1
|
Kędzia K, Szmajda-Krygier D, Krygier A, Jabłoński S, Balcerczak E, Wcisło S. Altered carnitine transporter genes ( SLC22A5, SLC22A16, SLC6A14) expression pattern among lung cancer patients. Transl Lung Cancer Res 2024; 13:2903-2917. [PMID: 39670016 PMCID: PMC11632432 DOI: 10.21037/tlcr-24-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 12/14/2024]
Abstract
Background Despite the decrease of morbidity rate of non-small cell lung cancer (NSCLC) in recent years, it is still a cancer with poor prognosis. Lung cancers (LCs) are usually diagnosed at a late stage of the disease due to non-specific clinical symptoms. Proper regulation of carnitine levels is important in the context of development and increased risk of cancer cells proliferation. The expression profiles and clinical value of SLC family members in LC remain largely unexplored. The aim of the study was the assessment of SLC22A16, SLC22A5 and SLC6A14 mRNA expression level among patients suffering from NSCLC. The obtained results were compared with the clinical and the pathological features of NSCLC patients. Methods Through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and bioinformatics studies, the evaluation of carnitine transporting genes (SLC22A16, SLC22A5 and SLC6A14) mRNA levels was performed in order to elucidate their connection to clinical features of patients and influence on overall survival (OS). Results The analysis showed a significant difference for the SLC22A5 gene of NSCLC patients and for SLC6A14 and SLC22A5 genes in LUSC patients in terms of sex (P=0.002, P=0.02 and P=0.001, respectively) and in terms of tobacco smoking (P=0.04). Analysis also revealed a significant negative correlation for SLC22A5 and SLC22A16 genes expression level in the lung adenocarcinoma (LUAD) subtype with standardized uptake value (SUV) (r=-0.40, P=0.02 and r=-0.43, P=0.04). The significant downregulation of gene expression compared to normal adjacent tissue was observed for SLC22A5 in lung squamous cell carcinoma (LUSC) and for SLC6A14 in both LUAD and LUSC subtypes. The effect of the SLC22A5, SLC22A16 and SLC6A14 gene expression at the time of diagnosis on the OS time of LC patients revealed that lower expression correlated with a shorter 5 years OS (all P values <0.01). The effects were distinct after division for LUAD and LUSC subtypes. Conclusions The expression levels of genes encoding carnitine transporters are diverse, hinting at a potentially altered carnitine metabolism in LC patients. Notably, this variance is not uniform and exhibits specificity across LC subtypes, with marked distinctions between LUAD and LUSC. The correlation between gene expression levels and OS of patients underlines the prognostic significance of SLC genes within these cancer subtypes.
Collapse
Affiliation(s)
- Konrad Kędzia
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz and Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz-Central Veteran Hospital, Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Lodz, Poland
| | - Adrian Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Lodz, Poland
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz and Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz-Central Veteran Hospital, Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Lodz, Poland
| | - Szymon Wcisło
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz and Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz-Central Veteran Hospital, Lodz, Poland
| |
Collapse
|
2
|
Amrutkar M, Guttorm SJT, Finstadsveen AV, Labori KJ, Eide L, Rootwelt H, Elgstøen KBP, Gladhaug IP, Verbeke CS. Global metabolomic profiling of tumor tissue and paired serum samples to identify biomarkers for response to neoadjuvant FOLFIRINOX treatment of human pancreatic cancer. Mol Oncol 2024. [PMID: 39545923 DOI: 10.1002/1878-0261.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Neoadjuvant chemotherapy (NAT) is increasingly used for the treatment of non-metastatic pancreatic ductal adenocarcinoma (PDAC) and is established as a standard of care for borderline resectable and locally advanced PDAC. However, full exploitation of its clinical benefits is limited by the lack of biomarkers that assess treatment response. To address this unmet need, global metabolomic profiling was performed on tumor tissue and paired serum samples from patients with treatment-naïve (TN; n = 18) and neoadjuvant leucovorin calcium (folinic acid), fluorouracil, irinotecan hydrochloride and oxaliplatin (FOLFIRINOX)-treated (NAT; n = 17) PDAC using liquid chromatography mass spectrometry. Differentially abundant metabolites (DAMs) in TN versus NAT groups were identified and their correlation with various clinical parameters was assessed. Metabolomics profiling identified 40 tissue and five serum DAMs in TN versus NAT PDAC. In general, DAMs associated with amino acid and nucleotide metabolism were lower in NAT compared to TN. Four DAMs-3-hydroxybutyric acid (BHB), 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), glycochenodeoxycholate and citrulline-were common to both tissue and serum and showed a similar pattern of differential abundance in both groups. A strong positive correlation was observed between serum carbohydrate 19-9 antigen (CA 19-9) and tissue carnitines (C12, C18, C18:2) and N8-acetylspermidine. The reduction in CA 19-9 following NAT correlated negatively with serum deoxycholate levels, and the latter correlated positively with survival. This study revealed neoadjuvant-chemotherapy-induced changes in metabolic pathways in PDAC, mainly amino acid and nucleotide metabolism, and these correlated with reduced CA 19-9 following neoadjuvant FOLFIRINOX treatment.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Norway
| | - Sander Johannes Thorbjørnsen Guttorm
- Department of Medical Biochemistry, Division of Laboratory Medicine, Oslo University Hospital, Norway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | | | - Knut Jørgen Labori
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Division of Laboratory Medicine, Oslo University Hospital, Norway
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Division of Laboratory Medicine, Oslo University Hospital, Norway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Katja Benedikte Prestø Elgstøen
- Department of Medical Biochemistry, Division of Laboratory Medicine, Oslo University Hospital, Norway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Ivar P Gladhaug
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
| | - Caroline S Verbeke
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
3
|
Duan Y, Liu J, Li A, Liu C, Shu G, Yin G. The Role of the CPT Family in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:892. [PMID: 39596847 PMCID: PMC11592116 DOI: 10.3390/biology13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Along with abnormalities in glucose metabolism, disturbances in the balance of lipid catabolism and synthesis have emerged as a new area of cancer metabolism that needs to be studied in depth. Disturbances in lipid metabolic homeostasis, represented by fatty acid oxidation (FAO) imbalance, leading to activation of pro-cancer signals and abnormalities in the expression and activity of related metabolically critical rate-limiting enzymes, have become an important part of metabolic remodeling in cancer. The FAO process is a metabolic pathway that facilitates the breakdown of fatty acids into CO2 and H2O and releases large amounts of energy in the body under aerobic conditions. More and more studies have shown that FAO provides an important energy supply for the development of cancer cells. At the same time, the CPT family, including carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2), are key rate-limiting enzymes for FAO that exert a pivotal influence on the genesis and progression of neoplastic growth. Therefore, we look at molecular structural properties of the CPT family, the roles they play in tumorigenesis and development, the target drugs, and the possible regulatory roles of CPTs in energy metabolism reprogramming to help understand the current state of CPT family research and to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Ailin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Chang Liu
- School of Basic Medical Sciences, Central South University, Changsha 410000, China;
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
4
|
Daniel N, Farinella R, Chatziioannou AC, Jenab M, Mayén AL, Rizzato C, Belluomini F, Canzian F, Tavanti A, Keski-Rahkonen P, Hughes DJ, Campa D. Genetically predicted gut bacteria, circulating bacteria-associated metabolites and pancreatic ductal adenocarcinoma: a Mendelian randomisation study. Sci Rep 2024; 14:25144. [PMID: 39448785 PMCID: PMC11502931 DOI: 10.1038/s41598-024-77431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high mortality and rising incidence rates. Recent data indicate that the gut microbiome and associated metabolites may play a role in the development of PDAC. To complement and inform observational studies, we investigated associations of genetically predicted abundances of individual gut bacteria and genetically predicted circulating concentrations of microbiome-associated