1
|
Nagdeve SN, Suganthan B, Ramasamy RP. An electrochemical biosensor for the detection of microRNA-31 as a potential oral cancer biomarker. J Biol Eng 2025; 19:24. [PMID: 40133958 PMCID: PMC11938787 DOI: 10.1186/s13036-025-00492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Oral cancer presents substantial challenges to global health due to its elevated mortality rates. Approximately 90% of these malignancies are oral squamous cell carcinoma (OSCC). A significant contributor to the prevalence of oral cancer is the difficulty in detecting cancerous biomarkers, further exacerbated by socioeconomic disadvantages and late-stage diagnoses. Given the critical nature of oral cancer, the early detection of biomarkers is essential for reducing mortality rates. This study investigates the application of microRNA-31 (miRNA-31) as a biomarker for the electrochemical detection of oral cancer, recognizing the considerable potential that microRNAs have demonstrated in cancer screening and diagnosis. The methodology employed includes the use of a glassy carbon electrode modified with graphene and a molecular tethering agent designed to enhance sensitivity and specificity. The biosensor exhibited a limit of detection of 10- 11 M (70 pg/mL or 6.022 × 106 copies/µL) in buffer and 10- 10 M (700 pg/mL or 6.022 × 107 copies/µL) in diluted serum for the complementary target miRNA-31 using the Six Sigma method. The efficacy of this biosensor was further validated through specificity studies utilizing a non-complementary miRNA in both buffer and human serum samples. The electrochemical biosensor displayed exceptional performance and high sensitivity in detecting miRNA-31, confirming its role as an innovative sensor for the non-invasive diagnosis of oral cancer. Furthermore, the proposed biosensor demonstrates several advantages over current methodologies, including reduced detection time, and cost-effective reagents.
Collapse
Affiliation(s)
- Sanket Naresh Nagdeve
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
2
|
Ma Q, Li L, Xing Y. LncRNA NRIR serves as a biomarker for systemic lupus erythematosus and participates in the disease progression. Lupus 2024:9612033241294032. [PMID: 39428741 DOI: 10.1177/09612033241294032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by a malfunction of the body's immune defense system. OBJECTIVE The objective of the present investigation was to examine the expression and diagnostic significance of NRIR in SLE and to prove whether it is involved in the progression of SLE. METHODS The study involved 110 participants, including 55 healthy individuals and 55 SLE patients. The expression levels of NRIR, miR-31-5p, and ICAM-1 were measured using qRT-PCR. The ROC curve was performed to assess the diagnostic significance of NRIR in SLE patients. Pearson correlation analysis was utilized to explore the relationship between NRIR and other indicators. Cytokines including IL-4, IL-6, and IL-21, along with IgG levels, were assessed using ELISA. The interaction between NRIR and miR-31-5p was validated using a dual-luciferase reporter assay. RESULT Upregulated expression of NRIR was observed in individuals with SLE, serving a diagnostic function for SLE. Additionally, abnormal expression of NRIR impacted the viability of CD4+ T cells within SLE patients. NRIR could negatively modulate the expression of miR-31-5p. CONCLUSION LncRNA NRIR may be a potential biomarker for SLE and is likely involved in the progression of SLE.
Collapse
Affiliation(s)
- Qingfeng Ma
- Laboratory Department, The People's Hospital of Feicheng, Taian, China
| | - Li Li
- Laboratory Department, The People's Hospital of Feicheng, Taian, China
| | - Youzhong Xing
- Department of Blood Transfusion, Jinan Central Hospital, Jinan, China
| |
Collapse
|
3
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
4
|
Liu Y, Wang L, Zhou C, Yuan Y, Fang B, Lu K, Xu F, Chen L, Huang L. MiR-31-5p regulates the neuroinflammatory response via TRAF6 in neuropathic pain. Biol Direct 2024; 19:10. [PMID: 38267979 PMCID: PMC10807213 DOI: 10.1186/s13062-023-00434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Neuropathic pain is chronic pain and has few effective control strategies. Studies have demonstrated that microRNAs have functions in neuropathic pain. However, no study has been conducted to demonstrate the role and mechanism of microRNA (miR)-31-5p in neuropathic pain. Accordingly, this study sought to determine the pathological role of miR-31-5p in chronic constriction injury (CCI) -induced neuropathic pain mouse models. METHODS We used CCI surgery to establish mouse neuropathic pain model. Behavioral tests were performed to evaluate pain sensitivity of mice. Expressions of miR-31-5p and inflammatory cytokines in dorsal root ganglion (DRG) were examined by polymerase chain reaction. Animals or cells were received with/without miR-31-5p mimic or inhibitor to investigate its role in neuropathic pain. The mechanism of miR-31-5p was assayed using western blotting, immunofluorescence staining and dual-luciferase reporter assay. RESULTS We found that CCI led to a significant decrease in miR-31-5p levels. Knockout of miR-31-5p and administration of miPEP31 exacerbated pain in C57BL/6 mice. Meanwhile, miR-31-5p overexpression increased the paw withdrawal threshold and latency. TRAF6 is one of the target gene of miR-31-5p, which can trigger a complex inflammatory response. TRAF6 was associated with pain and that reducing the DRG expression of TRAF6 could alleviate pain. In addition, miR-31-5p overexpression inhibited the TRAF6 expression and reduced the neuroinflammatory response. CONCLUSIONS All the results reveal that miR-31-5p could potentially alleviate pain in CCI mouse models by inhibiting the TRAF6 mediated neuroinflammatory response. MiR-31-5p upregulation is highlighted here as new target for CCI treatment.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Chengcheng Zhou
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Yuan Yuan
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Bin Fang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Kaimei Lu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| |
Collapse
|
5
|
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, Meuth SG, Ruck T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells 2023; 12:2456. [PMID: 37887300 PMCID: PMC10605022 DOI: 10.3390/cells12202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. However, the rarity and heterogeneity of these disorders pose significant challenges in the identification and implementation of reliable biomarkers. Here, we aim to provide a comprehensive review of biomarkers currently established in Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis (MG), and idiopathic inflammatory myopathy (IIM). It highlights the existing biomarkers in these disorders, including diagnostic, prognostic, predictive and monitoring biomarkers, while emphasizing the unmet need for additional specific biomarkers. The limitations and challenges associated with the current biomarkers are discussed, and the potential implications for disease management and personalized treatment strategies are explored. Collectively, biomarkers have the potential to improve the management of inflammatory neuromuscular disorders. However, novel strategies and further research are needed to establish clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.O.); (A.H.); (P.Q.)
| |
Collapse
|