1
|
Qian J, Ma C, Waterbury QT, Zhi X, Moon CS, Tu R, Kobayashi H, Wu F, Zheng B, Zeng Y, Zheng H, Ochiai Y, White RA, Harle DW, LaBella JS, Zamechek LB, Hu LZ, Moy RH, Han AS, Daugherty B, Lederman S, Wang TC. A CXCR4 partial agonist improves immunotherapy by targeting polymorphonuclear myeloid-derived suppressor cells and cancer-driven granulopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617228. [PMID: 39416177 PMCID: PMC11482799 DOI: 10.1101/2024.10.09.617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.
Collapse
|
2
|
Lee CYC, Kennedy BC, Richoz N, Dean I, Tuong ZK, Gaspal F, Li Z, Willis C, Hasegawa T, Whiteside SK, Posner DA, Carlesso G, Hammond SA, Dovedi SJ, Roychoudhuri R, Withers DR, Clatworthy MR. Tumour-retained activated CCR7 + dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity. Nat Commun 2024; 15:682. [PMID: 38267413 PMCID: PMC10808534 DOI: 10.1038/s41467-024-44787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Tumour dendritic cells (DCs) internalise antigen and upregulate CCR7, which directs their migration to tumour-draining lymph nodes (dLN). CCR7 expression is coupled to an activation programme enriched in regulatory molecule expression, including PD-L1. However, the spatio-temporal dynamics of CCR7+ DCs in anti-tumour immune responses remain unclear. Here, we use photoconvertible mice to precisely track DC migration. We report that CCR7+ DCs are the dominant DC population that migrate to the dLN, but a subset remains tumour-resident despite CCR7 expression. These tumour-retained CCR7+ DCs are phenotypically and transcriptionally distinct from their dLN counterparts and heterogeneous. Moreover, they progressively downregulate the expression of antigen presentation and pro-inflammatory transcripts with more prolonged tumour dwell-time. Tumour-residing CCR7+ DCs co-localise with PD-1+CD8+ T cells in human and murine solid tumours, and following anti-PD-L1 treatment, upregulate stimulatory molecules including OX40L, thereby augmenting anti-tumour cytolytic activity. Altogether, these data uncover previously unappreciated heterogeneity in CCR7+ DCs that may underpin a variable capacity to support intratumoural cytotoxic T cells.
Collapse
Affiliation(s)
- Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tetsuo Hasegawa
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | - David A Posner
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
3
|
Sosa Cuevas E, Saas P, Aspord C. Dendritic Cell Subsets in Melanoma: Pathophysiology, Clinical Prognosis and Therapeutic Exploitation. Cancers (Basel) 2023; 15:cancers15082206. [PMID: 37190135 DOI: 10.3390/cancers15082206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Evasion from immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells shaping anti-tumor immune responses, but tumor cells exploit DC versatility to subvert their functions. Unveiling the puzzling role of DCs in the control of tumor development and mechanisms of tumor-induced DC hijacking is critical to optimize current therapies and to design future efficient immunotherapies for melanoma. Dendritic cells, crucially positioned at the center of anti-tumor immunity, represent attractive targets to develop new therapeutic approaches. Harnessing the potencies of each DC subset to trigger appropriate immune responses while avoiding their subversion is a challenging yet promising step to achieve tumor immune control. This review focuses on advances regarding the diversity of DC subsets, their pathophysiology and impact on clinical outcome in melanoma patients. We provide insights into the regulation mechanisms of DCs by the tumor, and overview DC-based therapeutic developments for melanoma. Further insights into DCs' diversity, features, networking, regulation and shaping by the tumor microenvironment will allow designing novel effective cancer therapies. The DCs deserve to be positioned in the current melanoma immunotherapeutic landscape. Recent discoveries strongly motivate exploitation of the exceptional potential of DCs to drive robust anti-tumor immunity, offering promising tracks for clinical successes.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| | - Philippe Saas
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| | - Caroline Aspord
- EFS AuRA, R&D Laboratory, 38000 Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
4
|
