1
|
Huang Y, Fang Y, Jie H, Yang H, Zhou W, Chen Y, Zhong B. Network pharmacology and molecular docking to scientifically validate the potential mechanism of Lonicerae japonicae flos in the clinical treatment of COVID-19. Nat Prod Res 2024; 38:3699-3706. [PMID: 37732603 DOI: 10.1080/14786419.2023.2260070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Using network pharmacology and molecular docking, we predicted the potential mechanisms of Lonicerae japonicae flos (LJF) therapy for COVID-19. A total of 493 component-related targets and 6,233 COVID-19-related genes were identified, and 267 core genes with overlapping of the two types of genes were identified. The target AKT1, CASP3, IL1B, IL6, PTGS2, TNF and JUN were the hub genes in PPI network according to MCODE score. Component-Target analysis showed the close relationship between targets and components. The results of functional enrichment analyses revealed that LJF exerted pharmacological effects on COVID-19 by regulating IL-17 signalling pathway, TNF signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Toll-like receptor signalling pathway. Finally, molecular docking confirmed a strong binding affinity between the 7 main active components with the hub genes. The findings suggested that beta-sitosterol, kaempferol and luteolin might be the promising leading components due to their good molecular docking scores.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, P.R. China
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, P.R. China
| | - Yan Fang
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, P.R. China
| | - Huanhuan Jie
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, P.R. China
| | - Hongbiao Yang
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, P.R. China
| | - Wen Zhou
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, P.R. China
| | - Yijian Chen
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, P.R. China
| | - Baolin Zhong
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, P.R. China
| |
Collapse
|
2
|
Cao Z, Wang X, Zeng Z, Yang Z, Lin Y, Sun L, Lu Q, Fan G. The improvement of modified Si-Miao granule on hepatic insulin resistance and glycogen synthesis in type 2 diabetes mellitus involves the inhibition of TNF-α/JNK1/IRS-2 pathway: network pharmacology, molecular docking, and experimental validation. Chin Med 2024; 19:128. [PMID: 39285464 PMCID: PMC11403785 DOI: 10.1186/s13020-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Modified Si-Miao granule (mSMG), a traditional Chinese medicine, is beneficial for T2DM and insulin resistance (IR), but the underlying mechanism remains unknown. METHODS Using network pharmacology, we screened the compounds of mSMG and identified its targets and pathway on hepatic IR in T2DM. Using molecular docking, we identified the affinity between the compounds and hub target TNF-α. Then these were verified in KK-Ay mice and HepG2 cells. RESULTS 50 compounds and 170 targets of mSMG against IR in T2DM were screened, and 9 hub targets such as TNF and MAPK8 were identified. 170 targets were mainly enriched in insulin resistance and TNF pathway, so we speculated that mSMG might act on TNF-α, JNK1 and then regulate insulin signaling to mitigate IR. Experimental validation proved that mSMG ameliorated hyperglycemia, IR, and TNF-α, enhanced glucose consumption and glycogen synthesis, relieved the phosphorylation of JNK1 and IRS-2 (Ser388), and elevated the phosphorylation of Akt (Ser473) and GSK-3β (Ser9) and GLUT2 expression in KK-Ay mice. Molecular docking further showed berberine from mSMG had excellent binding capacity with TNF-α. Then, in vitro validation experiments, we found that 20% mSMG-MS or 50 μM berberine had little effect in IR-HepG2 cell viability, but significantly increased glucose consumption and glycogen synthesis and regulated TNF-α/JNK1/IRS-2 pathway. CONCLUSION Network pharmacology and molecular docking help us predict potential mechanism of mSMG and further guide experimental validation. mSMG and its representative compound berberine improve hepatic IR and glycogen synthesis, and its mechanism may be related to the inhibition of TNF-α/JNK1/IRS-2 pathway.
Collapse
Affiliation(s)
- Zebiao Cao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianzhe Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhili Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaojun Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuping Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyun Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanjie Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Sun Z, Deng L, Xu Z, Yang K, Yu P. Uncovering the molecular mechanism of Mume Fructus in treatment of Sjögren's syndrome. Medicine (Baltimore) 2024; 103:e38085. [PMID: 38728503 PMCID: PMC11081559 DOI: 10.1097/md.0000000000038085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Modern medicine has no cure for the xerostomia caused by the early onset of Sjögren's syndrome. Mume Fructus is a common Chinese herbal medicine used to relieve xerostomia. However, the molecular mechanisms of the effects of Mume Fructus are unknown. In this study, network pharmacology and molecular docking were used to investigate the mechanisms of action of Mume Fructus on Sjögren's syndrome. MATERIALS AND METHOD The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to identify the active components and targets of Mume Fructus, and the UniProt database was used to identify the genes encoding these targets. SS-related targets were also identified from the GeneCards and OMIM databases. By finding the intersection of the targets of the compounds and the targets of Sjögren's syndrome, the predicted targets of Mume Fructus in the treatment of Sjögren's syndrome were obtained. Further investigation of the active compounds and their targets was carried out by constructing a network of "medicine-candidate compound-target-disease" using Cytoscape 3.7.2, the Protein-Protein Interaction network using the STRING database and Cytoscape 3.7.2, and key targets were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on R software. Finally, molecular docking was used to verify the affinity of the candidate compounds to the key targets. RESULTS Quercetin, beta-sitosterol, and kaempferol in Mume Fructus interact with AKT1, IL-6, IL-1B, JUN, CASP3, and MAPK8. These results suggest that Mume Fructus exerts its therapeutic effects on the peripheral gland injury of Sjögren's syndrome and its secondary cardiovascular disease and tumorigenesis through anti-inflammatory, anti-oxidant, and anti-tumor pathways. CONCLUSION With network pharmacology, this study systematically identified the main active components, targets, and specific mechanisms of the therapeutic effects of Mume Fructus on Sjögren's syndrome, providing both a theoretical basis and research direction for further investigations on Mume Fructus.
