: PMC11252111 DOI: 10.1007/s13755-024-00297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Diagnosing autism spectrum disorder (ASD) in children poses significant challenges due to its complex nature and impact on social communication development. While numerous data analytics techniques have been proposed for ASD evaluation, the process remains time-consuming and lacks clarity. Eye tracking (ET) data has emerged as a valuable resource for ASD risk assessment, yet existing literature predominantly focuses on predictive methods rather than descriptive techniques that offer human-friendly insights. Interpretation of ET data and Bayley scales, a widely used assessment tool, is challenging for ASD assessment of children. It should be understood clearly to perform better analytic tasks on ASD screening. Therefore, this study addresses this gap by employing linguistic summarization techniques to generate easily understandable summaries from raw ET data and Bayley scales. By integrating ET data and Bayley scores, the study aims to improve the identification of children with ASD from typically developing children (TD). Notably, this research represents one of the pioneering efforts to linguistically summarize ET data alongside Bayley scales, presenting comparative results between children with ASD and TD. Through linguistic summarization, this study facilitates the creation of simple, natural language statements, offering a first and unique approach to enhance ASD screening and contribute to our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Demet Öztürk
- Department of Industrial Engineering, Gazi University, Ankara, Turkey
| | - Sena Aydoğan
- Department of Industrial Engineering, Gazi University, Ankara, Turkey
| | - İbrahim Kök
- Department of Computer Engineering, Pamukkale University, Denizli, Turkey
| | - Işık Akın Bülbül
- Department of Special Education, Gazi University, Ankara, Turkey
| | - Selda Özdemir
- Department of Special Education, Hacettepe University, Ankara, Turkey
| | - Suat Özdemir
- Department of Computer Engineering, Hacettepe University, Ankara, Turkey
| | - Diyar Akay
- Department of Industrial Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Sheeraz M, Aslam AR, Drakakis EM, Heidari H, Altaf MAB, Saadeh W. A Closed-Loop Ear-Worn Wearable EEG System with Real-Time Passive Electrode Skin Impedance Measurement for Early Autism Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7489. [PMID: 39686027 DOI: 10.3390/s24237489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Autism spectrum disorder (ASD) is a chronic neurological disorder with the severity directly linked to the diagnosis age. The severity can be reduced if diagnosis and intervention are early (age < 2 years). This work presents a novel ear-worn wearable EEG system designed to aid in the early detection of ASD. Conventional EEG systems often suffer from bulky, wired electrodes, high power consumption, and a lack of real-time electrode-skin interface (ESI) impedance monitoring. To address these limitations, our system incorporates continuous, long-term EEG recording, on-chip machine learning for real-time ASD prediction, and a passive ESI evaluation system. The passive ESI methodology evaluates impedance using the root mean square voltage of the output signal, considering factors like pressure, electrode surface area, material, gel thickness, and duration. The on-chip machine learning processor, implemented in 180 nm CMOS, occupies a minimal 2.52 mm² of active area while consuming only 0.87 µJ of energy per classification. The performance of this ML processor is validated using the Old Dominion University ASD dataset.
