1
|
Jin Y, Xie X, Li H, Zhang M. The role of homeobox gene Six1 in cancer progression and its potential as a therapeutic target: A review. Int J Biol Macromol 2025; 308:142666. [PMID: 40164243 DOI: 10.1016/j.ijbiomac.2025.142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The sine oculis homeobox gene 1 (Six1), a member of the Six transcription factor family, specifically binds to defined DNA regions, regulates target gene expression, and plays a crucial role in various tissue and organ development processes. Moreover, Six1 is a critical factor in cancer progression and prognosis making it a central focus in cancer research. Consequently, a comprehensive review of involvement of the Six1 gene in cancer research has a high relevance. This review synthesizes findings from other researches, examines the gene structure and protein functionality of Six1, summarizes its relationship with various cancers, elucidates its mechanisms in promoting tumor progression and development, explores potential possibilities for targeting Six1 as a therapeutic approach for cancer treatment. Six1 is correlated with tumor malignancy and poor prognosis, plays a critical role in promoting tumor cell proliferation, invasion, metastasis, and energy metabolism. Targeting Six1 degradation or expression can potentially suppress tumor progression. This review aims to enhance our understanding of the function and significance of Six1 in cancers while providing a valuable reference for Six1-based cancer diagnosis, prognosis, and therapeutic interventions. This knowledge will facilitate more in-depth oncology research related to Six1, particularly in identifying drug resistance mechanisms and developing precision-targeted therapies.
Collapse
Affiliation(s)
- Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xinran Xie
- School of Basic Medicine sciences, Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Manling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
2
|
Ma J, Tang L, Xiao J, Tang K, Zhang H, Huang B. Burning lactic acid: a road to revitalizing antitumor immunity. Front Med 2025:10.1007/s11684-025-1126-6. [PMID: 40119026 DOI: 10.1007/s11684-025-1126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/16/2024] [Indexed: 03/24/2025]
Abstract
Lactic acid (LA) accumulation in tumor microenvironments (TME) has been implicated in immune suppression and tumor progress. Diverse roles of LA have been elucidated, including microenvironmental pH regulation, signal transduction, post-translational modification, and metabolic remodeling. This review summarizes LA functions within TME, focusing on the effects on tumor cells, immune cells, and stromal cells. Reducing LA levels is a potential strategy to attack cancer, which inevitably affects the physiological functions of normal tissues. Alternatively, transporting LA into the mitochondria as an energy source for immune cells is intriguing. We underscore the significance of LA in both tumor biology and immunology, proposing the burning of LA as a potential therapeutic approach to enhance antitumor immune responses.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - Liang Tang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jingxuan Xiao
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Lan Q, Ouyang A, Chen Y, Li Y, Zhong B, Deng S. Pain, lactate, and anesthetics: intertwined regulators of tumor metabolism and immunity. Front Oncol 2025; 15:1534300. [PMID: 40165895 PMCID: PMC11955471 DOI: 10.3389/fonc.2025.1534300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Patients with advanced cancer frequently endure severe pain, which substantially diminishes their quality of life and can adversely impact survival. Analgesia, a critical modality for alleviating such pain, is now under scrutiny for its potential role in cancer progression, a relationship whose underlying mechanisms remain obscure. Emerging evidence suggests that lactate, once considered a metabolic byproduct, actively participates in the malignant progression of cancer by modulating both metabolic and immunological pathways within the tumor microenvironment. Furthermore, lactate is implicated in the modulation of cancer-related pain, exerting effects through direct and indirect mechanisms. This review synthesizes current understanding of lactate's production, transport, and functional roles in tumor cells, encompassing the regulation of tumor metabolism, immunity, and progression. Additionally, we dissect the complex, bidirectional relationship between lactate and pain, and assess the impact of anesthetics on pain relief, lactate homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Simin Deng
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Zhang S, You H, Fan H, Chen Y, Song H, Zhao Z, Chen Q, Wang Y, Tian Z, Wu Y, Zhou Z, Guo Y, Su B, Li X, Jia R, Fang M, Jiang C, Sun T. Transcytosis-Triggering Nanoparticles for Overcoming Stromal Barriers and Reversing Immunosuppression in Pancreatic Cancer Combinatorial Therapy. NANO LETTERS 2025; 25:2949-2959. [PMID: 39914891 DOI: 10.1021/acs.nanolett.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), stromal cells and matrix proteins form a dense physical barrier that, while preventing the outward spread of tumor cells, also limits the penetration of drugs and CD8+ T cells inward. Additionally, the overactivated TGF-β/SMAD signaling pathway further promotes matrix proliferation and immune suppression. Therefore, crossing the stromal barrier while preserving the integrity of the stroma, releasing drugs intratumorally, remodeling the stroma, and activating the immune system is a promising drug delivery strategy. In this work, a type of enamine N-oxides modified nanoparticle was prepared, with stearic acid-modified gemcitabine prodrug (GemC18) and pSMAD2/3 inhibitor galunisertib encapsulated. The peripheral enamine N-oxides can trigger transcytosis and then respond to hypoxia and acidic microenvironments, turning the surface charge of the nanoparticles to a positive charge and enhancing penetration. The released galunisertib inhibits the TGF-β/SMAD signaling pathway, reshapes the matrix, activates antitumor immunity, and combines with gemcitabine (Gem) to kill tumor cells.
