1
|
Lian Q, Dong L, Zhou Q, Yuan Q. Effect of the oral microbiota, blood metabolome, and inflammatory proteins on oral cavity cancer: a bidirectional two-sample Mendelian randomization study and mediation analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102372. [PMID: 40246198 DOI: 10.1016/j.jormas.2025.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE Oral Cavity Cancer (OCC) pathogenesis is complex, extending beyond traditional risk factors. While observational studies link oral microbiome dysbiosis, metabolic disturbances, and inflammation to OCC, inherent confounding limits causal inference regarding the putative 'microbiome-metabolite-inflammation' axis in OCC. Establishing causality is crucial. METHODS We employed a two-sample Mendelian randomization (MR) framework using large-scale GWAS data to address this gap. We systematically evaluated causal effects of 43 oral microbial taxa, 1400 diverse circulating metabolites, and 91 inflammatory proteins on OCC risk. We performed univariable MR (UVMR) for direct effects, multivariable MR (MVMR) adjusting for interactions, and mediation MR dissecting causal pathways. RESULTS UVMR identified protective effects for Clostridiales (OR = 0.89) and Rothia sp. ASV0016 (OR = 0.91), and increased risk for Bacteroidales (OR = 1.09). Furthermore, 60 metabolites (e.g., glycohyocholate increasing risk; 16α-hydroxy DHEAS-3-sulfate decreasing risk) and two proteins (Cystatin D increasing risk, OR = 1.26; MCP-1 decreasing risk, OR = 0.69) showed causal links to OCC. Crucially, mediation analyses indicated protective microbial effects were partially mediated via specific metabolites, including 5α-androstan-3α,17β-diol disulfate (Clostridiales) and carboxyethyl-GABA (Rothia sp.). CONCLUSIONS This study provides robust genetic evidence supporting causal roles for specific oral microbes and metabolites in OCC etiology. It offers mechanistic insights into the 'oral microbiome-host metabolism' axis, providing a basis for novel microbiome/metabolite-based biomarkers for early detection and risk assessment, and identifying potential preventative or therapeutic targets.
Collapse
Affiliation(s)
- Qiwu Lian
- The Third Hospital of Changsha, Changsha, Hunan
| | | | - Qiaoyu Zhou
- Changsha Health Vocational College, Changsha, Hunan
| | - Qian Yuan
- The Third Hospital of Changsha, Changsha, Hunan.
| |
Collapse
|
2
|
Li Y, Yadollahi P, Essien FN, Putluri V, Ambati CSR, Kami Reddy KR, Kamal AHM, Putluri N, Abdurrahman LM, Ruiz Echartea ME, Ernste KJ, Trivedi AJ, Vazquez-Perez J, Hudson WH, Decker WK, Patel R, Osman AA, Kheradmand F, Lai SY, Myers JN, Skinner HD, Coarfa C, Lee K, Jain A, Malovannaya A, Frederick MJ, Sandulache VC. Tobacco smoke exposure is a driver of altered oxidative stress response and immunity in head and neck cancer. J Transl Med 2025; 23:403. [PMID: 40188338 PMCID: PMC11971752 DOI: 10.1186/s12967-025-06258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Exposomes are critical drivers of carcinogenesis. However, how they modulate tumor behavior remains unclear. Extensive clinical data show cigarette smoke to be a key exposome that promotes aggressive tumors, higher rates of metastasis, reduced response to chemoradiotherapy, and suppressed anti-tumor immunity. We sought to determine whether smoke itself can modulate aggressive tumor behavior in head and neck squamous cell carcinoma (HNSCC) through reprogramming of the cellular reductive state. METHODS Using established human and murine HNSCC cell lines and syngeneic mouse models, we utilized conventional western blotting, steady state and flux metabolomics, RNA sequencing, quantitative proteomics and flow cytometry to analyze the impact of smoke exposure on HNSCC tumor biology and anti-tumor immunity. RESULTS Cigarette smoke persistently activated Nrf2 target genes essential for maintenance of the cellular reductive state and survival under conditions of increased oxidative stress in HNSCC regardless of human papillomavirus (HPV) association. In contrast to e-cigarette vapor, conventional cigarette smoke mobilizes cellular metabolism toward oxidative stress adaptation, resulting in development of cross-resistance to cisplatin. In parallel, smoke exposure modulates expression of PDL1 and the secretory phenotype of HNSCC cells resulting in an altered tumor immune microenvironment (TIME) in syngeneic mouse models and downregulated expression of antigen presentation and costimulatory genes in myeloid cells. CONCLUSION The cigarette smoke exposome is a potent activator of the Nrf2 pathway and appears to be the primary trigger for a tripartite phenotype of aggressive HNSCC consisting of: (1) reduced chemotherapy sensitivity, (2) enhanced metastatic potential and (3) suppressed anti-tumor immunity.