Collapse
Affiliation(s)
- Muhammad Sheeraz
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Abdul Rehman Aslam
- Department of Computer Engineering, University of Engineering and Technology Taxila, Taxila 47050, Pakistan
| | | | - Hadi Heidari
- School of Engineering, University of Glasgow Scotland, Glasgow G12 8QQ, UK
| | | | - Wala Saadeh
- Engineering and Design Department, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
3
|
Tseng YL, Lee CH, Chiu YN, Tsai WC, Wang JS, Wu WC, Chien YL. Characterizing Autism Spectrum Disorder Through Fusion of Local Cortical Activation and Global Functional Connectivity Using Game-Based Stimuli and a Mobile EEG System. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3026-3035. [PMID: 39163173 DOI: 10.1109/tnsre.2024.3417210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The deficit in social interaction skills among individuals with autism spectrum disorder (ASD) is strongly influenced by personal experiences and social environments. Neuroimaging studies have previously highlighted the link between social impairment and brain activity in ASD. This study aims to develop a method for assessing and identifying ASD using a social cognitive game-based paradigm combined with electroencephalo-graphy (EEG) signaling features. Typically developing (TD) participants and autistic preadolescents and teenagers were recruited to participate in a social game while 12-channel EEG signals were recorded. The EEG signals underwent preprocessing to analyze local brain activities, including event-related potentials (ERPs) and time-frequency features. Additionally, the global brain network's functional connectivity between brain regions was evaluated using phase-lag indices (PLIs). Subsequently, machine learning models were employed to assess the neurophysiological features. Results indicated pronounced ERP components, particularly the late positive potential (LPP), in parietal regions during social training. Autistic preadolescents and teenagers exhibited lower LPP amplitudes and larger P200 amplitudes compared to TD participants. Reduced theta synchronization was also observed in the ASD group. Aberrant functional connectivity within certain time intervals was noted in the ASD group. Machine learning analysis revealed that support-vector machines achieved a sensitivity of 100%, specificity of 91.7%, and accuracy of 95.8% as part of the performance evaluation when utilizing ERP and brain oscillation features for ASD characterization. These findings suggest that social interaction difficulties in autism are linked to specific brain activation patterns. Traditional behavioral assessments face challenges of subjectivity and accuracy, indicating the potential use of social training interfaces and EEG features for cognitive assessment in ASD.
Collapse
|
4
|
Ahmad I, Rashid J, Faheem M, Akram A, Khan NA, Amin RU. Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks. Healthc Technol Lett 2024; 11:227-239. [PMID: 39100502 PMCID: PMC11294932 DOI: 10.1049/htl2.12073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 08/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex psychological syndrome characterized by persistent difficulties in social interaction, restricted behaviours, speech, and nonverbal communication. The impacts of this disorder and the severity of symptoms vary from person to person. In most cases, symptoms of ASD appear at the age of 2 to 5 and continue throughout adolescence and into adulthood. While this disorder cannot be cured completely, studies have shown that early detection of this syndrome can assist in maintaining the behavioural and psychological development of children. Experts are currently studying various machine learning methods, particularly convolutional neural networks, to expedite the screening process. Convolutional neural networks are considered promising frameworks for the diagnosis of ASD. This study employs different pre-trained convolutional neural networks such as ResNet34, ResNet50, AlexNet, MobileNetV2, VGG16, and VGG19 to diagnose ASD and compared their performance. Transfer learning was applied to every model included in the study to achieve higher results than the initial models. The proposed ResNet50 model achieved the highest accuracy, 92%, compared to other transfer learning models. The proposed method also outperformed the state-of-the-art models in terms of accuracy and computational cost.
