Adebayo O, Bhuiyan ZA, Ahmed Z. Exploring the effectiveness of artificial intelligence, machine learning and deep learning in trauma triage: A systematic review and meta-analysis.
Digit Health 2023;
9:20552076231205736. [PMID:
37822960 PMCID:
PMC10563501 DOI:
10.1177/20552076231205736]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Background
The development of artificial intelligence (AI), machine learning (ML) and deep learning (DL) has advanced rapidly in the medical field, notably in trauma medicine. We aimed to systematically appraise the efficacy of AI, ML and DL models for predicting outcomes in trauma triage compared to conventional triage tools.
Methods
We searched PubMed, MEDLINE, ProQuest, Embase and reference lists for studies published from 1 January 2010 to 9 June 2022. We included studies which analysed the use of AI, ML and DL models for trauma triage in human subjects. Reviews and AI/ML/DL models used for other purposes such as teaching, or diagnosis were excluded. Data was extracted on AI/ML/DL model type, comparison tools, primary outcomes and secondary outcomes. We performed meta-analysis on studies reporting our main outcomes of mortality, hospitalisation and critical care admission.
Results
One hundred and fourteen studies were identified in our search, of which 14 studies were included in the systematic review and 10 were included in the meta-analysis. All studies performed external validation. The best-performing AI/ML/DL models outperformed conventional trauma triage tools for all outcomes in all studies except two. For mortality, the mean area under the receiver operating characteristic (AUROC) score difference between AI/ML/DL models and conventional trauma triage was 0.09, 95% CI (0.02, 0.15), favouring AI/ML/DL models (p = 0.008). The mean AUROC score difference for hospitalisation was 0.11, 95% CI (0.10, 0.13), favouring AI/ML/DL models (p = 0.0001). For critical care admission, the mean AUROC score difference was 0.09, 95% CI (0.08, 0.10) favouring AI/ML/DL models (p = 0.00001).
Conclusions
This review demonstrates that the predictive ability of AI/ML/DL models is significantly better than conventional trauma triage tools for outcomes of mortality, hospitalisation and critical care admission. However, further research and in particular randomised controlled trials are required to evaluate the clinical and economic impacts of using AI/ML/DL models in trauma medicine.
Collapse