1
|
Diaz-Maue L, Steinebach J, Richter C. Patterned Illumination Techniques in Optogenetics: An Insight Into Decelerating Murine Hearts. Front Physiol 2022; 12:750535. [PMID: 35087413 PMCID: PMC8787046 DOI: 10.3389/fphys.2021.750535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Much has been reported about optogenetic based cardiac arrhythmia treatment and the corresponding characterization of photostimulation parameters, but still, our capacity to interact with the underlying spatiotemporal excitation patterns relies mainly on electrical and/or pharmacological approaches. However, these well-established treatments have always been an object of somehow heated discussions. Though being acutely life-saving, they often come with potential side-effects leading to a decreased functionality of the complex cardiac system. Recent optogenetic studies showed the feasibility of the usage of photostimulation as a defibrillation method with comparatively high success rates. Although, these studies mainly concentrated on the description as well as on the comparison of single photodefibrillation approaches, such as locally focused light application and global illumination, less effort was spent on the description of excitation patterns during actual photostimulation. In this study, the authors implemented a multi-site photodefibrillation technique in combination with Multi-Lead electrocardiograms (ECGs). The technical connection of real-time heart rhythm measurements and the arrhythmia counteracting light control provides a further step toward automated arrhythmia classification, which can lead to adaptive photodefibrillation methods. In order to show the power effectiveness of the new approach, transgenic murine hearts expressing channelrhodopsin-2 ex vivo were investigated using circumferential micro-LED and ECG arrays. Thus, combining the best of two methods by giving the possibility to illuminate either locally or globally with differing pulse parameters. The optical technique presented here addresses a number of challenges of technical cardiac optogenetics and is discussed in the context of arrhythmic development during photostimulation.
Collapse
Affiliation(s)
- Laura Diaz-Maue
- Department of Research Electronics, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany
| | - Janna Steinebach
- Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Claudia Richter
- German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany.,Laboratory Animal Science Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
2
|
Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network. Comput Biol Med 2020; 124:103939. [DOI: 10.1016/j.compbiomed.2020.103939] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
|
3
|
Pérez-Gutiérrez MF, Sánchez-Muñoz JJ, Erazo-Rodas M, Guerrero-Curieses A, Everss E, Quesada-Dorador A, Ruiz-Granell R, Ibáñez-Criado A, Bellver-Navarro A, Rojo-Álvarez JL, García-Alberola A. Spectral Analysis and Mutual Information Estimation of Left and Right Intracardiac Electrograms during Ventricular Fibrillation. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20154162. [PMID: 32726931 PMCID: PMC7435921 DOI: 10.3390/s20154162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Ventricular fibrillation (VF) signals are characterized by highly volatile and erratic electrical impulses, the analysis of which is difficult given the complex behavior of the heart rhythms in the left (LV) and right ventricles (RV), as sometimes shown in intracardiac recorded Electrograms (EGM). However, there are few studies that analyze VF in humans according to the simultaneous behavior of heart signals in the two ventricles. The objective of this work was to perform a spectral and a non-linear analysis of the recordings of 22 patients with Congestive Heart Failure (CHF) and clinical indication for a cardiac resynchronization device, simultaneously obtained in LV and RV during induced VF in patients with a Biventricular Implantable Cardioverter Defibrillator (BICD) Contak Renewal IVTM (Boston Sci.). The Fourier Transform was used to identify the spectral content of the first six seconds of signals recorded in the RV and LV simultaneously. In addition, measurements that were based on Information Theory were scrutinized, including Entropy and Mutual Information. The results showed that in most patients the spectral envelopes of the EGM sources of RV and LV were complex, different, and with several frequency peaks. In addition, the Dominant Frequency (DF) in the LV was higher than in the RV, while the Organization Index (OI) had the opposite trend. The entropy measurements were more regular in the RV than in the LV, thus supporting the spectral findings. We can conclude that basic stochastic processing techniques should be scrutinized with caution and from basic to elaborated techniques, but they can provide us with useful information on the biosignals from both ventricles during VF.