Collapse
Affiliation(s)
- Yang Li
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, MS: NA102, Houston, TX, 77030, USA
| | - Pedram Yadollahi
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, MS: NA102, Houston, TX, 77030, USA
| | - Fonma N Essien
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, MS: NA102, Houston, TX, 77030, USA
| | - Vasanta Putluri
- Advanced Technology Cores, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chandra Shekar R Ambati
- Advanced Technology Cores, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Karthik Reddy Kami Reddy
- Advanced Technology Cores, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Abu Hena Mostafa Kamal
- Advanced Technology Cores, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Advanced Technology Cores, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lama M Abdurrahman
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, MS: NA102, Houston, TX, 77030, USA
| | - Maria E Ruiz Echartea
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Keenan J Ernste
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Akshar J Trivedi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - William H Hudson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - William K Decker
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Rutulkumar Patel
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Abdullah A Osman
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farrah Kheradmand
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Stephen Y Lai
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heath D Skinner
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Kwangwon Lee
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs Mclean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Mitchell J Frederick
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, MS: NA102, Houston, TX, 77030, USA
| | - Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, MS: NA102, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
3
|
Yu S, Gao Y, Zhao F, Zhou J, Zhang J. Metabolites and metabolic pathway reactions links to sensitization of immunotherapy in pan-cancer. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200933. [PMID: 39968095 PMCID: PMC11834090 DOI: 10.1016/j.omton.2025.200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Metabolic features are crucial in tumor immune interactions, but their relationship with antitumor immune responses is not yet fully understood. This study used Mendelian randomization analysis to identify the causal relationships between blood metabolites and immune cells and to evaluate the effects of metabolic pathways and reactions on antitumor immune responses in various cancers. Levels of 156 metabolites exhibited significant associations with selected immune cells. Metabolic enrichment analysis indicated laurate, propionyl-carnitine, carnitine and l-acetylcarnitine are enriched in fatty acid (FA) metabolism pathways. These enriched pathways are significantly correlated to CD8+ T cell function signatures in tumor environment and favor better prognostic outcomes. Metabolic reactions contributing to better immunotherapy responses were identified and used to establish the immuno-metabolic reaction score (IMRS). IMRS were significantly correlated to CD8+ T cell infiltration levels and CD8+ T cell signature scores in either 10× Visium spatial transcriptomic or RNA-seq samples. Finally, IMRS could significantly predict favorable survival outcomes in different cancer patients treated with immunotherapy. Our study revealed a link between certain metabolites and their related metabolic pathways to tumor immune landscape and immune functions. These results could promote the accurate stratification of patients before treatment and improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Shaobo Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Jiaqiang Zhou
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
4
|
Du Y, Xiao X, Liu F, Zhu W, Mo J, Liu Z. Causal effects of metabolites on malignant neoplasm of bone and articular cartilage: a mendelian randomization study. Front Genet 2025; 16:1366743. [PMID: 40098980 PMCID: PMC11911353 DOI: 10.3389/fgene.2025.1366743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Objective Previous research has demonstrated that metabolites play a significant role in modulating disease phenotypes; nevertheless, the causal association between metabolites and malignant malignancies of bones and joint cartilage (MNBAC)has not been fully elucidated. Methods This study used two-sample Mendelian randomization (MR) to explore the causal correlation between 1,400 metabolites and MNBAC. Data from recent genome-wide association studies (GWAS) involving 8,299 individuals were summarized. The GWAS summary data for metabolites were acquired from the IEU Open GWAS database, while those for