Collapse
Affiliation(s)
- Israr Ahmad
- Department of Automation ScienceBeihang UniversityBeijingChina
| | - Javed Rashid
- Department of IT ServicesUniversity of OkaraOkaraPunjabPakistan
- MLC LabOkaraPunjabPakistan
| | - Muhammad Faheem
- Department of Computing SciencesSchool of Technology and Innovations, University of VaasaVaasaFinland
| | - Arslan Akram
- MLC LabOkaraPunjabPakistan
- Department of Computer ScienceUniversity of OkaraOkaraPunjabPakistan
| | - Nafees Ahmad Khan
- MLC LabOkaraPunjabPakistan
- Department of Computer ScienceUniversity of OkaraOkaraPunjabPakistan
| | - Riaz ul Amin
- MLC LabOkaraPunjabPakistan
- Department of Computer ScienceUniversity of OkaraOkaraPunjabPakistan
| |
Collapse
|
5
|
Zhou T, Shen Y, Lyu J, Yang L, Wang HJ, Hong S, Ji Y. Medication Usage Record-Based Predictive Modeling of Neurodevelopmental Abnormality in Infants under One Year: A Prospective Birth Cohort Study. Healthcare (Basel) 2024; 12:713. [PMID: 38610136 PMCID: PMC11011488 DOI: 10.3390/healthcare12070713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Early identification of children with neurodevelopmental abnormality is a major challenge, which is crucial for improving symptoms and preventing further decline in children with neurodevelopmental abnormality. This study focuses on developing a predictive model with maternal sociodemographic, behavioral, and medication-usage information during pregnancy to identify infants with abnormal neurodevelopment before the age of one. In addition, an interpretable machine-learning approach was utilized to assess the importance of the variables in the model. In this study, artificial neural network models were developed for the neurodevelopment of five areas of infants during the first year of life and achieved good predictive efficacy in the areas of fine motor and problem solving, with median AUC = 0.670 (IQR: 0.594, 0.764) and median AUC = 0.643 (IQR: 0.550, 0.731), respectively. The final model for neurodevelopmental abnormalities in any energy region of one-year-old children also achieved good prediction performance. The sensitivity is 0.700 (IQR: 0.597, 0.797), the AUC is 0.821 (IQR: 0.716, 0.833), the accuracy is 0.721 (IQR: 0.696, 0.739), and the specificity is 0.742 (IQR: 0.680, 0.748). In addition, interpretable machine-learning methods suggest that maternal exposure to drugs such as acetaminophen, ferrous succinate, and midazolam during pregnancy affects the development of specific areas of the offspring during the first year of life. This study established predictive models of neurodevelopmental abnormality in infants under one year and underscored the prediction value of medication exposure during pregnancy for the neurodevelopmental outcomes of the offspring.
Collapse
Affiliation(s)
- Tianyi Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Yaojia Shen
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Jinlang Lyu
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Li Yang
- Tongzhou Maternal and Child Health Care Hospital of Beijing, Beijing 101101, China;
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing 100191, China;
| | - Yuelong Ji
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China; (T.Z.); (Y.S.); (J.L.); (H.-J.W.)
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Beijing 100191, China
| |
Collapse
|
6
|
Koehler JC, Dong MS, Bierlich AM, Fischer S, Späth J, Plank IS, Koutsouleris N, Falter-Wagner CM. Machine learning classification of autism spectrum disorder based on reciprocity in naturalistic social interactions. Transl Psychiatry 2024; 14:76. [PMID: 38310111 PMCID: PMC10838326 DOI: 10.1038/s41398-024-02802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Autism spectrum disorder is characterized by impaired social communication and interaction. As a neurodevelopmental disorder typically diagnosed during childhood, diagnosis in adulthood is preceded by a resource-heavy clinical assessment period. The ongoing developments in digital phenotyping give rise to novel opportunities within the screening and diagnostic process. Our aim was to quantify multiple non-verbal social interaction characteristics in autism and build diagnostic classification models independent of clinical ratings. We analyzed videos of naturalistic social interactions in a sample including 28 autistic and 60 non-autistic adults paired in dyads and engaging in two conversational tasks. We used existing open-source computer vision algorithms for objective annotation to extract information based on the synchrony of movement and facial expression. These were subsequently used as features in a support vector machine learning model to predict whether an individual was part of an autistic or non-autistic interaction dyad. The two prediction models based on reciprocal adaptation in facial movements, as well as individual amounts of head and body motion and facial expressiveness showed the highest precision (balanced accuracies: 79.5% and 68.8%, respectively), followed by models based on reciprocal coordination of head (balanced accuracy: 62.1%) and body (balanced accuracy: 56.7%) motion, as well as intrapersonal coordination processes (balanced accuracy: 44.2%). Combinations of these models did not increase overall predictive performance. Our work highlights the distinctive nature of non-verbal behavior in autism and its utility for digital phenotyping-based classification. Future research needs to both explore the performance of different prediction algorithms to reveal underlying mechanisms and interactions, as well as investigate the prospective generalizability and robustness of these algorithms in routine clinical care.