Collapse
Affiliation(s)
- Zhongli Sun
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Lilin Deng
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Zhoujie Xu
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Kun Yang
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| | - Penglong Yu
- Chongqing Three Gorges Medical College, Chongqing, P.R. China
| |
Collapse
|
4
|
Gupta S, Tak H, Rathore K, Banavath HN, Tejavath KK. Caffeic acid, a dietary polyphenol, pre-sensitizes pancreatic ductal adenocarcinoma to chemotherapeutic drug. J Biomol Struct Dyn 2024:1-15. [PMID: 38385452 DOI: 10.1080/07391102.2024.2318481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Resistance to chemotherapeutics is an eminent cause that leads to search for options that help in diminution of pancreatic ductal adenocarcinoma (PDAC) by overcoming resistance issues. Caffeic acid (CFA), a polyphenol occurring in many dietary foods, is known to show antidiabetic and anticancer properties potential. To unveil the effect of CFA on PDAC, we carried out this research in PDAC cells, following which we checked the combination effect of CFA and chemotherapeutics and pre-sensitization effects of CFA. Multitudinous web-based approaches were applied for identifying CFA targets in PDAC and then getting their interconnections. Subsequently, we manifested CFA effects by in-vitro analysis showing IC50 concentrations of 37.37 and 15.06 µM on Panc-1 and Mia-PaCa-2, respectively. The combination index of CFA with different drugs was explored which showed the antagonistic effects of combination treatment leading to further investigation of the pre-sensitizing effects. CFA pre-sensitization reduced IC50 concentration of doxorubicin in both PDAC cell lines which also triggered ROS generation determined by 2',7'-dichlorofluorescin diacetate assay. The differential gene expression analysis after CFA treatment showed discrete genes affected in both cells, i.e. N-Cad and Cas9 in Panc-1 and Pi3K/AkT/mTOR along with p53 in Mia-PaCa-2. Collectively, this study investigated the role of CFA as PDAC therapeutics and explored the mechanism in mitigating resistance of PDAC by sensitizing to chemotherapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Harshita Tak
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Khushhal Rathore
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| |
Collapse
|
5
|
Xu T, He P, namWangdu S, Xu C, Hou B, Ma P, Wang Z, Zhang L, Du G, Ring T, Ji T, Qiang G. Revealing the improvement of diabetes by Si Wei Jiang Huang Tang San through ERK/HIF1α signaling pathway via network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117254. [PMID: 37778519 DOI: 10.1016/j.jep.2023.117254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si Wei Jiang Huang Tang San (SWJHTS) is a traditional Tibetan medicine prescription for the treatment of urethritis, frequent urination, and urgency, composed of four traditional Chinese medicines: Curcumae longae rhizoma, Berberidis cortex, Tribuli fructus, and Phyllanthi fructus. However, whether SWJHTS exhibits hypoglycemic efficacy and its specific mechanism remain unclear. AIM OF THE STUDY In this study, we aimed to investigate the anti-diabetic effects of SWJHTS and elucidate the underlying mechanism. MATERIALS AND METHODS HPLC-MS method was used to identify the key components of four kinds of traditional Chinese medicine (Curcumae longae rhizoma, Berberidis cortex., Tribuli fructus, and Phyllanthi fructus) which composed SWJHTS and determine their structure. Normal mice and 145 mg/kg STZ-induced type 1 diabetic mice were treated with three doses of SWJTHS by oral gavage. Body weight, 24h food and water intake, fasting blood glucose, glucose tolerance and other indicators were measured to evaluate the hypoglycemic effect of SWJHTS. OMIM, Genecards and other databases were used to collect targets of diabetes, and HPLC-MS results and TCMSP database information were used to collect drug component targets. Bioinformatics methods such as pathway enrichment analysis and molecular docking were used to predict the key targets of SWJHTS. The gene and protein expressions of HIF1α and ERK signaling pathways in HepG2 cells treated with SWJHTS were detected by RT-PCR and Western blot. RESULTS A total of 181 components were identified, including curcumin, palmatine, and berberine, etc. The in vivo studies showed that SWJHTS could significantly lower fasting blood glucose levels and improve the symptoms of polydipsia, polyphagia, and polyuria in diabetic mice. Furthermore, we identified HIF1α as the potential key target of SWJHTS against diabetes utilizing network pharmacology approach and in silico molecular docking. Subsequently, we experimentally confirmed that SWJHTS could suppress the high glucose-induced upregulation of HIF1α expression, which mediated the glucose consumption in HepG2 cells. The ERK signaling pathway was further found to be activated by the SWJHTS as the upstream of HIF1α. CONCLUSIONS SWJHTS can improve glucose metabolism by targeting the ERK/HIF1α signaling pathway; hence might be a prospective anti-diabetic drug for diabetic patients as traditional Tibetan medicine.
Collapse
Affiliation(s)
- Tianshu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China; College of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - So namWangdu
- Hospital of Tibetan Traditional Medicine, Tibet Autonomous Region, 850000, China
| | - Chunyang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China; Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China
| | - Tse Ring
- Hospital of Tibetan Traditional Medicine, Tibet Autonomous Region, 850000, China.
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, 100050, China.
| |
Collapse
|