1
|
Ding H, Qin J, Li Y, Dai L, Xu F, Liu Z, Shi X, Guan W, Sang J. Lactoferrin alleviates oxidative stress and endoplasmic reticulum stress induced by autoimmune thyroiditis by modulating the mTOR pathway in the thyroid. J Endocrinol Invest 2024. [DOI: 10.1007/s40618-024-02505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/14/2024] [Indexed: 01/05/2025]
|
2
|
Pan M, Qi Q, Li C, Wang J, Pan X, Zhou J, Sun H, Li L, Wang L. Effect and mechanism of Hashimoto thyroiditis on female infertility: A clinical trial, bioinformatics analysis, and experiments-based study. Biosci Trends 2024; 18:356-369. [PMID: 38925961 DOI: 10.5582/bst.2024.01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Diagnosing Hashimoto thyroiditis (HT) relies on thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) titers. The influence of these antibodies on female infertility remains a subject of debate. This study aims to explore the effect and mechanism of HT on female infertility. First, a single-center cross-sectional study was conducted to investigate whether TgAb and TPOAb are the key factors leading to female infertility. Second, bioinformatic analysis was performed to investigate the potential target molecules and pathways. Third, in vivo experiments were performed to explore the effects of elevated TgAb levels on embryo implantation in a mouse model of autoimmune thyroiditis (AIT). Four hundred and five infertile women and 155 healthy controls were enrolled in the cross-sectional study. Results indicated that the TPOAb titer was associated with female infertility, while the TgAb titer showed no significant association. The increased levels of TgAb and TPOAb are not significantly correlated with anti-Mullerian hormone. Bioinformatic analysis indicated that the common target molecules for HT and female infertility include interleukin (IL)-6, IL-10, matrix metalloproteinase 9, and tumor necrosis factor, suggesting potential regulation through multiple signaling pathways such as HIF-1, VEGF, MAPK, and Th17 cell differentiation. A certain dose of porcine thyroglobulin can successfully establish a mouse model of AIT. In this mouse model, embryo implantation and ovarian reserve remain unaffected by elevated TgAb levels. In conclusion, the serum TPOAb titer was associated with infertility due to female factors but the TgAb titer showed no significant association. A simple increase in serum TgAb titer does not affect embryo implantation and ovarian reserve in the AIT model.
Collapse
Affiliation(s)
- Meijun Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
- The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Qing Qi
- Wuhan Business University, Wuhan, Hubei, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
3
|
He C, Li Y, Gan L, Lin Y, Zhang B, Ma L, Xue H. Notch signaling regulates Th17 cells differentiation through PI3K/AKT/mTORC1 pathway and involves in the thyroid injury of autoimmune thyroiditis. J Endocrinol Invest 2024; 47:1971-1986. [PMID: 38285310 DOI: 10.1007/s40618-023-02293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Autoimmune Thyroiditis (AIT) is the most common thyroid disease; however, there were no measures to prevent the progression of the disease. The present study attempts to identify that Notch signaling regulates the differentiation of T helper 17 (Th17) cells by activating downstream Phosphatidylinositol-3 kinase/protein kinase/mechanistic target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathway participating in the thyroid injury of the experimental autoimmune thyroiditis (EAT). METHODS In vivo experiments, mice were randomly divided into 4 groups: a control group, an EAT group, and two groups with LY294002 treatment (pTg plus 25 mg/kg or 50 mg/kg LY294002, respectively). The degrees of thyroiditis were evaluated, and the percentage of Th17 cells, expression of interleukin-17A (IL-17A), and the main components of the Notch-PI3K signaling pathway were detected in different groups. In vitro experiments, two different dosages of LY294002 (25 and 50 μM) were used to intervene splenic mononuclear cells (SMCs) from EAT mice to further evaluate the regulatory effect of Notch-PI3K pathway on Th17 cells. RESULTS Our data demonstrate that the infiltration of Th17 cells and the expressions of IL-17A, Notch, hairy and split 1 (Hes1), p‑AKT (Ser473), p‑AKT (Thr308), p‑mTOR (Ser2448), S6K1, and S6K2 increased remarkably in EAT mice. After PI3K pathway was blocked, the degrees of thyroiditis were significantly alleviated, and the proportion of Th17 cells, the expression of IL-17A, and the above Notch-PI3K pathway-related molecules decreased in a dose-dependent manner. Additionally, the proportion of Th17 cells was positively correlated with the concentration of serum thyroglobulin antibody (TgAb), IL-17A, and Notch-PI3K pathway-related molecules mRNA levels. CONCLUSIONS Notch signal promotes the secretion of IL-17A from Th17 cells by regulating the downstream PI3K/AKT/mTORC1 pathway through Hes-Phosphatase and tensin homolog (PTEN) and participates in thyroid autoimmune damage, and the PI3K pathway inhibitor may play important effects on AIT by affecting Th17 cells differentiation.