Collapse
Affiliation(s)
| | - Mark Sen Dong
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU, Munich, Germany
| | - Afton M Bierlich
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU, Munich, Germany
| | - Stefanie Fischer
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU, Munich, Germany
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt am Main, Germany
| | - Johanna Späth
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU, Munich, Germany
| | - Irene Sophia Plank
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Medical Faculty, LMU, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | | |
Collapse
|
7
|
Ke SY, Wu H, Sun H, Zhou A, Liu J, Zheng X, Liu K, Westover MB, Xu H, Kong XJ. Classification of autism spectrum disorder using electroencephalography in Chinese children: a cross-sectional retrospective study. Front Neurosci 2024; 18:1330556. [PMID: 38332856 PMCID: PMC10850305 DOI: 10.3389/fnins.2024.1330556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by diverse clinical features. EEG biomarkers such as spectral power and functional connectivity have emerged as potential tools for enhancing early diagnosis and understanding of the neural processes underlying ASD. However, existing studies yield conflicting results, necessitating a comprehensive, data-driven analysis. We conducted a retrospective cross-sectional study involving 246 children with ASD and 42 control children. EEG was collected, and diverse EEG features, including spectral power and spectral coherence were extracted. Statistical inference methods, coupled with machine learning models, were employed to identify differences in EEG features between ASD and control groups and develop classification models for diagnostic purposes. Our analysis revealed statistically significant differences in spectral coherence, particularly in gamma and beta frequency bands, indicating elevated long range functional connectivity between frontal and parietal regions in the ASD group. Machine learning models achieved modest classification performance of ROC-AUC at 0.65. While machine learning approaches offer some discriminative power classifying individuals with ASD from controls, they also indicate the need for further refinement.
Collapse
Affiliation(s)
- Si Yang Ke
- Anthinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States
| | - Huiwen Wu
- Hubei Maternity and Child Health Hospital, Wuhan, Hubei, China
| | - Haoqi Sun
- Anthinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Aiqin Zhou
- Hubei Maternity and Child Health Hospital, Wuhan, Hubei, China
| | - Jianhua Liu
- Huangshi Maternity and Child Health Care Hospital, Huangshi, Hubei, China
| | - Xiaoyun Zheng
- Hubei Maternity and Child Health Hospital, Wuhan, Hubei, China
| | - Kevin Liu
- Anthinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Haiqing Xu
- Hubei Maternity and Child Health Hospital, Wuhan, Hubei, China
| | - Xue-jun Kong
- Anthinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
8
|
Kichuk IV, Solovieva NV, Keskinov AA, Yudin VS, Golanova KV, Chuprova NA, Rusalova MN, Tikhonov AK, Chausova SV, Nogai NB, Mitrofanov AA. [Validation of screening method based on EEG analysis for the risk assessment of psychiatric and behavioral disorders: a pilot study]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:88-96. [PMID: 38529868 DOI: 10.17116/jnevro202412403188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
OBJECTIVE To assess the validity of the screening method based on EEG analysis using predictive analytics algorithms with the calculation of linear discriminant functions (LDFs), in comparison with a classification system based on psychometric self-report scales. MATERIAL AND METHODS A comparative cross-sectional study with partial blinding involving healthy volunteers was conducted at two investigational sites. The calculated scores of LDFs used to assess risks of impulsivity, depression and anxiety acted as quantitative characteristics of subjects' mental state. Testing included completing psychometric scales. RESULTS As a result of the performed validation of the original screening method based on EEG analysis in comparison with the scores of psychometric scales chosen as a reference method, satisfactory results were obtained with the best parameters of sensitivity, specificity, and accuracy for detecting high levels of impulsivity associated with pronounced aggressiveness. Of considerable interest is also the direct correlation found between high levels of LDF impulsivity scores and high levels of self-rated aggression on a psychometric scale (BPAQ-24). CONCLUSION The results open up the possibility of using the proposed method to predict a number of emotional and behavioral characteristics of subjects, including a high risk of aggressive behavior as part of professional selection.
