1
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
2
|
Sionkowska A, Kulka-Kamińska K, Brudzyńska P, Lewandowska K, Piwowarski Ł. The Influence of Various Crosslinking Conditions of EDC/NHS on the Properties of Fish Collagen Film. Mar Drugs 2024; 22:194. [PMID: 38786585 PMCID: PMC11123180 DOI: 10.3390/md22050194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The process of crosslinking improves the physicochemical properties of biopolymer-based composites, making them valuable for biomedical applications. EDC/NHS-crosslinked collagen materials have a significant potential for tissue engineering applications, due to their enhanced properties and biocompatibility. Chemical crosslinking of samples can be carried out in several ways, which is crucial and has a direct effect on the final properties of the obtained material. In this study, the effect of crosslinking conditions on the properties of collagen films using EDC and NHS was investigated. Studies included FTIR spectroscopy, AFM, swelling and degradation tests, mechanical testing and contact angle measurements. Evaluation of prepared collagen films indicated that both crosslinking agents and crosslinking conditions influenced film properties. Notable alternations were observed in the infrared spectrum of the sample, to which EDC was added directly to the fish collagen solution. The same sample indicated the lowest Young modulus, tensile strength and breaking force parameters and the highest elongation at break. All samples reached the maximum swelling degree two hours after immersion in PBS solution; however, the immersion-crosslinked samples exhibited a significantly lower degree of swelling and were highly durable. The highest roughness was observed for the collagen film crosslinked with EDC, whereas the lowest was observed for the specimen crosslinked with EDC with NHS addition. The crosslinking agents increased the surface roughness of the collagen film, except for the sample modified with the addition of EDC and NHS mixture. All films were characterized by hydrophilic character. The films' modification resulted in a decrease in their hydrophilicity and wettability. Our research allows for a comparison of proposed EDC/NHS crosslinking conditions and their influence on the physicochemical properties of fish collagen thin films. EDC and NHS are promising crosslinking agents for the modification of fish collagen used in biomedical applications.
Collapse
Affiliation(s)
- Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Patrycja Brudzyńska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.K.-K.); (P.B.); (K.L.)
| | - Łukasz Piwowarski
- SanColl Sp. z o. o., Juliusza Słowackiego 24, 35-060 Rzeszów, Poland;
| |
Collapse
|
3
|
Librizzi M, Martino C, Mauro M, Abruscato G, Arizza V, Vazzana M, Luparello C. Natural Anticancer Peptides from Marine Animal Species: Evidence from In Vitro Cell Model Systems. Cancers (Basel) 2023; 16:36. [PMID: 38201464 PMCID: PMC10777987 DOI: 10.3390/cancers16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Anticancer peptides are short and structurally heterogeneous aminoacidic chains, which display selective cytotoxicity mostly against tumor cells, but not healthy cells, based on their different cell surface properties. Their anti-tumoral activity is carried out through interference with intracellular homeostasis, such as plasmalemma integrity, cell cycle control, enzymatic activities and mitochondrial functions, ultimately acting as angiogenesis-, drug resistance- and metastasis-inhibiting agents, immune stimulators, differentiation inducers and necrosis or extrinsic/intrinsic apoptosis promoters. The marine environment features an ever-growing level of biodiversity, and seas and oceans are poorly exploited mines in terms of natural products of biomedical interest. Adaptation processes to extreme and competitive environmental conditions led marine species to produce unique metabolites as a chemical strategy to allow inter-individual signalization and ensure survival against predators, infectious agents or UV radiation. These natural metabolites have found broad use in various applications in healthcare management, due to their anticancer, anti-angiogenic, anti-inflammatory and regeneration abilities. The aim of this review is to pick selected studies that report on the isolation of marine animal-derived peptides and the identification of their anticancer activity in in vitro cultures of cancer cells, and list them with respect to the taxonomical hierarchy of the source organism.