Collapse
Affiliation(s)
- Milton Fabricio Pérez-Gutiérrez
- Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador;
| | - Juan José Sánchez-Muñoz
- Arrhythmia Unit and Electrophysiology, Department of Cardiology, Virgen de la Arrixaca University Hospital, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain; (J.J.S.-M.); (A.G.-A.)
| | - Mayra Erazo-Rodas
- Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador;
| | - Alicia Guerrero-Curieses
- Departamento de Teoría de la Señal y Comunicaciones, Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, 28943 Fuenlabrada, Spain; (A.G.-C.); (E.E.); (J.L.R.-Á.)
| | - Estrella Everss
- Departamento de Teoría de la Señal y Comunicaciones, Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, 28943 Fuenlabrada, Spain; (A.G.-C.); (E.E.); (J.L.R.-Á.)
| | - Aurelio Quesada-Dorador
- Arrhythmia Unit, Department of Cardiology, Hospital General de Valencia, 46014 Valencia, Spain;
| | - Ricardo Ruiz-Granell
- Arrhythmia Unit, Department of Cardiology, Hospital Clínico Universitario, Av. Blasco Ibañez, 17, 46010 Valencia, Spain;
| | - Alicia Ibáñez-Criado
- Arrhythmia Unit, Department of Cardiology, Hospital Clínico de Alicante, 03010 Alicante, Spain;
| | | | - José Luis Rojo-Álvarez
- Departamento de Teoría de la Señal y Comunicaciones, Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, 28943 Fuenlabrada, Spain; (A.G.-C.); (E.E.); (J.L.R.-Á.)
| | - Arcadi García-Alberola
- Arrhythmia Unit and Electrophysiology, Department of Cardiology, Virgen de la Arrixaca University Hospital, Instituto Murciano de Investigación Biosanitaria, 30120 Murcia, Spain; (J.J.S.-M.); (A.G.-A.)
| |
Collapse
|
4
|
Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models. Sci Rep 2017; 7:43217. [PMID: 28240274 PMCID: PMC5327492 DOI: 10.1038/srep43217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/20/2017] [Indexed: 01/29/2023] Open
Abstract
Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
Collapse
|
5
|
Such-Miquel L, Chorro FJ, Guerrero J, Trapero I, Brines L, Zarzoso M, Parra G, Soler C, del Canto I, Alberola A, Such L. Evaluación de la complejidad de la activación miocárdica durante la fibrilación ventricular. Estudio experimental. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2012.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Chorro FJ, Ibañez-Catalá X, Trapero I, Such-Miquel L, Pelechano F, Cánoves J, Mainar L, Tormos A, Cerdá JM, Alberola A, Such L. Ventricular fibrillation conduction through an isthmus of preserved myocardium between radiofrequency lesions. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 36:286-98. [PMID: 23240900 DOI: 10.1111/pace.12060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 10/14/2012] [Accepted: 10/23/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Selective local acceleration of myocardial activation during ventricular fibrillation (VF) contributes information on the interactions between neighboring zones during the arrhythmia. This study analyzes these interactions, centering the observations on an isthmus of myocardium between two radiofrequency (RF) lesions. METHODS In nine isolated rabbit hearts, a gap of preserved myocardium was established between two RF lesions in the anterolateral left ventricle (LV) wall. Before, during, and after increasing the spatial heterogeneity of VF by local myocardial stretching, VF epicardial recordings were obtained. RESULTS Local stretch in the anterior LV wall decreased the excitable window (17 ± 7 ms vs 26 ± 7 ms; P < 0.05) and increased the dominant frequency (DFr; 18.9 ± 5.0 Hz vs 15.2 ± 3.6 Hz; P < 0.05) in this zone, without changes in the non-stretched posterolateral zone (25 ± 4 ms vs 27 ± 6 ms, ns and 14.1 ± 2.7 Hz vs 14.3 ± 3.0 Hz, ns). The DFr ratio at both sides of the gap was inversely correlated to the excitable window ratio (R = -0.57; P = 0.002). Before (31% vs 26%), during (29% vs 22%), and after stretch suppression (35% vs 25%), the wavefronts passing through the gap from the posterolateral to the anterior LV wall were seen to predominate. The number of wavefronts that passed from the anterior to the posterolateral LV wall was related to the excitable window in this zone (R = 0.41; P = 0.03). CONCLUSIONS The VF acceleration induced in the stretched zone does not increase the flow of wavefronts toward the non-stretched zone in the adjacent gap of preserved myocardium. The absence of significant changes in the electrophysiological parameters of the non-stretched myocardium limits the arrival of wavefronts in this zone.