Collapse
Affiliation(s)
- I V Kichuk
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N V Solovieva
- Scientific Centre of Personalized Psychiatry, Moscow, Russia
| | - A A Keskinov
- Centre for Strategic Planning and Management of Medical-Biological Health Risks Federal Medical-Biological Agency, Moscow, Russia
| | - V S Yudin
- Centre for Strategic Planning and Management of Medical-Biological Health Risks Federal Medical-Biological Agency, Moscow, Russia
| | - K V Golanova
- Scientific Centre of Personalized Psychiatry, Moscow, Russia
| | - N A Chuprova
- Scientific Centre of Personalized Psychiatry, Moscow, Russia
| | - M N Rusalova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | | | - S V Chausova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N B Nogai
- Scientific Centre of Personalized Psychiatry, Moscow, Russia
| | | |
Collapse
|
9
|
Awaji B, Senan EM, Olayah F, Alshari EA, Alsulami M, Abosaq HA, Alqahtani J, Janrao P. Hybrid Techniques of Facial Feature Image Analysis for Early Detection of Autism Spectrum Disorder Based on Combined CNN Features. Diagnostics (Basel) 2023; 13:2948. [PMID: 37761315 PMCID: PMC10527645 DOI: 10.3390/diagnostics13182948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by difficulties in social communication and repetitive behaviors. The exact causes of ASD remain elusive and likely involve a combination of genetic, environmental, and neurobiological factors. Doctors often face challenges in accurately identifying ASD early due to its complex and diverse presentation. Early detection and intervention are crucial for improving outcomes for individuals with ASD. Early diagnosis allows for timely access to appropriate interventions, leading to better social and communication skills development. Artificial intelligence techniques, particularly facial feature extraction using machine learning algorithms, display promise in aiding the early detection of ASD. By analyzing facial expressions and subtle cues, AI models identify patterns associated with ASD features. This study developed various hybrid systems to diagnose facial feature images for an ASD dataset by combining convolutional neural network (CNN) features. The first approach utilized pre-trained VGG16, ResNet101, and MobileNet models. The second approach employed a hybrid technique that combined CNN models (VGG16, ResNet101, and MobileNet) with XGBoost and RF algorithms. The third strategy involved diagnosing ASD using XGBoost and an RF based on features of VGG-16-ResNet101, ResNet101-MobileNet, and VGG16-MobileNet models. Notably, the hybrid RF algorithm that utilized features from the VGG16-MobileNet models demonstrated superior performance, reached an AUC of 99.25%, an accuracy of 98.8%, a precision of 98.9%, a sensitivity of 99%, and a specificity of 99.1%.
Collapse
Affiliation(s)
- Bakri Awaji
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 6646, Saudi Arabia; (M.A.); (H.A.A.); (J.A.)
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana’a, Yemen
| | - Fekry Olayah
- Department of Information System, College of Computer Science and Information Systems, Najran University, Najran 6646, Saudi Arabia;
| | - Eman A. Alshari
- Department of Computer Science and Information Technology, Thamar University, Dhamar 87246, Yemen;
- Department of Artificial Intelligence, Faculty of Engineering and Smart Computing, Modern Specialized University, Sana’a, Yemen
| | - Mohammad Alsulami
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 6646, Saudi Arabia; (M.A.); (H.A.A.); (J.A.)
| | - Hamad Ali Abosaq
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 6646, Saudi Arabia; (M.A.); (H.A.A.); (J.A.)
| | - Jarallah Alqahtani
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 6646, Saudi Arabia; (M.A.); (H.A.A.); (J.A.)