Collapse
Affiliation(s)
- Shilin Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haoyu You
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongrui Fan
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haolin Song
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zonghua Tian
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuxing Wu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ru Jia
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingzhu Fang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Quzhou Fudan Institute, Quzhou 324003, China
| |
Collapse
|
5
|
Zeng Y, Huang Y, Tan Q, Peng L, Wang J, Tong F, Dong X. Influence of lactate in resistance to anti‑PD‑1/PD‑L1 therapy: Mechanisms and clinical applications (Review). Mol Med Rep 2025; 31:48. [PMID: 39670310 DOI: 10.3892/mmr.2024.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Metabolic reprogramming is a prominent characteristic of tumor cells, evidenced by heightened secretion of lactate, which is linked to tumor progression. Furthermore, the accumulation of lactate in the tumor microenvironment (TME) influences immune cell activity, including the activity of macrophages, dendritic cells and T cells, fostering an immunosuppressive milieu. Anti‑programmed cell death protein 1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) therapy is associated with a prolonged survival time of patients with non‑small cell lung cancer. However, some patients still develop resistance to anti‑PD‑1/PD‑L1 therapy. Lactate is associated with resistance to anti‑PD‑1/PD‑L1 therapy. The present review summarizes what is known about lactate metabolism in tumor cells and how it affects immune cell function. In addition, the present review emphasizes the relationship between lactate secretion and immunotherapy resistance. The present review also explores the potential for targeting lactate within the TME to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yi Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
6
|
Lan YZ, Wu Z, Chen WJ, Yu XN, Wu HT, Liu J. Sine oculis homeobox homolog family function in gastrointestinal cancer: Progression and comprehensive analysis. World J Clin Oncol 2025; 16:97163. [PMID: 39867730 PMCID: PMC11528897 DOI: 10.5306/wjco.v16.i1.97163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from SIX1 to SIX6, each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions. Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development. While the development of inhibitors targeting this gene family is still in its early stages, the significant potential of such interventions holds promise for future therapeutic advances. Therefore, this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers, focusing on its critical role in normal organ development and its implications in gastrointestinal cancers, including gastric, pancreatic, colorectal cancer, and hepatocellular carcinomas. In conclusion, this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis, prognosis, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
7
|
Huang K, Han Y, Chen Y, Shen H, Zeng S, Cai C. Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy. Mol Cancer 2025; 24:7. [PMID: 39789606 PMCID: PMC11716519 DOI: 10.1186/s12943-024-02205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) is a hallmark of cancer and a crucial determinant of tumor progression. Research indicates that various metabolic regulators form a metabolic network in the TME and interact with immune cells, coordinating the tumor immune response. Metabolic dysregulation creates an immunosuppressive TME, impairing the antitumor immune response. In this review, we discuss how metabolic regulators affect the tumor cell and the crosstalk of TME. We also summarize recent clinical trials involving metabolic regulators and the challenges of metabolism-based tumor therapies in clinical translation. In a word, our review distills key regulatory factors and their mechanisms of action from the complex reprogramming of tumor metabolism, identified as tumor metabolic regulators. These regulators provide a theoretical basis and research direction for the development of new strategies and targets in cancer therapy based on tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Kun Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
8
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
9
|
Feng K, Shao Y, Li J, Guan X, Liu Q, Hu M, Chu M, Li H, Chen F, Yi Z, Zhang J. A lactate-responsive gene signature predicts the prognosis and immunotherapeutic response of patients with triple-negative breast cancer. CANCER INNOVATION 2024; 3:e124. [PMID: 38948251 PMCID: PMC11212277 DOI: 10.1002/cai2.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Background Increased glycolytic activity and lactate production are characteristic features of triple-negative breast cancer (TNBC). The aim of this study was to determine whether a subset of lactate-responsive genes (LRGs) could be used to classify TNBC subtypes and predict patient outcomes. Methods Lactate levels were initially measured in different breast cancer (BC) cell types. Subsequently, MDA-MB-231 cells treated with 2-Deoxy-d-glucose or l-lactate were subjected to RNA sequencing (RNA-seq). The gene set variation analysis algorithm was utilized to calculate the lactate-responsive score, conduct a differential analysis, and establish an association with the extent of immune infiltration. Consensus clustering was then employed to classify TNBC patients. Tumor immune dysfunction and exclusion, cibersort, single-sample gene set enrichment analysis, and EPIC, were used to compare the tumor-infiltrating immune cells between TNBC subtypes and predict the response to immunotherapy. Furthermore, a prognostic model was developed by combining 98 machine learning algorithms, to assess the predictive significance of the LRG signature. The predictive value of immune infiltration and the immunotherapy response was also assessed. Finally, the association between lactate and various anticancer drugs was examined based on expression profile similarity principles. Results We found that the lactate levels of TNBC cells were significantly higher than those of other BC cell lines. Through RNA-seq, we identified 14 differentially expressed LRGs in TNBC cells under varying lactate levels. Notably, this LRG signature was associated with interleukin-17 signaling pathway dysregulation, suggesting a link between lactate metabolism and immune impairment. Furthermore, the LRG signature was used to categorize TNBC into two distinct subtypes, whereby Subtype A was characterized by immunosuppression, whereas Subtype B was characterized by immune activation. Conclusion We identified an LRG signature in TNBC, which could be used to predict the prognosis of patients with TNBC and gauge their response to immunotherapy. Our findings may help guide the precision treatment of patients with TNBC.