MNBAC were contributed by the Finnish Consortium. We employed eight distinct MR methodologies: simple mode, maximum likelihood estimator, MR robust adjusted profile score, MR-Egger, weighted mode, weighted median, MR-PRESSO and inverse variance weighted to scrutinize the causal association between metabolites engendered by each gene and MNBAC. Consequently, we evaluated outliers, horizontal pleiotropy, heterogeneity, the impact of single nucleotide polymorphisms (SNPs), and adherence to the normal distribution assumption in the MR analysis. Results Our findings suggested a plausible causative relationship between N-Formylmethionine (FMet) levels, lignoceroylcarnitine (C24) levels, and MNBAC. We observed a nearly significant causal association between FMet levels and MNBAC within the cohort of 1,400 metabolites (P = 0.024, odds ratio (OR) = 3.22; 95% CI [1.16-8.92]). Moreover, we ascertained a significant causal link between levels of C24 and MNBAC (P = 0.0009; OR = 0.420; 95%CI [0.25-0.70]). These results indicate a potential causative relationship between FMet, C24 level and MNBAC. Conclusion The occurrence of MNBAC may be causally related to metabolites. This might unveil new possibilities for investigating early detection and treatment of MNBAC.
Collapse
Affiliation(s)
- Yongwei Du
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiqiu Xiao
- Department of Orthopedics, 8th People Hospital of Nankang, Ganzhou, China
| | - Fuping Liu
- Department of Emergency, Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Wenqing Zhu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianwen Mo
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhen Liu
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Amrutkar M, Guttorm SJT, Finstadsveen AV, Labori KJ, Eide L, Rootwelt H, Elgstøen KBP, Gladhaug IP, Verbeke CS. Global metabolomic profiling of tumor tissue and paired serum samples to identify biomarkers for response to neoadjuvant FOLFIRINOX treatment of human pancreatic cancer. Mol Oncol 2025; 19:391-411. [PMID: 39545923 PMCID: PMC11793008 DOI: 10.1002/1878-0261.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Neoadjuvant chemotherapy (NAT) is increasingly used for the treatment of non-metastatic pancreatic ductal adenocarcinoma (PDAC) and is established as a standard of care for borderline resectable and locally advanced PDAC. However, full exploitation of its clinical benefits is limited by the lack of biomarkers that assess treatment response. To address this unmet need, global metabolomic profiling was performed on tumor tissue and paired serum samples from patients with treatment-naïve (TN; n = 18) and neoadjuvant leucovorin calcium (folinic acid), fluorouracil, irinotecan hydrochloride and oxaliplatin (FOLFIRINOX)-treated (NAT; n = 17) PDAC using liquid chromatography mass spectrometry. Differentially abundant metabolites (DAMs) in TN versus NAT groups were identified and their correlation with various clinical parameters was assessed. Metabolomics profiling identified 40 tissue and five serum DAMs in TN versus NAT PDAC. In general, DAMs associated with amino acid and nucleotide metabolism were lower in NAT compared to TN. Four DAMs-3-hydroxybutyric acid (BHB), 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), glycochenodeoxycholate and citrulline-were common to both tissue and serum and showed a similar pattern of differential abundance in both groups. A strong positive correlation was observed between serum carbohydrate 19-9 antigen (CA 19-9) and tissue carnitines (C12, C18, C18:2) and N8-acetylspermidine. The reduction in CA 19-9 following NAT correlated negatively with serum deoxycholate levels, and the latter correlated positively with survival. This study revealed neoadjuvant-chemotherapy-induced changes in metabolic pathways in PDAC, mainly amino acid and nucleotide metabolism, and these correlated with reduced CA 19-9 following neoadjuvant FOLFIRINOX treatment.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pathology, Division of Laboratory MedicineOslo University HospitalNorway
| | - Sander Johannes Thorbjørnsen Guttorm
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | | | - Knut Jørgen Labori
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalOsloNorway
| | - Lars Eide
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Katja Benedikte Prestø Elgstøen
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Ivar P. Gladhaug
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalOsloNorway
| | - Caroline S. Verbeke
- Department of Pathology, Division of Laboratory MedicineOslo University HospitalNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| |
Collapse
|
6
|