| | - Prachi Janrao
- Thakur College of Engineering and Technology, Kandivali(E), Mumbai 400101, India;
| |
Collapse
|
10
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Alhassan S, Soudani A, Almusallam M. Energy-Efficient EEG-Based Scheme for Autism Spectrum Disorder Detection Using Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:2228. [PMID: 36850829 PMCID: PMC9962521 DOI: 10.3390/s23042228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/15/2023]
Abstract
The deployment of wearable wireless systems that collect physiological indicators to aid in diagnosing neurological disorders represents a potential solution for the new generation of e-health systems. Electroencephalography (EEG), a recording of the brain's electrical activity, is a promising physiological test for the diagnosis of autism spectrum disorders. It can identify the abnormalities of the neural system that are associated with autism spectrum disorders. However, streaming EEG samples remotely for classification can reduce the wireless sensor's lifespan and creates doubt regarding the application's feasibility. Therefore, decreasing data transmission may conserve sensor energy and extend the lifespan of wireless sensor networks. This paper suggests the development of a sensor-based scheme for early age autism detection. The proposed scheme implements an energy-efficient method for signal transformation allowing relevant feature extraction for accurate classification using machine learning algorithms. The experimental results indicate an accuracy of 96%, a sensitivity of 100%, and around 95% of F1 score for all used machine learning models. The results also show that our scheme energy consumption is 97% lower than streaming the raw EEG samples.
Collapse
Affiliation(s)
- Sarah Alhassan
- Department of Computer Science, College of Computer and Information Science, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Computer Science, College of Computer and Information Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| | - Adel Soudani
- Department of Computer Science, College of Computer and Information Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Manan Almusallam
- Department of Computer Science, College of Computer and Information Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
12
|
Shirwaikar RD, Sarwari I, Najam M, M SH. Has Machine Learning Enhanced the Diagnosis of Autism Spectrum Disorder? Crit Rev Biomed Eng 2023; 51:1-14. [PMID: 37522537 DOI: 10.1615/critrevbiomedeng.v51.i1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurological condition that limits an individual's capacity for communication and learning throughout their life. Although symptoms of Autism can be diagnosed in individuals of different ages, it is labeled as a developmental disorder because symptoms typically start to show up in the initial 2 years of childhood. Autism has no single known cause but multiple factors contribute to its etiology in children. Because symptoms and severity of ASD vary in every individual, there could be many causes. Detection of ASD in the early stages is crucial for providing a path for rehabilitation that enhances the quality of life and integrates the ASD person into the social, family, and professional spheres. Assessment of ASD includes experienced observers in neutral environments, which brings constraints and biases to a lack of credibility and fails to accurately reflect performance in terms of real-world scenarios. To get around these limitations, the conducted review offers a thorough analysis of the impact on the individual and the ones living around them and most recent research on how these techniques are implemented in the diagnosis of ASD. As a result of improvements in technology, assessments now include processing unconventional data than can be collected from measurements arising out of laboratory chemistry or of electrophysiological origin. Examples of these technologies include virtual reality and sensors including eye-tracking imaging. Studies have been conducted towards recognition of emotion and brain networks to identify functional connectivity and discriminate between people with ASD and people who are thought to be typically developing. Diagnosis of Autism has recently made substantial use of long short term memory (LSTM), convolutional neural network (CNN) and its variants, the random forest (RF) and naive Bayes (NB) machine learning techniques. It is hoped that researchers will develop methodologies that increase the probability of identification of ASD in its varied forms and contribute towards improved lifestyle for patients with ASD and those affected by the pathology.
Collapse
Affiliation(s)
- Rudresh Deepak Shirwaikar
- Department of Computer Engineering, Agnel Institute of Technology and Design (AITD), Goa University, Assagao, Goa, India, 403507
| | - Iram Sarwari
- Department of Information Science and Engineering, Ramaiah Institute of Technology (RIT), Bangalore, Karnataka, India 560064
| | - Mehwish Najam
- Department of Information Science and Engineering, Ramaiah Institute of Technology (RIT), Bangalore, Karnataka, India 560064
| | - Shama H M
- BMS Institute of Technology and Management (BMSIT), Bangalore, Karnataka, India 560064
| |
Collapse
|