Li J, Zhou J, Huang H, Jiang J, Zhang T, Ni C. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): A novel population in the tumour microenvironment and immunotherapy target. Clin Transl Med 2023; 13:e1199. [PMID: 36808888 PMCID: PMC9937888 DOI: 10.1002/ctm2.1199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) mediate divergent immune effects by activating T cells or negatively regulating the immune response to promote immune tolerance. They perform specific functions determined by their tissue distribution and maturation state. Traditionally, immature and semimature DCs were described to have immunosuppressive effects, leading to immune tolerance. Nonetheless, recent research has demonstrated that mature DCs can also suppress the immune response under certain circumstances. MAIN BODY Mature DCs enriched in immunoregulatory molecules (mregDCs) have emerged as a regulatory module across species and tumour types. Indeed, the distinct roles of mregDCs in tumour immunotherapy have sparked the interest of researchers in the field of single-cell omics. In particular, these regulatory cells were found to be associated with a positive response to immunotherapy and a favourable prognosis. CONCLUSION Here, we provide a general overview of the latest and most notable advances and recent findings regarding the basic features and complex roles of mregDCs in nonmalignant diseases and the tumour microenvironment. We also emphasise the important clinical implications of mregDCs in tumours.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Breast SurgerySecond Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouZhejiangChina
- Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Jun Zhou
- Cancer CenterZhejiang UniversityHangzhouZhejiangChina
- Department of Breast SurgeryAffiliated Hangzhou First People's Hospital, Zhejiang UniversityHangzhouZhejiangChina
| | - Huanhuan Huang
- Department of Breast SurgerySecond Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouZhejiangChina
- Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Jiahuan Jiang
- Department of Breast SurgerySecond Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouZhejiangChina
- Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Ting Zhang
- Cancer CenterZhejiang UniversityHangzhouZhejiangChina
- Department of RadiotherapySecond Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Chao Ni
- Department of Breast SurgerySecond Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouZhejiangChina
- Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
5
|
Sakref C, Bendriss-Vermare N, Valladeau-Guilemond J. Phenotypes and Functions of Human Dendritic Cell Subsets in the Tumor Microenvironment. Methods Mol Biol 2023; 2618:17-35. [PMID: 36905506 DOI: 10.1007/978-1-0716-2938-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) play a key role in the antitumor immunity, as they are at the interface of innate and adaptive immunity. This important task can only be performed thanks to the broad range of mechanisms that DCs can perform to activate other immune cells. As DCs are well known for their outstanding capacity to prime and activate T cells through antigen presentation, DCs were intensively investigated during the past decades. Numerous studies have identified new DC subsets, leading to a large variety of subsets commonly separated into cDC1, cDC2, pDCs, mature DCs, Langerhans cells, monocyte-derived DCs, Axl-DCs, and several other subsets. Here, we review the specific phenotypes, functions, and localization within the tumor microenvironment (TME) of human DC subsets thanks to flow cytometry and immunofluorescence but also with the help of high-output technologies such as single-cell RNA sequencing and imaging mass cytometry (IMC).
Collapse
Affiliation(s)
- Candice Sakref
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
- LabEx DEVweCAN, Lyon, France.
| |
Collapse
|
6
|
Presence of Dendritic Cell Subsets in Sentinel Nodes of Breast Cancer Patients Is Related to Nodal Burden. Int J Mol Sci 2022; 23:ijms23158461. [PMID: 35955602 PMCID: PMC9369399 DOI: 10.3390/ijms23158461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND: Sentinel lymph nodes (SLNs) are both the first site where breast cancer (BC) metastases form and where anti-tumoral immunity develops. Despite being the most potent antigen-presenting cells, dendritic cells (DCs) located in a nodal tissue can both promote or suppress immune response against cancer in SLNs. METHODS: In SLNs excisions obtained from 123 invasive BC patients, we performed immunohistochemistry (IHC) for CD1a, CD1c, DC-LAMP, and DC-SIGN to identify different DCs populations. Then we investigated the numbers of DCs subsets in tumor-free, micrometastatic, and macrometastatic SLNs with the use of a light microscope. RESULTS: We observed that CD1c+ and DC-SIGN+ DCs were more numerous in SLNs with a larger tumor size. More abundant intratumoral DC-LAMP+ population was related to a higher number of metastatic lymph nodes. Conversely, more abundant CD1a+ DCs were associated with a decreasing nodal burden in SLNs and a lower number of involved lymph nodes. Moreover, densities of the investigated DC populations differed with respect to tumor grade, HER2 overexpression, hormone receptor status, and histologic type of BC. CONCLUSIONS: According to their subtype, DCs are associated with either lower or higher nodal burden in SLNs from invasive BC patients. These relationships appear to be dependent not only on the maturation state of DCs but also on the histological and biological characteristics of the tumor.