Kirkwood-Donelson KI, Jarmusch AK, Bortner CD, Merrick BA, Sinha BK. Metabolic consequences of erastin-induced ferroptosis in human ovarian cancer cells: an untargeted metabolomics study. Front Mol Biosci 2025; 11:1520876. [PMID: 39902375 PMCID: PMC11788483 DOI: 10.3389/fmolb.2024.1520876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Ovarian cancer has been difficult to cure due to acquired or intrinsic resistance and therefore, newer or more effective drugs/approaches are needed for a successful treatment in the clinic. Erastin (ER), a ferroptosis inducer, kills tumor cells by generating and accumulating reactive oxygen species (ROS) within the cell, resulting in an iron-dependent oxidative damage-mediated ferroptotic cell death. Methods We have utilized human ovarian cancer cell lines, OVCAR-8 and its adriamycin-selected, multi-drug resistance protein (MDR1)-expressing NCI/ADR-RES, both equally sensitive to ER, to identify metabolic biomarkers of ferroptosis. Results Our studies showed that ER treatment rapidly depleted cellular glutathione and cysteine and enhanced formation of ophthalamate (OPH) in both cells. Opthalalmate has been proposed to be a biomarker of oxidative stress in cells. Our study also found significant decreases in cellular taurine, a natural antioxidant in cells. Additionally, we found that ER treatment decreased cellular levels of NAD+/NADP+, carnitines and glutamine/glutamate in both cells, suggesting significant oxidative stress, decrease in energy production, and cellular and mitochondrial disfunctions, leading to cell death. Conclusion Our studies identified several potential biomarkers of ER-induced ferroptosis including OPH, taurine, NAD+, NADP+ and glutamate in ovarian cancer cells. Identifying specific metabolic biomarkers that are predictive of whether a cancer is susceptible to ferroptosis will help us devise more successful treatment modalities.
Collapse
Affiliation(s)
- Kaylie I. Kirkwood-Donelson
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Alan K. Jarmusch
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Carl D. Bortner
- Laboratory of Signal Transduction, Research Triangle Park, NC, United States
| | - Bruce Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| | - Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| |
Collapse
|
7
|
Kędzia K, Szmajda-Krygier D, Krygier A, Jabłoński S, Balcerczak E, Wcisło S. Altered carnitine transporter genes ( SLC22A5, SLC22A16, SLC6A14) expression pattern among lung cancer patients. Transl Lung Cancer Res 2024; 13:2903-2917. [PMID: 39670016 PMCID: PMC11632432 DOI: 10.21037/tlcr-24-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 12/14/2024]
Abstract
Background Despite the decrease of morbidity rate of non-small cell lung cancer (NSCLC) in recent years, it is still a cancer with poor prognosis. Lung cancers (LCs) are usually diagnosed at a late stage of the disease due to non-specific clinical symptoms. Proper regulation of carnitine levels is important in the context of development and increased risk of cancer cells proliferation. The expression profiles and clinical value of SLC family members in LC remain largely unexplored. The aim of the study was the assessment of SLC22A16, SLC22A5 and SLC6A14 mRNA expression level among patients suffering from NSCLC. The obtained results were compared with the clinical and the pathological features of NSCLC patients. Methods Through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and bioinformatics studies, the evaluation of carnitine transporting genes (SLC22A16, SLC22A5 and SLC6A14) mRNA levels was performed in order to elucidate their connection to clinical features of patients and influence on overall survival (OS). Results The analysis showed a significant difference for the SLC22A5 gene of NSCLC patients and for SLC6A14 and SLC22A5 genes in LUSC patients in terms of sex (P=0.002, P=0.02 and P=0.001, respectively) and in terms of tobacco smoking (P=0.04). Analysis also revealed a significant negative correlation for SLC22A5 and SLC22A16 genes expression level in the lung adenocarcinoma (LUAD) subtype with standardized uptake value (SUV) (r=-0.40, P=0.02 and r=-0.43, P=0.04). The significant downregulation of gene expression compared to normal adjacent tissue was observed for SLC22A5 in lung squamous cell carcinoma (LUSC) and for SLC6A14 in both LUAD and LUSC subtypes. The effect of the SLC22A5, SLC22A16 and SLC6A14 gene expression at the time of diagnosis on the OS time of LC patients revealed that lower expression correlated with a shorter 5 years OS (all P values <0.01). The effects were distinct after division for LUAD and LUSC subtypes. Conclusions The expression levels of genes encoding carnitine transporters are diverse, hinting at a potentially altered carnitine metabolism in LC patients. Notably, this variance is not uniform and exhibits specificity across LC subtypes, with marked distinctions between LUAD and LUSC. The correlation between gene expression levels and OS of patients underlines the prognostic significance of SLC genes within these cancer subtypes.
