1
|
Demirel S. Vasorelaxant effects of biochemical constituents of various medicinal plants and their benefits in diabetes. World J Diabetes 2024; 15:1122-1141. [PMID: 38983824 PMCID: PMC11229960 DOI: 10.4239/wjd.v15.i6.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelial function plays a pivotal role in cardiovascular health, and dysfunction in this context diminishes vasorelaxation concomitant with endothelial activity. The nitric oxide-cyclic guanosine monophosphate pathway, prostacyclin-cyclic adenosine monophosphate pathway, inhibition of phosphodiesterase, and the opening of potassium channels, coupled with the reduction of calcium levels in the cell, constitute critical mechanisms governing vasorelaxation. Cardiovascular disease stands as a significant contributor to morbidity and mortality among individuals with diabetes, with adults afflicted by diabetes exhibiting a heightened cardiovascular risk compared to their non-diabetic counterparts. A plethora of medicinal plants, characterized by potent pharmacological effects and minimal side effects, holds promise in addressing these concerns. In this review, we delineate various medicinal plants and their respective biochemical constituents, showcasing concurrent vasorelaxant and anti-diabetic activities.
Collapse
Affiliation(s)
- Sadettin Demirel
- Medicine School, Physiology Department, Bursa Uludag University, Bursa 16059, Türkiye
| |
Collapse
|
2
|
Mohyeldin RH, Abdelzaher WY, Sharata EE, Mohamed HMA, Ahmed MYM, Attia JZ, Atta M, Saleh RK, Ghallab EA, Marey H, Elrehany MA, Rofaeil RR. Aprepitant boasted a protective effect against olanzapine-induced metabolic syndrome and its subsequent hepatic, renal, and ovarian dysfunction; Role of IGF 1/p-AKT/FOXO 1 and NFκB/IL-1β/TNF-α signaling pathways in female Wistar albino rats. Biochem Pharmacol 2024; 221:116020. [PMID: 38237301 DOI: 10.1016/j.bcp.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024]
Abstract
Olanzapine-induced metabolic syndrome (MS) is a primary risk factor for insulin resistance, hepatorenal damage, and polycystic ovarian syndrome. The objective of the current study was to assess the protective effects of aprepitant (AP) against MS caused by olanzapine and the associated ovarian, renal, and liver dysfunction via modulation of IGF1/p-AKT/FOXO1 and NFκB/IL-1β/TNF-α signaling pathways. AP mitigated all biochemical and histopathological abnormalities induced by olanzapine and resulted in a significant reduction of serum HOMA-IR, lipid profile parameters, and a substantial decrease in hepatic, renal, and ovarian MDA, IL-6, IL-1β, TNF-α, NFκB, and caspase 3. Serum AST, ALT, urea, creatinine, FSH, LH, and testosterone also decreased significantly by AP administration. The FOXO 1 signaling pathway was downregulated in the AP-treated group, while GSH, SOD, and HDL cholesterol levels were elevated.
Collapse
Affiliation(s)
- Reham H Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Walaa Yehia Abdelzaher
- Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Hamza M A Mohamed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Mohamed Y M Ahmed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Josef Zekry Attia
- Department of Anesthesia and I.C.U, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Rabeh Khairy Saleh
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Elshimaa A Ghallab
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Heba Marey
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Remon Roshdy Rofaeil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| |
Collapse
|