Collapse
|
7
|
Yaddanapudi K, Stamp BF, Subrahmanyam PB, Smolenkov A, Waigel SJ, Gosain R, Egger ME, Martin RC, Buscaglia R, Maecker HT, McMasters KM, Chesney JA. Single-Cell Immune Mapping of Melanoma Sentinel Lymph Nodes Reveals an Actionable Immunotolerant Microenvironment. Clin Cancer Res 2022; 28:2069-2081. [PMID: 35046061 PMCID: PMC9840851 DOI: 10.1158/1078-0432.ccr-21-0664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/16/2021] [Accepted: 01/14/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE Improving our understanding of the immunologic response to cancer cells within the sentinel lymph nodes (SLN) of primary tumors is expected to identify new approaches to stimulate clinically meaningful cancer immunity. EXPERIMENTAL DESIGN We used mass cytometry by time-of-flight (CyTOF), flow cytometry, and T-cell receptor immunosequencing to conduct simultaneous single-cell analyses of immune cells in the SLNs of patients with melanoma. RESULTS We found increased effector-memory αβ T cells, TCR clonality, and γδ T cells selectively in the melanoma-bearing SLNs relative to non-melanoma-bearing SLNs, consistent with possible activation of an antitumor immune response. However, we also observed a markedly immunotolerant environment in the melanoma-bearing SLNs indicated by reduced and impaired NK cells and increased levels of CD8+CD57+PD-1+ cells, which are known to display low melanoma killing capabilities. Other changes observed in melanoma-bearing SLNs when compared with non-melanoma-bearing SLNs include (i) reduced CD8+CD69+ T cell/T regulatory cell ratio, (ii) high PD-1 expression on CD4+ and CD8+ T cells, and (iii) high CTLA-4 expression on γδ T cells. CONCLUSIONS Our data suggest that these immunologic changes compromise antimelanoma immunity and contribute to a high relapse rate. We propose the development of clinical trials to test the neo-adjuvant administration of anti-PD-1 antibodies prior to SLN resection in patients with stage III melanoma. See related commentary by Lund, p. 1996.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA,Department of Microbiology/Immunology, University of Louisville, Louisville, KY, USA
| | - Bryce F. Stamp
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
| | - Priyanka B. Subrahmanyam
- Institute for Immunity, Transplantation and Infection, Stanford School of Medicine, Stanford, CA, USA
| | - Andrei Smolenkov
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Sabine J. Waigel
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Rahul Gosain
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Michael E. Egger
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA
| | - Robert C.G. Martin
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Robert Buscaglia
- Department of Mathematics and Statistics, Northern Arizona University, Arizona, USA
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford School of Medicine, Stanford, CA, USA
| | - Kelly M. McMasters
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA,Correspondence to: Jason A. Chesney, MD, PhD, Kelly M. McMasters, MD, PhD, University of Louisville, Clinical and Translational Research Building, Louisville, KY 40202, ,
| | - Jason A. Chesney
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA,Correspondence to: Jason A. Chesney, MD, PhD, Kelly M. McMasters, MD, PhD, University of Louisville, Clinical and Translational Research Building, Louisville, KY 40202, ,
| |
Collapse
|
8
|
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, orchestrating innate and adaptive immunity during infections, autoimmune diseases, and malignancies. Since the discovery of DCs almost 50 years ago, our understanding of their biology in humans has increased substantially. Here, we review both antitumor and tolerogenic DC responses in cancer and discuss lineage-specific contributions by their functionally specialized subsets, including the conventional DC (cDC) subsets cDC1 and cDC2, the newly described DC3, and the plasmacytoid DCs (pDCs), focusing on the human setting. In addition, we review the lineage-unrestricted "mature DCs enriched in immunoregulatory molecules" (mregDC) state recently described across different human tumors.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore.,Inserm U1015, Gustave Roussy, Villejuif 94800, France.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
9
|
Pipperger L, Riepler L, Kimpel J, Siller A, Stoitzner P, Bánki Z, von Laer D. Differential infection of murine and human dendritic cell subsets by oncolytic vesicular stomatitis virus variants. Oncoimmunology 2021; 10:1959140. [PMID: 34484872 PMCID: PMC8409795 DOI: 10.1080/2162402x.2021.1959140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncolytic viruses (OVs) can eradicate tumor cells and elicit antitumor immunity. VSV-GP, a chimeric vesicular stomatitis virus (VSV) with the glycoprotein (GP) of the lymphocytic choriomeningitis virus, is a promising new OV candidate. However, the interaction of VSV-GP with host immune cells is not fully understood. Dendritic cells (DCs) are essential for inducing efficient antitumor immunity. Thus, we aimed to investigate the interaction of VSV-GP with different murine and human DCs subsets in direct comparison to the less cytopathic variant VSV-dM51-GP and wild type VSV. Immature murine bone marrow-derived DCs (BMDCs) were equally infected and killed by VSV and VSV-GP. Human monocyte-derived DCs (moDCs) were more permissive to VSV. Interestingly, VSV-dM51-GP induced maturation instead of killing in both BMDCs and moDCs as well as a pronounced release of pro-inflammatory cytokines. Importantly, matured BMDCs and moDCs were no longer susceptible to VSV-GP infection. Mouse splenic conventional DC type 1 (cDC1) could be infected ex vivo by VSV and VSV-GP to a higher extent than cDC2. Systemic infection of mice with VSV-GP and VSV-dM51-GP resulted in strong activation of cDCs despite low infection rates in spleen and tumor tissue. Human blood cDC1 were equally infected by VSV and VSV-GP, whereas cDC2 showed preferential infection with VSV. Our study demonstrated differential DC infection, activation, and cytokine production after the treatment with VSV and VSV-GP variants among species and subsets, which should be taken into account when investigating immunological mechanisms of oncolytic virotherapy in mouse models and human clinical trials.