Collapse
Affiliation(s)
- Konrad Kędzia
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz and Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz-Central Veteran Hospital, Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Lodz, Poland
| | - Adrian Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Lodz, Poland
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz and Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz-Central Veteran Hospital, Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Lodz, Poland
| | - Szymon Wcisło
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz and Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz-Central Veteran Hospital, Lodz, Poland
| |
Collapse
|
8
|
Duan Y, Liu J, Li A, Liu C, Shu G, Yin G. The Role of the CPT Family in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:892. [PMID: 39596847 PMCID: PMC11592116 DOI: 10.3390/biology13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Along with abnormalities in glucose metabolism, disturbances in the balance of lipid catabolism and synthesis have emerged as a new area of cancer metabolism that needs to be studied in depth. Disturbances in lipid metabolic homeostasis, represented by fatty acid oxidation (FAO) imbalance, leading to activation of pro-cancer signals and abnormalities in the expression and activity of related metabolically critical rate-limiting enzymes, have become an important part of metabolic remodeling in cancer. The FAO process is a metabolic pathway that facilitates the breakdown of fatty acids into CO2 and H2O and releases large amounts of energy in the body under aerobic conditions. More and more studies have shown that FAO provides an important energy supply for the development of cancer cells. At the same time, the CPT family, including carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2), are key rate-limiting enzymes for FAO that exert a pivotal influence on the genesis and progression of neoplastic growth. Therefore, we look at molecular structural properties of the CPT family, the roles they play in tumorigenesis and development, the target drugs, and the possible regulatory roles of CPTs in energy metabolism reprogramming to help understand the current state of CPT family research and to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Ailin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Chang Liu
- School of Basic Medical Sciences, Central South University, Changsha 410000, China;
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
9
|
Daniel N, Farinella R, Chatziioannou AC, Jenab M, Mayén AL, Rizzato C, Belluomini F, Canzian F, Tavanti A, Keski-Rahkonen P, Hughes DJ, Campa D. Genetically predicted gut bacteria, circulating bacteria-associated metabolites and pancreatic ductal adenocarcinoma: a Mendelian randomisation study. Sci Rep 2024; 14:25144. [PMID: 39448785 PMCID: PMC11502931 DOI: 10.1038/s41598-024-77431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high mortality and rising incidence rates. Recent data indicate that the gut microbiome and associated metabolites may play a role in the development of PDAC. To complement and inform observational studies, we investigated associations of genetically predicted abundances of individual gut bacteria and genetically predicted circulating concentrations of microbiome-associated metabolites with PDAC using Mendelian randomisation (MR). Gut microbiome-associated metabolites were identified through a comprehensive search of Pubmed, Exposome Explorer and Human Metabolome Database. Single Nucleotide Polymorphisms (SNPs) associated by Genome-Wide Association Studies (GWAS) with circulating levels of 109 of these metabolites were collated from Pubmed and the GWAS catalogue. SNPs for 119 taxonomically defined gut genera were selected from a meta-analysis performed by the MiBioGen consortium. Two-sample MR was conducted using GWAS summary statistics from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including a total of 8,769 cases and 7,055 