Collapse
Affiliation(s)
- Francisco J Chorro
- Service of Cardiology, Valencia University Clinic Hospital Incliva, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Evaluation of the complexity of myocardial activation during ventricular fibrillation. An experimental study. ACTA ACUST UNITED AC 2012; 66:177-84. [PMID: 24775451 DOI: 10.1016/j.rec.2012.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022]
Abstract
INTRODUCTION AND OBJECTIVES An experimental model is used to analyze the characteristics of ventricular fibrillation in situations of variable complexity, establishing relationships among the data produced by different methods for analyzing the arrhythmia. METHODS In 27 isolated rabbit heart preparations studied under the action of drugs (propranolol and KB-R7943) or physical procedures (stretching) that produce different degrees of change in the complexity of myocardial activation during ventricular fibrillation, use was made of spectral, morphological, and mapping techniques to process the recordings obtained with epicardial multielectrodes. RESULTS The complexity of ventricular fibrillation assessed by mapping techniques was related to the dominant frequency, normalized spectral energy, signal regularity index, and their corresponding coefficients of variation, as well as the area of the regions of interest identified on the basis of these parameters. In the multivariate analysis, we used as independent variables the area of the regions of interest related to the spectral energy and the coefficient of variation of the energy (complexity index=-0.005×area of the spectral energy regions -2.234×coefficient of variation of the energy+1.578; P=.0001; r=0.68). CONCLUSIONS The spectral and morphological indicators and, independently, those derived from the analysis of normalized energy regions of interest provide a reliable approach to the evaluation of the complexity of ventricular fibrillation as an alternative to complex mapping techniques.
Collapse
|
8
|
Temporal and spectral analysis of ventricular fibrillation in humans. J Interv Card Electrophysiol 2011; 30:199-209. [DOI: 10.1007/s10840-010-9541-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
|
9
|
Chorro FJ, Guerrero J, Cánoves J, Trapero I, Mainar L, Pelechano F, Blasco E, Such-Miquel L, Ferrero Á, Sanchis J, Bodí V, Cerdá JM, Alberola A, Such L. Modificaciones de las características espectrales de la fibrilación ventricular en las lesiones producidas con radiofrecuencia. Estudio experimental. Rev Esp Cardiol 2008. [DOI: 10.1157/13117731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Trapero I, Chorro FJ, Such-Miquel L, Cánoves J, Tormos Á, Pelechano F, López L, Such L. Efectos de la estreptomicina en las modificaciones de la activación miocárdica durante la fibrilación ventricular inducidas por el estiramiento. Rev Esp Cardiol 2008. [DOI: 10.1157/13116208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Chorro FJ, Guerrero J, Pelechano F, Trapero I, Mainar L, Cánoves J, Such-Miquel L, García-Alberola A, Ferrero Á, Sanchís J, Bodí V, Alberola A, Such L. Influencia del tipo de registro (unipolar o bipolar) en las características espectrales de los registros epicárdicos de la fibrilación ventricular. Estudio experimental. Rev Esp Cardiol 2007; 60:1059-69. [DOI: 10.1157/13111238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
García-Alberola A, Merino JL. [Arrhythmias and cardiac electrophysiology]. Rev Esp Cardiol 2007; 60 Suppl 1:33-40. [PMID: 17352854 DOI: 10.1157/13099711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past few months, numerous articles have been published on arrhythmias and cardiac electrophysiology. As in previous years, a substantial proportion of researchers have concentrated on atrial fibrillation, both on catheter ablation of chronic and paroxysmal atrial fibrillation and on the development of new approaches to thromboembolism prophylaxis. The feasibility of atrial fibrillation ablation by remote control has been demonstrated and a step-wise approach to ablation has been proposed, which appears to improve outcome and reduce lesion size. In addition, multicenter randomized trials have shown that the improvements in functional class and left ventricular ejection fraction achieved by ablation in patients with chronic atrial fibrillation are greater than those resulting from pharmacological treatment. New strategies are being developed to improve the selection of patients for defibrillator implantation and to decrease the number of high-energy discharges occurring during follow-up. Controlled trials continue to demonstrate that pharmacological therapy is of little value in preventing recurrence of vasovagal syncope compared with maneuvers involving isometric muscular contraction. Finally, one of the most significant events in the last year was the publication of new clinical practice guidelines by European and American societies of cardiology. These provide important recommendations on the treatment and prevention of ventricular arrhythmias and sudden death and on the management of and thromboembolic prophylaxis in atrial fibrillation.
Collapse
|
13
|
|