Collapse
Affiliation(s)
- Lisa Pipperger
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lydia Riepler
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anita Siller
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Aoyama S, Nakagawa R, Mulé JJ, Mailloux AW. Inducible Tertiary Lymphoid Structures: Promise and Challenges for Translating a New Class of Immunotherapy. Front Immunol 2021; 12:675538. [PMID: 34054863 PMCID: PMC8160316 DOI: 10.3389/fimmu.2021.675538] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopically formed aggregates of organized lymphocytes and antigen-presenting cells that occur in solid tissues as part of a chronic inflammation response. Sharing structural and functional characteristics with conventional secondary lymphoid organs (SLO) including discrete T cell zones, B cell zones, marginal zones with antigen presenting cells, reticular stromal networks, and high endothelial venues (HEV), TLS are prominent centers of antigen presentation and adaptive immune activation within the periphery. TLS share many signaling axes and leukocyte recruitment schemes with SLO regarding their formation and function. In cancer, their presence confers positive prognostic value across a wide spectrum of indications, spurring interest in their artificial induction as either a new form of immunotherapy, or as a means to augment other cell or immunotherapies. Here, we review approaches for inducible (iTLS) that utilize chemokines, inflammatory factors, or cellular analogues vital to TLS formation and that often mirror conventional SLO organogenesis. This review also addresses biomaterials that have been or might be suitable for iTLS, and discusses remaining challenges facing iTLS manufacturing approaches for clinical translation.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Ryosuke Nakagawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - James J. Mulé
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Adam W. Mailloux
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
11
|
Klarquist JS, Janssen EM. Melanoma-infiltrating dendritic cells: Limitations and opportunities of mouse models. Oncoimmunology 2021; 1:1584-1593. [PMID: 23264904 PMCID: PMC3525613 DOI: 10.4161/onci.22660] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The infiltration of melanoma lesions by dendritic cells (DCs) has been suggested to play a tumorigenic role due to the capacity of DCs to induce tumor tolerance and promote angiogenesis as well as metastasis. However, it has also been shown that tumor-infiltrating DCs (TIDCs) induce antitumor responses and hence may be targeted in cost-effective therapeutic approaches to obtain patient-specific DCs that present relevant tumor antigens, without the need for ex vivo DC expansion or tumor antigen identification. Unfortunately, little is known about the composition, nature and function of TIDCs found in human melanoma. The development of mouse melanoma models has greatly contributed to the molecular understanding of melanoma immunology in mice, but many questions on TIDCs remain unanswered. Here, we discuss current knowledge about melanoma TIDCs in various mouse models with regard to their translational potential and clinical relevance.
Collapse
Affiliation(s)
- Jared S Klarquist
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Research Foundation; University of Cincinnati College of Medicine; Cincinnati, OH USA
| | | |
Collapse
|
12
|
Beasley GM, Therien AD, Holl EK, Al-Rohil R, Selim MA, Farrow NE, Pan L, Haynes P, Liang Y, Tyler DS, Hanks BA, Nair SK. Dissecting the immune landscape of tumor draining lymph nodes in melanoma with high-plex spatially resolved protein detection. Cancer Immunol Immunother 2021; 70:475-483. [PMID: 32814992 PMCID: PMC7892641 DOI: 10.1007/s00262-020-02698-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND In melanoma patients, microscopic tumor in the sentinel lymph-node biopsy (SLN) increases the risk of distant metastases, but the transition from tumor in the SLN to metastatic disease remains poorly understood. METHODS Fluorescent staining for CD3, CD20, CD11c, and DNA was performed on SLN tissue and matching primary tumors. Regions of interest (ROI) were then chosen geometrically (e.g., tumor) or by fluorescent cell subset markers (e.g., CD11c). Each ROI was further analyzed using NanoString Digital Spatial Profiling high-resolution multiplex profiling. Digital counts for 59-panel immune-related proteins were collected and normalized to account for system variation and ROI area. RESULTS Tumor regions of SLNs had variable infiltration of CD3 cells among patients. The patient with overall survival (OS) > 8 years had the most CD11c- and CD3-expressing cells infiltrating the SLN tumor region. All patients had CD11c (dendritic cell, DC) infiltration into the SLN tumor region. Selecting ROI by specific cell subtype, we compared protein expression of CD11c cells between tumor and non-tumor/normal tissue SLN regions. Known markers of DC activation such as CD86, HLA-DR, and OX40L were lowest on CD11c cells within SLN tumor for the patient with OS < 1 year and highest on the patient with OS > 8 years. CONCLUSION We demonstrate the feasibility of profiling the protein expression of CD11c cells within the SLN tumor. Identifying early regulators of melanoma control when the disease is microscopically detected in the SLN is beneficial and requires follow-up studies in a larger cohort of patients.