controls. Inverse variance-weighted MR analyses were performed along with sensitivity analyses to assess potential violations of MR assumptions. Nominally significant associations were noted for genetically predicted circulating concentrations of mannitol (odds ratio per standard deviation [ORSD] = 0.97; 95% confidence interval [CI]: 0.95-0.99, p = 0.006), methionine (ORSD= 0.97; 95%CI: 0.94-1.00, p = 0.031), stearic acid (ORSD= 0.93; 95%CI: 0.87-0.99, p = 0.027), carnitine = (ORSD=1.01; 95% CI: 1.00-1.03, p = 0.027), hippuric acid (ORSD= 1.02; 95%CI: 1.00-1.04, p = 0.038) and 3-methylhistidine (ORSD= 1.05; 95%CI: 1.01-1.10, p = 0.02). Two gut microbiome genera were associated with reduced PDAC risk; Clostridium sensu stricto 1 (OR: 0.88; 95%CI: 0.78-0.99, p = 0.027) and Romboutsia (OR: 0.87; 95%CI: 0.80-0.96, p = 0.004). These results, though based only on genetically predicted gut microbiome characteristics and circulating bacteria-related metabolite concentrations, provide evidence for causal associations with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
11
|
Liu DN, Zhang WF, Feng WD, Xu S, Feng DH, Song FH, Zhang HW, Fang LH, Du GH, Wang YH. Chrysomycin A Reshapes Metabolism and Increases Oxidative Stress to Hinder Glioblastoma Progression. Mar Drugs 2024; 22:391. [PMID: 39330272 PMCID: PMC11433325 DOI: 10.3390/md22090391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Dong-Ni Liu
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Wen-Fang Zhang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Wan-Di Feng
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Shuang Xu
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Dan-Hong Feng
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Fu-Hang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Lian-Hua Fang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Guan-Hua Du
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| | - Yue-Hua Wang
- Beijiang Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (D.-N.L.); (W.-F.Z.); (W.-D.F.); (D.-H.F.); (L.-H.F.); (G.-H.D.)
| |
Collapse
|
12
|
Díaz-Grijuela E, Hernández A, Caballero C, Fernandez R, Urtasun R, Gulak M, Astigarraga E, Barajas M, Barreda-Gómez G. From Lipid Signatures to Cellular Responses: Unraveling the Complexity of Melanoma and Furthering Its Diagnosis and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1204. [PMID: 39202486 PMCID: PMC11356604 DOI: 10.3390/medicina60081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
Recent advancements in mass spectrometry have significantly enhanced our understanding of complex lipid profiles, opening new avenues for oncological diagnostics. This review highlights the importance of lipidomics in the comprehension of certain metabolic pathways and its potential for the detection and characterization of various cancers, in particular melanoma. Through detailed case studies, we demonstrate how lipidomic analysis has led to significant breakthroughs in the identification and understanding of cancer types and its potential for detecting unique biomarkers that are instrumental in its diagnosis. Additionally, this review addresses the technical challenges and future perspectives of these methodologies, including their potential expansion and refinement for clinical applications. The discussion underscores the critical role of lipidomic profiling in advancing cancer diagnostics, proposing a new paradigm in how we approach this devastating disease, with particular emphasis on its application in comparative oncology.
Collapse
Affiliation(s)
| | | | | | - Roberto Fernandez
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Universidad Pública de Navarra, 31006 Pamplona, Spain; (R.U.); (M.B.)
| | | | - Egoitz Astigarraga
- Betternostics SL, 31110 Noáin, Spain; (E.D.-G.); (A.H.); (C.C.)
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Universidad Pública de Navarra, 31006 Pamplona, Spain; (R.U.); (M.B.)
| | - Gabriel Barreda-Gómez
- Betternostics SL, 31110 Noáin, Spain; (E.D.-G.); (A.H.); (C.C.)