Collapse
Affiliation(s)
- C He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - L Gan
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Lin
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - B Zhang
- Nanchang University Queen Mary School, Nanchang, 330031, People's Republic of China
| | - L Ma
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - H Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China.
| |
Collapse
|
4
|
Yin Z, Zhu Y, Shi J, He Y, Zhang F. The role of the Notch signaling pathway in bacterial infectious diseases. Microb Pathog 2024; 188:106557. [PMID: 38272330 DOI: 10.1016/j.micpath.2024.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The Notch signaling pathway is the most crucial link in the normal operation and maintenance of physiological functions of mammalian life processes. Notch receptors interact with ligands and this leads to three cleavages and goes on to enter the nucleus to initiate the transcription of target genes. The Notch signaling pathway deeply participates in the differentiation and function of various cells, including immune cells. Recent studies indicate that the outcomes of Notch signaling are changeable and highly dependent on different bacterial infection. The Notch signaling pathway plays a different role in promoting and inhibiting bacterial infection. In this review, we focus on the latest research findings of the Notch signaling pathway in bacterial infectious diseases. The Notch signaling pathway is critically involved in a variety of development processes of immunosuppression of different APCs. The Notch signaling pathway leads to functional changes in epithelial cells to aggravate tissue damage. Specifically, we illustrate the regulatory mechanism of the Notch signaling pathway in various bacterial infections, such as Mycobacterium tuberculosis, Mycobacterium avium paratuberculosis, Mycobacterium leprae, Helicobacter pylori, Klebsiella pneumoniae, Bacillus subtilis, Staphylococcus aureus, Ehrlichia chaffeensis and sepsis. Collectively, this review will not only help beginners intuitively and systematically understand the Notch signaling pathway in bacterial infectious diseases but also help experts to generate fresh insight in this field.
Collapse
Affiliation(s)
- Zhengwei Yin
- The First Affiliated Hospital of Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Affiliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- The First Affiliated Hospital of Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Fengbo Zhang
- The First Affiliated Hospital of Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
5
|
Zhang X, Zhang Y, Feng X, Zhao H, Ye H, Fang X, Cui J, Qi W, Ye L. The role of estrogen receptors (ERs)-Notch pathway in thyroid toxicity induced by Di-2-ethylhexyl phthalate (DEHP) exposure: Population data and in vitro studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115727. [PMID: 38042133 DOI: 10.1016/j.ecoenv.2023.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND This study aimed to assess the exposure level and risk of Di-2-ethylhexyl Phthalate (DEHP) among adults in Jilin Province, China, clarify the impact of DEHP on human thyroid function, and to explore the role of estrogen receptors (ERs)-Notch signaling pathway in the effect of DEHP metabolites on thyroid hormones based on population data and in vitro experiments. METHODS 312 adults participated in this study. Urinary DEHP metabolites were determined by high performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Two pharmacokinetic models were used to evaluate the estimated daily intake (EDI) and hazard quotient (HQ) of the adults. Multiple linear regression and mediating effect models were used to evaluate the target associations. In cell experiments, thyroid follicular epithelial (Nthy-ori3-1) cells were exposed to mono (2-ethylhexyl) phthalate (MEHP) for testing. The inhibitions of ERα and Notch pathway were conducted by siRNA and Notch pathway inhibitor DAPT. RESULTS The detection rate of five DEHP metabolites was 97.1∼100.0%. The HQ value of 0.3% of adults was higher than 1. The levels of urinary DEHP metabolites were significantly correlated with thyrotropin (TSH), thyrotropin-releasing hormone (TRH), total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3) and free thyroxine (FT4) and gene (estrogen receptor α (ERα), Notch1, Dll4) levels. The ERα-Notch pathway played a mediating role in the association between DEHP metabolite levels and FT4. The cell results showed, the levels of FT3 and FT4 in cell supernatant decreased after MEHP exposure, and the downward trend was reversed after ERα and notch pathways were inhibited, notch pathway genes also decreased after ERα inhibition. CONCLUSION Adults in the Jilin Province of China were widely exposed to DEHP. ERs-Notch pathway played an important role in the effect of DEHP metabolites on thyroid hormones.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Xin Feng
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130000, Jilin, China.