Collapse
Affiliation(s)
- Georgia M Beasley
- Department of Surgery, Duke University, DUMC Box 3118, Durham, NC, 27710, USA.
| | - Aaron D Therien
- Department of Surgery, Duke University, DUMC Box 3118, Durham, NC, 27710, USA
| | - Eda K Holl
- Department of Surgery, Duke University, DUMC Box 3118, Durham, NC, 27710, USA
| | - Rami Al-Rohil
- Department of Pathology, Duke University, Durham, USA
| | | | - Nellie E Farrow
- Department of Surgery, Duke University, DUMC Box 3118, Durham, NC, 27710, USA
| | - Liuliu Pan
- Nanostring Technologies, Seattle, WA, USA
| | | | - Yan Liang
- Nanostring Technologies, Seattle, WA, USA
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, USA
| | - Brent A Hanks
- Department of Medicine, Duke University, Durham, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, USA
| | - Smita K Nair
- Department of Surgery, Duke University, DUMC Box 3118, Durham, NC, 27710, USA
- Department of Pathology, Duke University, Durham, USA
- Department of Neurosurgery, Duke University, Durham, USA
| |
Collapse
|
13
|
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 2020; 20:662-680. [PMID: 32753728 DOI: 10.1038/s41568-020-0285-7] [Citation(s) in RCA: 914] [Impact Index Per Article: 182.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The international American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) tumour-node-metastasis (TNM) staging system provides the current guidelines for the classification of cancer. However, among patients within the same stage, the clinical outcome can be very different. More recently, a novel definition of cancer has emerged, implicating at all stages a complex and dynamic interaction between tumour cells and the immune system. This has enabled the definition of the immune contexture, representing the pre-existing immune parameters associated with patient survival. Even so, the role of distinct immune cell types in modulating cancer progression is increasingly emerging. An immune-based assay named the 'Immunoscore' was defined to quantify the in situ T cell infiltrate and was demonstrated to be superior to the AJCC/UICC TNM classification for patients with colorectal cancer. This Review provides a broad overview of the main immune parameters positively or negatively shaping cancer development, including the Immunoscore, and their prognostic and predictive value. The importance of the immune system in cancer control is demonstrated by the requirement for a pre-existing intratumour adaptive immune response for effective immunotherapies, such as checkpoint inhibitors. Finally, we discuss how the combination of multiple immune parameters, rather than individual ones, might increase prognostic and/or predictive power.
Collapse
Affiliation(s)
- Daniela Bruni
- INSERM, Laboratory of Integrative Cancer Immunology; Équipe Labellisée Ligue Contre le Cancer; Sorbonne Université; Sorbonne Paris Cité; Université de Paris; Centre de Recherche des Cordeliers, Paris, France
| | - Helen K Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology; Équipe Labellisée Ligue Contre le Cancer; Sorbonne Université; Sorbonne Paris Cité; Université de Paris; Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
14
|
Verneau J, Sautés-Fridman C, Sun CM. Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. Semin Immunol 2020; 48:101410. [PMID: 33011065 DOI: 10.1016/j.smim.2020.101410] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022]
Abstract
Among all immune cells, dendritic cells (DC) are the most potent APCs in the immune system and are central players of the adaptive immune response. There are phenotypically and functionally distinct DC populations derived from blood and lymphoid organ including plasmacytoid DC (pDC), conventional DC (cDC1 and cDC2) and monocyte-derived DC (moDC). The interaction between these different DCs and tumors is a dynamic process where DC-mediated cross-priming of tumor specific T cells is critical in initiating and sustaining anti-tumor immunity. Their presence within the tumor tends to induce T cell responses and to reduce cancer progression and is associated with improved patient survival. This review will focus on the distinct tumor-associated DCs (TADC) subsets in the tumor microenvironment (TME), their roles in tumor immunology and their prognostic and/or predictive impact in human cancers. The development of therapeutic immunity strategies targeting TADC is promising to enhance their immune-stimulatory capacity in cancers and improve the efficacy of current immunotherapies including immune checkpoint inhibitor (ICI) blockade and DC-based therapies.