Collapse
Affiliation(s)
- Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Chiara Martino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Costa JP, Custódio L, Reis CP. Exploring the Potential of Using Marine-Derived Ingredients: From the Extraction to Cutting-Edge Cosmetics. Mar Drugs 2023; 21:620. [PMID: 38132941 PMCID: PMC10744737 DOI: 10.3390/md21120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The growing understanding and knowledge of the potential of marine species, as well as the application of "blue biotechnology" have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological activities that are yet to be discovered. This review explores various biological properties of marine-derived molecules and briefly outlines the main extraction methods. Alongside these, it is well known the legislative and normative framework of cosmetics is increasingly being developed. In this research segment, there is a growing concern with sustainability. In this sense, "blue biotechnology", together with the use of invasive species or marine waste products to obtain new active ingredients, haven been emerging as innovative and sustainable solutions for the future's cosmetics industry. This review also examines the regulatory framework and focus on the recent advancements in "blue biotechnology" and its relevance to the sustainable development of innovative cosmetics.
Collapse
Affiliation(s)
- João Pedro Costa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, Ed. 7, 8005-139 Faro, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Hu YD, Xi QH, Kong J, Zhao YQ, Chi CF, Wang B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from the Collagens of Monkfish ( Lophius litulon) Swim Bladders: Isolation, Characterization, Molecular Docking Analysis and Activity Evaluation. Mar Drugs 2023; 21:516. [PMID: 37888451 PMCID: PMC10608021 DOI: 10.3390/md21100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.
Collapse
Affiliation(s)
- Yu-Dong Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Kong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
6
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
7
|
Rusinek K, Słysz A, Dębski T, Siennicka K, Zołocińska A, Miszkiewicz-Jasińska J, Aleksandrowicz A, Pojda Z. Evaluation of the biocompatibility of fish skin collagen with the mesenchymal stem cells in in vitro cultures. J Appl Biomater Funct Mater 2023; 21:22808000231211423. [PMID: 38131345 DOI: 10.1177/22808000231211423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
There are scarce published data suggesting, that collagen extracted from fish skin may be an attractive alternative to mammalian-derived collagen for the in vitro cell cultures. In this study, we investigated proliferation potential and differentiation capability into osteogenic and adipogenic lineages of rat adipose-derived mesenchymal stem cells (rASCs) and human adipose-derived mesenchymal stem cells (hASCs) cultured on collagen extracted from silver carp and African sharptooth catfish skins, compared with commercially available mammalian collagen and collagen-free culture dishes. Our results revealed no significant differences between fish collagen and mammalian collagen in supporting cell viability and proliferation capacity. Fish-derived collagen is a cheap material derived from production waste, does not contain transmissible pathogens of mammalian origin, supports human cell cultures at comparable level to conventional collagen sources, and may be considered as the product of choice for the in vitro cell cultures.
Collapse
Affiliation(s)
- Kinga Rusinek
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Słysz
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz Dębski
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aleksandra Zołocińska
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | | | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
8
|
Characterization of Acid- and Pepsin-Soluble Collagen Extracted from the Skin of Purple-Spotted Bigeye Snapper. Gels 2022; 8:gels8100665. [PMID: 36286166 PMCID: PMC9602141 DOI: 10.3390/gels8100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fish processing waste is a prospective source of collagen and a cost-effective environmental pollutant. The skin of the purple-spotted bigeye snapper (Priacanthus tayenus) was extracted utilising various acid soluble collagens (ASC) including acetic acid (AAC), lactic acid (LAC), citric acid (CAC) and pepsin soluble collagens (PSC). In this study, PSC (6.65%) had the highest collagen yield, followed by AAC (5.79%), CAC (4.15%), and LAC (3.19%). The maximum temperatures (Tmax) denaturation of AAC, LAC, CAC, and PSC were 31.4, 31.7, 31.5, and 33.2 °C, respectively. UV-VIS absorption spectra showed all extracted collagens had a range of absorbance at 230 nm, due to the presence of glycine, proline, hydroxyproline, and triple-helical collagen. Additionally, they exhibited amide A, B, amide I, II, and III peaks. SDS−PAGE identified all extracted collagens as type I. The PSC had a significantly higher (p < 0.05) hydroxyproline content than acidic extraction 66.3 ± 1.03 (mg/g sample). Furthermore, all samples were extremely soluble in acetic conditions at pH 5, and all collagen was soluble in NaCl up to 3% (w/v). Therefore, PSC was the best treatment since it did not impact collagen triple helical and acetic acid yielded the most collagen in ASC extraction. Overall, the analysis revealed that fish skin waste might be used as an alternate source of collagen in diverse applications, particularly in food applications.
Collapse
|