Collapse
Affiliation(s)
- Kaixiang Feng
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Youcheng Shao
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Jun Li
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Xiaoqing Guan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Qin Liu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Meishun Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Mengfei Chu
- Department of Human Anatomy, TaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Hui Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Fangfang Chen
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Zongbi Yi
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
| |
Collapse
|
10
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Zhang H, Han B, Tian S, Gong Y, Chen L, Liu L. HOXC4 promotes proliferation of pancreatic cancer cells by increasing LDHA-mediated glycolysis. Aging (Albany NY) 2024; 16:11103-11116. [PMID: 38990159 PMCID: PMC11272123 DOI: 10.18632/aging.206008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 07/12/2024]
Abstract
Homeobox C4 (HOXC4) is a member of homeobox family and acts as a transcription factor in regulating morphological development. The current study aimed to determine its role in pancreatic cancer (PC). Bioinformatics analysis was employed to assess the expression and clinical significance of HOXC4 in PC, while the expression of HOXC4 was further confirmed in PC tissues through quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The impact of HOXC4 on PC cell proliferation was evaluated using various assays including Cell Counting Kit-8, colony formation, apoptosis detection, cell cycle analysis, and subcutaneous tumorigenesis. Extracellular acidification rate, glucose uptake, and lactate production measurements were detected to examine the impact of HOXC4 on glycolysis. The relationship between HOXC4 and lactate dehydrogenase A (LDHA) was investigated using CHIP assay, luciferase reporter assay, and western blot. Notably, there was a substantial increase in HOXC4 expression in PC, and patients with elevated HOXC4 levels exhibited shorter survival durations. HOXC4 knockdown resulted in significantly reduced proliferation and colony formation in PC cells, accompanied by increased apoptosis and G1 phase arrest. The overexpression of HOXC4 resulted in contrasting effects. In vivo, the proliferation of PC cells was diminished upon the knockdown of HOXC4. HOXC4 exhibited an increase in LDHA expression by binding to its promoter. The suppressive effects of HOXC4 knockdown on PC cells were counteracted upon the restoration of LDHA. In conclusion, HOXC4 promoted the proliferation of PC cells by increasing LDHA-mediated glycolysis. HOXC4 can act as a target for PC therapy.
Collapse
Affiliation(s)
- Hao Zhang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Han
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - She Tian
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yongjun Gong
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liwen Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Miao L, Lu C, Zhang B, Li H, Zhao X, Chen H, Liu Y, Cui X. Advances in metabolic reprogramming of NK cells in the tumor microenvironment on the impact of NK therapy. J Transl Med 2024; 22:229. [PMID: 38433193 PMCID: PMC10909296 DOI: 10.1186/s12967-024-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells are unique from other immune cells in that they can rapidly kill multiple neighboring cells without the need for antigenic pre-sensitization once the cells display surface markers associated with oncogenic transformation. Given the dynamic role of NK cells in tumor surveillance, NK cell-based immunotherapy is rapidly becoming a "new force" in tumor immunotherapy. However, challenges remain in the use of NK cell immunotherapy in the treatment of solid tumors. Many metabolic features of the tumor microenvironment (TME) of solid tumors, including oxygen and nutrient (e.g., glucose, amino acids) deprivation, accumulation of specific metabolites (e.g., lactate, adenosine), and limited availability of signaling molecules that allow for metabolic reorganization, multifactorial shaping of the immune-suppressing TME impairs tumor-infiltrating NK cell function. This becomes a key barrier limiting the success of NK cell immunotherapy in solid tumors. Restoration of endogenous NK cells in the TME or overt transfer of functionally improved NK cells holds great promise in cancer therapy. In this paper, we summarize the metabolic biology of NK cells, discuss the effects of TME on NK cell metabolism and effector functions, and review emerging strategies for targeting metabolism-improved NK cell immunotherapy in the TME to circumvent these barriers to achieve superior efficacy of NK cell immunotherapy.
Collapse
Affiliation(s)
- Linxuan Miao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Chenglin Lu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Huili Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Xu Zhao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Haoran Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| |
Collapse
|