Collapse
Affiliation(s)
- Johanna Verneau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Catherine Sautés-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France.
| |
Collapse
|
15
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
16
|
Hubert M, Gobbini E, Bendriss-Vermare N, Caux C, Valladeau-Guilemond J. Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers (Basel) 2019; 11:E1082. [PMID: 31366174 PMCID: PMC6721288 DOI: 10.3390/cancers11081082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
The interaction between tumor cells and the immune system is considered to be a dynamic process. Dendritic cells (DCs) play a pivotal role in anti-tumor immunity owing to their outstanding T cell activation ability. Their functions and activities are broad ranged, triggering different mechanisms and responses to the DC subset. Several studies identified in situ human tumor-infiltrating DCs by immunostaining using a limited number of markers. However, considering the heterogeneity of DC subsets, the identification of each subtype present in the immune infiltrate is essential. To achieve this, studies initially relied on flow cytometry analyses to provide a precise characterization of tumor-associated DC subsets based on a combination of multiple markers. The concomitant development of advanced technologies, such as mass cytometry or complete transcriptome sequencing of a cell population or at a single cell level, has provided further details on previously identified populations, has unveiled previously unknown populations, and has finally led to the standardization of the DCs classification across tissues and species. Here, we review the evolution of tumor-associated DC description, from in situ visualization to their characterization with high-dimensional technologies, and the clinical use of these findings specifically focusing on the prognostic impact of DCs in cancers.
Collapse
Affiliation(s)
- Margaux Hubert
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Elisa Gobbini
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | - Nathalie Bendriss-Vermare
- Cancer Research Center Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon, France
| | | | | |
Collapse
|
17
|
Phillips MB, Stuart JD, Rodríguez Stewart RM, Berry JT, Mainou BA, Boehme KW. Current understanding of reovirus oncolysis mechanisms. Oncolytic Virother 2018; 7:53-63. [PMID: 29942799 PMCID: PMC6005300 DOI: 10.2147/ov.s143808] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian orthoreovirus (reovirus) is under development as a cancer virotherapy. Clinical trials demonstrate that reovirus-based therapies are safe and tolerated in patients with a wide variety of cancers. Although reovirus monotherapy has proven largely ineffective, reovirus sensitizes cancer cells to existing chemotherapeutic agents and radiation. Clinical trials are underway to test the efficacy of reovirus in combination with chemotherapeutic and radiation regimens and to evaluate the effectiveness of reovirus in conjunction with immunotherapies. Central to the use of reovirus to treat cancer is its capacity to directly kill cancer cells and alter the cellular environment to augment other therapies. Apoptotic cell death is a prominent mechanism of reovirus cancer cell killing. However, reoviruses can also kill cancer cells through nonapoptotic mechanisms. Here, we describe mechanisms of reovirus cancer cell killing, highlight how reovirus is used in combination with existing cancer treatments, and discuss what is known as to how reovirus modulates cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew B Phillips
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Atlanta, GA, USA
| | - Johnasha D Stuart
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Atlanta, GA, USA
| | | | | | | | - Karl W Boehme
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Atlanta, GA, USA
| |
Collapse
|
18
|
Genetic alterations and tumor immune attack in Yo paraneoplastic cerebellar degeneration. Acta Neuropathol 2018; 135:569-579. [PMID: 29299667 DOI: 10.1007/s00401-017-1802-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/23/2022]
Abstract
Paraneoplastic cerebellar degenerations with anti-Yo antibodies (Yo-PCD) are rare syndromes caused by an auto-immune response against neuronal antigens (Ags) expressed by tumor cells. However, the mechanisms responsible for such immune tolerance breakdown are unknown. We characterized 26 ovarian carcinomas associated with Yo-PCD for their tumor immune contexture and genetic status of the 2 onconeural Yo-Ags, CDR2 and CDR2L. Yo-PCD tumors differed from the 116 control tumors by more abundant T and B cells infiltration occasionally organized in tertiary lymphoid structures harboring CDR2L protein deposits. Immune cells are mainly in the vicinity of apoptotic tumor cells, revealing tumor immune attack. Moreover, contrary to un-selected ovarian carcinomas, 65% of our Yo-PCD tumors presented at least one somatic mutation in Yo-Ags, with a predominance of missense mutations. Recurrent gains of the CDR2L gene with tumor protein overexpression were also present in 59% of Yo-PCD patients. Overall, each Yo-PCD ovarian carcinomas carried at least one genetic alteration of Yo-Ags. These data demonstrate an association between massive infiltration of Yo-PCD tumors by activated immune effector cells and recurrent gains and/or mutations in autoantigen-encoding genes, suggesting that genetic alterations in tumor cells trigger immune tolerance breakdown and initiation of the auto-immune disease.