| |
Collapse
|
6
|
Liu Z, Song N, Li M, Wang Z, Cao H, Gao T, Yang X. Based on mRNA Sequencing Techniques to Explore the Molecular Mechanism of Buzhong Yiqi Decoction for Autoimmune Thyroiditis. Comb Chem High Throughput Screen 2024; 27:408-419. [PMID: 37070455 DOI: 10.2174/1386207326666230417120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE Autoimmune diseases (AD) account for a high percentage of the population. One of the most prevalent is autoimmune thyroiditis (AIT). However, the therapeutic effects of Buzhong Yiqi (BZYQ) decoction on AIT have not been studied yet. The majority of the present study was conducted on NOD.H-2h4 mice in an attempt to ascertain the therapeutic effects of BZYQ decoction on AIT. METHODS The 0.05% sodium iodide water (NaI)-induced AIT mice model was established. A total of nine NOD.H-2h4 mice were randomly divided into three groups: the normal group provided with regular water, the model group drinking freely 0.05% NaI, and the treatment group treated with BZYQ decoction (9.56 g/kg) after NaI supplementation (NaI + BZYQ). BZYQ decoction was administered orally once daily for eight weeks. The thyroid histopathology test was used to measure the severity of lymphocytic infiltration. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of anti-thyroglobulin antibody (TgAb), interleukin (IL)-1β, IL-6, and IL-17. The Illumina HiSeq X sequencing platform was utilized to analyze the thyroid tissue by mRNA expression profiles. Bioinformatics analysis was used to investigate the biological function of the differentially expressed mRNAs. In addition, the expression of Carbonyl Reductase 1 (CBR1), 6-Pyruvoyltetrahydropterin Synthase (PTS), Major Histocompatibility Complex, Class II (H2-EB1), Interleukin 23 Subunit Alpha (IL-23A), Interleukin 6 Receptor (IL-6RA), and Janus Kinase 1 (JAK1) was measured by quantitative real-time PCR (qRT-PCR). RESULTS The treatment group exhibited significantly lower rates of thyroiditis and lymphocyte infiltration compared to the model group. Serum levels of TgAb, IL-1β, IL-6, and IL-17 were significantly higher in the model group, but they fell dramatically after BZYQ decoction administration. According to our results, 495 genes showed differential expression in the model group compared to the control group. Six hundred twenty-five genes were significantly deregulated in the treatment group compared to the model group. Bioinformatic analysis showed that most mRNAs were associated with immune-inflammatory responses and were involved in multiple signaling pathways, including folate biosynthesis and the Th17 cell differentiation pathway. CBR1, PTS, H2-EB1, IL- 23A, IL-6RA and JAK1 mRNA participated in folate biosynthesis and the Th17 cell differentiation pathway. The qRT-PCR analysis confirmed that the above mRNAs were regulated in the model group compared to the treatment group Conclusion: The results of this investigation have revealed novel insights into the molecular mechanism of action of BZYQ decoction against AIT. The mechanism may be partially attributed to the regulation of mRNA expression and pathways.
Collapse
Affiliation(s)
- Ziyu Liu
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Nan Song
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
- College of Medical Laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
- National Local Joint Engineering Laboratory for the Prevention and Treatment of Cardioencephalopathy with Integrated Traditional Chinese and Western Medicine, Shenyang, Liaoning, 110847, China
| | - Mingshan Li
- Department of Urology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 100032, China
| | - Zhimin Wang
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
| | - Huimin Cao
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
- National Local Joint Engineering Laboratory for the Prevention and Treatment of Cardioencephalopathy with Integrated Traditional Chinese and Western Medicine, Shenyang, Liaoning, 110847, China
| | - Tianshu Gao
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
| | - Xiao Yang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, China
- Department of Endocrinology, Second Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110034, China
| |
Collapse
|
7
|
Zhang C, Zhang Q, Qin L, Yan Z, Wu L, Liu T. Dioscin Ameliorates Experimental Autoimmune Thyroiditis via the mTOR and TLR4/NF-κB Signaling. Drug Des Devel Ther 2023; 17:2273-2285. [PMID: 37551407 PMCID: PMC10404412 DOI: 10.2147/dddt.s410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Autoimmune thyroiditis (AIT) is a common autoimmune disease that causes thyroid dysfunction. Clinical symptoms in Hashimoto thyroiditis patients were improved after oral administration of dioscin. However, the mechanisms involved in the therapeutic effect remain unclear. METHODS The protective effects and potential mechanisms of dioscin for autoimmune thyroiditis were explored in a rat model of thyroglobulin-induced autoimmune thyroiditis. Firstly, the rat model of AIT was obtained by subcutaneous injection of thyroglobulin and drinking the sodium iodide solution, followed by gavage administration for 8 weeks. Rats were sacrificed after anaesthesia, serum and thyroid samples were preserved. Serum triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), thyrotropin (TSH), thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb), and thyrotropin receptor antibody (TRAb) expressions were measured by enzyme-linked immunosorbent assay (ELISA). Morphological changes were observed by H&E staining. Next, we used transcriptomics techniques to find the potential therapeutic target of dioscin. Finally, we validated the transcriptomic results by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC-P), respectively. RESULTS Animal experiments showed that dioscin regulated T3, T4, FT3, TSH, TgAb, TPOAb, and TRAb and alleviated the pathological process in a dose-dependent manner, with the high-dose group showing optimal efficacy. In the transcriptome, the nuclear factor kappa B (NF-κB) pathway was identified by KEGG enrichment analysis and validated by RT-PCR and IHC-P. The relative expression of NF-κB, mechanistic target of rapamycin (mTOR), and toll-like receptor 4 (TLR4) mRNA and protein were decreased in the dioscin-treated group compared to the AIT model group. CONCLUSION Our results suggest that dioscin treatment improved thyroid function and downregulated TGAb, TPOAb and TRAb levels in rat models of AIT, which may alleviate the pathological process and suppress the inflammatory response by inhibiting mTOR and TLR4/NF-κB pathways.
Collapse
Affiliation(s)
- Chengfei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhiyi Yan
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lili Wu
- Technology Department, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|