metabolites with PDAC using Mendelian randomisation (MR). Gut microbiome-associated metabolites were identified through a comprehensive search of Pubmed, Exposome Explorer and Human Metabolome Database. Single Nucleotide Polymorphisms (SNPs) associated by Genome-Wide Association Studies (GWAS) with circulating levels of 109 of these metabolites were collated from Pubmed and the GWAS catalogue. SNPs for 119 taxonomically defined gut genera were selected from a meta-analysis performed by the MiBioGen consortium. Two-sample MR was conducted using GWAS summary statistics from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including a total of 8,769 cases and 7,055 controls. Inverse variance-weighted MR analyses were performed along with sensitivity analyses to assess potential violations of MR assumptions. Nominally significant associations were noted for genetically predicted circulating concentrations of mannitol (odds ratio per standard deviation [ORSD] = 0.97; 95% confidence interval [CI]: 0.95-0.99, p = 0.006), methionine (ORSD= 0.97; 95%CI: 0.94-1.00, p = 0.031), stearic acid (ORSD= 0.93; 95%CI: 0.87-0.99, p = 0.027), carnitine = (ORSD=1.01; 95% CI: 1.00-1.03, p = 0.027), hippuric acid (ORSD= 1.02; 95%CI: 1.00-1.04, p = 0.038) and 3-methylhistidine (ORSD= 1.05; 95%CI: 1.01-1.10, p = 0.02). Two gut microbiome genera were associated with reduced PDAC risk; Clostridium sensu stricto 1 (OR: 0.88; 95%CI: 0.78-0.99, p = 0.027) and Romboutsia (OR: 0.87; 95%CI: 0.80-0.96, p = 0.004). These results, though based only on genetically predicted gut microbiome characteristics and circulating bacteria-related metabolite concentrations, provide evidence for causal associations with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Liu DN, Zhang WF, Feng WD, Xu S, Feng DH, Song FH, Zhang HW, Fang LH, Du GH, Wang YH. Chrysomycin A Reshapes Metabolism and Increases Oxidative Stress to Hinder Glioblastoma Progression. Mar Drugs 2024; 22:391. [PMID: 39330272 PMCID: PMC11433325 DOI: 10.3390/md22090391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Dong-Ni Liu
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Wen-Fang Zhang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Wan-Di Feng
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Shuang Xu
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Dan-Hong Feng
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Fu-Hang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Lian-Hua Fang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Guan-Hua Du
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Yue-Hua Wang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| |
Collapse
|
7
|
Díaz-Grijuela E, Hernández A, Caballero C, Fernandez R, Urtasun R, Gulak M, Astigarraga E, Barajas M, Barreda-Gómez G. From Lipid Signatures to Cellular Responses: Unraveling the Complexity of Melanoma and Furthering Its Diagnosis and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1204. [PMID: 39202486 PMCID: PMC11356604 DOI: 10.3390/medicina60081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
Recent advancements in mass spectrometry have significantly enhanced our understanding of complex lipid profiles, opening new avenues for oncological diagnostics. This review highlights the importance of lipidomics in the comprehension of certain metabolic pathways and its potential for the detection and characterization of various cancers, in particular melanoma. Through detailed case studies, we demonstrate how lipidomic analysis has led to significant breakthroughs in the identification and understanding of cancer types and its potential for detecting unique biomarkers that are instrumental in its diagnosis. Additionally, this review addresses the technical challenges and future perspectives of these methodologies, including their potential expansion and refinement for clinical applications. The discussion underscores the critical role of lipidomic profiling in advancing cancer diagnostics, proposing a new paradigm in how we approach this devastating disease, with particular emphasis on its application in comparative oncology.
Collapse
Affiliation(s)
| | | | | | - Roberto Fernandez
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Universidad Pública de Navarra, 31006 Pamplona, Spain; (R.U.); (M.B.)
| | | | - Egoitz Astigarraga
- Betternostics SL, 31110 Noáin, Spain; (E.D.-G.); (A.H.); (C.C.)
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Universidad Pública de Navarra, 31006 Pamplona, Spain; (R.U.); (M.B.)
| | - Gabriel Barreda-Gómez
- Betternostics SL, 31110 Noáin, Spain; (E.D.-G.); (A.H.); (C.C.)