Collapse
|
19
|
Kızılbey K, Mansuroğlu B, Derman S, Mustafaeva Akdeste Z. An In vivo study: Adjuvant activity of poly-n-vinyl-2-pyrrolidone-co-acrylic acid on immune responses against Melanoma synthetic peptide. Bioengineered 2018; 9:134-143. [PMID: 28910565 PMCID: PMC5972930 DOI: 10.1080/21655979.2017.1373529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022] Open
Abstract
Peptides have been studied as an important class of components in medicine to control many major diseases with vaccination. Polymers as adjuvants are capable of enhancing the vaccine potential against various diseases by improving the delivery of antigens, and they reduce the booster doses of vaccines. In brief, polymers are promising candidates for peptide-based vaccine delivery platforms. The purpose of the present study was to create a possible alternative approach in the treatment of malignant melanoma and/or to prevent metastasis of melanoma. The study was designed as both an experimental and an in vivo study. We prepared a complex and covalent conjugate of MAGE-3 121-134 (L-L-K-Y-R-A-R-E-P-V-T-K-A-E) T-cell epitope as a vaccine candidate for melanoma. These conjugates were able to generate an immune response in mice after a single immunization, without the help of any external adjuvant. The peptide-polymer complexes activated the immune system in the best way and formed the highest antigen specific immune response. These results indicate the adjuvant activity of Poly(N-vinyl-2- pyrrolidone-co-acrylic acid) [P(VP-co-AA)] and the potential use of P(VP-coAA)-peptide based vaccine prototypes for future melanoma cancer vaccine formulations.
Collapse
MESH Headings
- Acrylic Resins/administration & dosage
- Acrylic Resins/chemistry
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Amino Acid Sequence
- Animals
- Antibodies, Neoplasm/blood
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemistry
- Cancer Vaccines/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunity, Humoral/drug effects
- Immunization, Secondary
- Immunoconjugates/administration & dosage
- Immunoconjugates/chemistry
- Male
- Melanoma/blood
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/prevention & control
- Mice
- Mice, Inbred BALB C
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/immunology
- Peptides/administration & dosage
- Peptides/chemistry
- Peptides/immunology
- Povidone/administration & dosage
- Povidone/analogs & derivatives
- Povidone/chemistry
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Serum Albumin, Bovine/immunology
- Skin Neoplasms/blood
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/prevention & control
- T-Lymphocytes/chemistry
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Vaccination
- Vaccines, Subunit
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Kadriye Kızılbey
- Biomedical Engineering Department, İstanbul Yeni Yüzyıl University, Yılanlı Ayazma Caddesi, Zeytinburnu-İstanbul, Turkey
| | - Banu Mansuroğlu
- Department of Molecular Biology and Genetics, Yıldız Technical University, Davutpaşa Caddesi, Esenler, İstanbul, Turkey
| | - Serap Derman
- Department of Bioengineering, Yıldız Technical University, Davutpaşa Caddesi, Esenler, İstanbul, Turkey
| | - Zeynep Mustafaeva Akdeste
- Department of Bioengineering, Yıldız Technical University, Davutpaşa Caddesi, Esenler, İstanbul, Turkey
| |
Collapse
|
20
|
Hargadon KM. Strategies to Improve the Efficacy of Dendritic Cell-Based Immunotherapy for Melanoma. Front Immunol 2017; 8:1594. [PMID: 29209327 PMCID: PMC5702020 DOI: 10.3389/fimmu.2017.01594] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a highly aggressive form of skin cancer that frequently metastasizes to vital organs, where it is often difficult to treat with traditional therapies such as surgery and radiation. In such cases of metastatic disease, immunotherapy has emerged in recent years as an exciting treatment option for melanoma patients. Despite unprecedented successes with immune therapy in the clinic, many patients still experience disease relapse, and others fail to respond at all, thus highlighting the need to better understand factors that influence the efficacy of antitumor immune responses. At the heart of antitumor immunity are dendritic cells (DCs), an innate population of cells that function as critical regulators of immune tolerance and activation. As such, DCs have the potential to serve as important targets and delivery agents of cancer immunotherapies. Even immunotherapies that do not directly target or employ DCs, such as checkpoint blockade therapy and adoptive cell transfer therapy, are likely to rely on DCs that shape the quality of therapy-associated antitumor immunity. Therefore, understanding factors that regulate the function of tumor-associated DCs is critical for optimizing both current and future immunotherapeutic strategies for treating melanoma. To this end, this review focuses on advances in our understanding of DC function in the context of melanoma, with particular emphasis on (1) the role of immunogenic cell death in eliciting tumor-associated DC activation, (2) immunosuppression of DC function by melanoma-associated factors in the tumor microenvironment, (3) metabolic constraints on the activation of tumor-associated DCs, and (4) the role of the microbiome in shaping the immunogenicity of DCs and the overall quality of anti-melanoma immune responses they mediate. Additionally, this review highlights novel DC-based immunotherapies for melanoma that are emerging from recent progress in each of these areas of investigation, and it discusses current issues and questions that will need to be addressed in future studies aimed at optimizing the function of melanoma-associated DCs and the antitumor immune responses they direct against this cancer.