- IMG Pharma Biotech, Research and Development Division, 48170 Zamudio, Spain;
| |
Collapse
|
13
|
Dikalov S, Panov A, Dikalova A. Critical Role of Mitochondrial Fatty Acid Metabolism in Normal Cell Function and Pathological Conditions. Int J Mol Sci 2024; 25:6498. [PMID: 38928204 PMCID: PMC11203650 DOI: 10.3390/ijms25126498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
There is a "popular" belief that a fat-free diet is beneficial, supported by the scientific dogma indicating that high levels of fatty acids promote many pathological metabolic, cardiovascular, and neurodegenerative conditions. This dogma pressured scientists not to recognize the essential role of fatty acids in cellular metabolism and focus on the detrimental effects of fatty acids. In this work, we critically review several decades of studies and recent publications supporting the critical role of mitochondrial fatty acid metabolism in cellular homeostasis and many pathological conditions. Fatty acids are the primary fuel source and essential cell membrane building blocks from the origin of life. The essential cell membranes phospholipids were evolutionarily preserved from the earlier bacteria in human subjects. In the past century, the discovery of fatty acid metabolism was superseded by the epidemic growth of metabolic conditions and cardiovascular diseases. The association of fatty acids and pathological conditions is not due to their "harmful" effects but rather the result of impaired fatty acid metabolism and abnormal lifestyle. Mitochondrial dysfunction is linked to impaired metabolism and drives multiple pathological conditions. Despite metabolic flexibility, the loss of mitochondrial fatty acid oxidation cannot be fully compensated for by other sources of mitochondrial substrates, such as carbohydrates and amino acids, resulting in a pathogenic accumulation of long-chain fatty acids and a deficiency of medium-chain fatty acids. Despite popular belief, mitochondrial fatty acid oxidation is essential not only for energy-demanding organs such as the heart, skeletal muscle, and kidneys but also for metabolically "inactive" organs such as endothelial and epithelial cells. Recent studies indicate that the accumulation of long-chain fatty acids in specific organs and tissues support the impaired fatty acid oxidation in cell- and tissue-specific fashion. This work, therefore, provides a basis to challenge these established dogmas and articulate the need for a paradigm shift from the "pathogenic" role of fatty acids to the critical role of fatty acid oxidation. This is important to define the causative role of impaired mitochondrial fatty acid oxidation in specific pathological conditions and develop novel therapeutic approaches targeting mitochondrial fatty acid metabolism.
Collapse
Affiliation(s)
- Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, 2220 Pierce Ave, PRB 554, Nashville, TN 37232, USA; (A.P.); (A.D.)
| | | | | |
Collapse
|
14
|
Li M, Zhang Y, Liu J, Zhang D. Complementary and alternative medicine: A narrative review of nutritional approaches for cancer-related fatigue. Medicine (Baltimore) 2024; 103:e37480. [PMID: 38489718 PMCID: PMC10939540 DOI: 10.1097/md.0000000000037480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Cancer-related fatigue (CRF) is a common symptom among patients with cancer, with a prevalence of >49%. CRF significantly affects the quality of life of patients and may also affect their overall survival. Pharmacological interventions serve as a last resort after carefully weighing the risks and benefits, with limited benefits for patients, many side effects, and adverse reactions. Compared to traditional medicine, nutritional approaches have fewer side effects, are highly accepted by patients, and do not affect the antitumor treatment of patients. Many studies have shown that nutritional approaches, as a form of complementary and alternative medicine, help improve the symptoms of CRF and the quality of life of patients. This study was designed to examine nutritional approaches to CRF and assess their effectiveness of nutritional approaches in improving CRF. We present an overview of clinical trials investigating nutritional approaches for CRF that have been published over the last 2 decades. A total of 33 records were obtained from 3 databases: Web of Science, MEDLINE, and PubMed. Some nutritional approaches, such as melatonin, PG2, and S-adenosyl-l-methionine, are potential options for CRF treatment. However, the trials included in the review varied widely in quality, most were weak in methodology, and there is currently insufficient evidence to conclude with certainty the effectiveness of nutritional approaches in reducing CRF. Therefore, the design and methods used in future complementary and alternative medicine trials should be more rigorous.
Collapse
Affiliation(s)
- Meng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun, China
| | - Jimin Liu
- The Third Clinical Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dong Zhang
- College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|