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| |
Collapse
|
8
|
Dikalov S, Panov A, Dikalova A. Critical Role of Mitochondrial Fatty Acid Metabolism in Normal Cell Function and Pathological Conditions. Int J Mol Sci 2024; 25:6498. [PMID: 38928204 PMCID: PMC11203650 DOI: 10.3390/ijms25126498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
There is a "popular" belief that a fat-free diet is beneficial, supported by the scientific dogma indicating that high levels of fatty acids promote many pathological metabolic, cardiovascular, and neurodegenerative conditions. This dogma pressured scientists not to recognize the essential role of fatty acids in cellular metabolism and focus on the detrimental effects of fatty acids. In this work, we critically review several decades of studies and recent publications supporting the critical role of mitochondrial fatty acid metabolism in cellular homeostasis and many pathological conditions. Fatty acids are the primary fuel source and essential cell membrane building blocks from the origin of life. The essential cell membranes phospholipids were evolutionarily preserved from the earlier bacteria in human subjects. In the past century, the discovery of fatty acid metabolism was superseded by the epidemic growth of metabolic conditions and cardiovascular diseases. The association of fatty acids and pathological conditions is not due to their "harmful" effects but rather the result of impaired fatty acid metabolism and abnormal lifestyle. Mitochondrial dysfunction is linked to impaired metabolism and drives multiple pathological conditions. Despite metabolic flexibility, the loss of mitochondrial fatty acid oxidation cannot be fully compensated for by other sources of mitochondrial substrates, such as carbohydrates and amino acids, resulting in a pathogenic accumulation of long-chain fatty acids and a deficiency of medium-chain fatty acids. Despite popular belief, mitochondrial fatty acid oxidation is essential not only for energy-demanding organs such as the heart, skeletal muscle, and kidneys but also for metabolically "inactive" organs such as endothelial and epithelial cells. Recent studies indicate that the accumulation of long-chain fatty acids in specific organs and tissues support the impaired fatty acid oxidation in cell- and tissue-specific fashion. This work, therefore, provides a basis to challenge these established dogmas and articulate the need for a paradigm shift from the "pathogenic" role of fatty acids to the critical role of fatty acid oxidation. This is important to define the causative role of impaired mitochondrial fatty acid oxidation in specific pathological conditions and develop novel therapeutic approaches targeting mitochondrial fatty acid metabolism.
Collapse
Affiliation(s)
- Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 554, Nashville, TN 37232, USA; (A.P.); (A.D.)
| | | | | |
Collapse
|
9
|
Li M, Zhang Y, Liu J, Zhang D. Complementary and alternative medicine: A narrative review of nutritional approaches for cancer-related fatigue. Medicine (Baltimore) 2024; 103:e37480. [PMID: 38489718 PMCID: PMC10939540 DOI: 10.1097/md.0000000000037480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Cancer-related fatigue (CRF) is a common symptom among patients with cancer, with a prevalence of >49%. CRF significantly affects the quality of life of patients and may also affect their overall survival. Pharmacological interventions serve as a last resort after carefully weighing the risks and benefits, with limited benefits for patients, many side effects, and adverse reactions. Compared to traditional medicine, nutritional approaches have fewer side effects, are highly accepted by patients, and do not affect the antitumor treatment of patients. Many studies have shown that nutritional approaches, as a form of complementary and alternative medicine, help improve the symptoms of CRF and the quality of life of patients. This study was designed to examine nutritional approaches to CRF and assess their effectiveness of nutritional approaches in improving CRF. We present an overview of clinical trials investigating nutritional approaches for CRF that have been published over the last 2 decades. A total of 33 records were obtained from 3 databases: Web of Science, MEDLINE, and PubMed. Some nutritional approaches, such as melatonin, PG2, and S-adenosyl-l-methionine, are potential options for CRF treatment. However, the trials included in the review varied widely in quality, most were weak in methodology, and there is currently insufficient evidence to conclude with certainty the effectiveness of nutritional approaches in reducing CRF. Therefore, the design and methods used in future complementary and alternative medicine trials should be more rigorous.
Collapse
Affiliation(s)
- Meng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, China
| | - Jimin Liu
- The Third Clinical Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dong Zhang
- College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|