Collapse
Affiliation(s)
- Kristian M. Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, United States
| |
Collapse
|
21
|
Li S, Wu J, Zhu S, Liu YJ, Chen J. Disease-Associated Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:1268. [PMID: 29085361 PMCID: PMC5649186 DOI: 10.3389/fimmu.2017.01268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, represent a specialized cell type within the innate immune system. pDCs are specialized in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of stimulating T cells of the adaptive immune system. Chronic activation of human pDCs by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, pDCs play an important role in immune tolerance. In many types of human cancers, recruitment of pDCs to the tumor microenvironment contributes to the induction of immune tolerance. Here, we provide a systemic review of recent progress in studies on the role of pDCs in human diseases, including cancers and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
22
|
van den Hout MFCM, Koster BD, Sluijter BJR, Molenkamp BG, van de Ven R, van den Eertwegh AJM, Scheper RJ, van Leeuwen PAM, van den Tol MP, de Gruijl TD. Melanoma Sequentially Suppresses Different DC Subsets in the Sentinel Lymph Node, Affecting Disease Spread and Recurrence. Cancer Immunol Res 2017; 5:969-977. [PMID: 28935649 DOI: 10.1158/2326-6066.cir-17-0110] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022]
Abstract
Melanoma exerts immune-suppressive effects to facilitate tumor progression and metastatic spread. We studied these effects on dendritic cell (DC) and T-cell subsets in 36 melanoma sentinel lymph node (SLN) from 28 stage I-III melanoma patients and determined their clinical significance. Four conventional DC subsets, plasmacytoid DCs, and CD4+, CD8+, and regulatory T cells (Tregs), were analyzed by flow cytometry. We correlated these data to clinical parameters and determined their effect on local and distant melanoma recurrence, with a median follow-up of 75 months. In stage I and II melanoma, increased Breslow thickness (i.e., invasion depth of the primary melanoma) was associated with progressive suppression of skin-derived migratory CD1a+ DC subsets. In contrast, LN-resident DC subsets and T cells were only affected once metastasis to the SLN had occurred. In stage III patients, increased CD4:CD8 ratios in concert with the accumulation of Tregs resulted in decreased CD8:Treg ratios. On follow-up, lower frequencies of migratory DC subsets proved related to local melanoma recurrence, whereas reduced maturation of LN-resident DC subsets was associated with distant recurrence and melanoma-specific survival. In conclusion, melanoma-mediated suppression of migratory DC subsets in the SLN precedes local spread, whereas suppression of LN-resident DC subsets follows regional spread and precedes further melanoma dissemination to distant sites. This study offers a rationale to target migratory as well as LN-resident DC subsets for early immunotherapeutic interventions to prevent melanoma recurrence and spread. Cancer Immunol Res; 5(11); 969-77. ©2017 AACR.
Collapse
Affiliation(s)
- Mari F C M van den Hout
- Department of Pathology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bas D Koster
- Department of Medical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - Berbel J R Sluijter
- Department of Surgical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - Barbara G Molenkamp
- Department of Surgical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Department of Medical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - Paul A M van Leeuwen
- Department of Surgical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - M Petrousjka van den Tol
- Department of Surgical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center/Cancer Center Amsterdam, De Boelelaan, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Alessandrini F, Pezzè L, Ciribilli Y. LAMPs: Shedding light on cancer biology. Semin Oncol 2017; 44:239-253. [PMID: 29526252 DOI: 10.1053/j.seminoncol.2017.10.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 01/09/2023]
Abstract
Lysosomes are important cytoplasmic organelles whose critical functions in cells are increasingly being understood. In particular, despite the long-standing accepted concept about the role of lysosomes as cellular machineries solely assigned to degradation, it has been demonstrated that they play active roles in homeostasis and even in cancer biology. Indeed, it is now well documented that during the process of cellular transformation and cancer progression lysosomes are changing localization, composition, and volume and, through the release of their enzymes, lysosomes can also enhance cancer aggressiveness. LAMPs (lysosome associated membrane proteins) represent a family of glycosylated proteins present predominantly on the membrane of lysosomes whose expression can vary among different tissues, suggesting a separation of functions. In this review we focus on the functions and roles of the different LAMP family members, with a particular emphasis on cancer progression and metastatic spread. LAMP proteins are involved in many different aspects of cell biology and can influence cellular processes such as phagocytosis, autophagy, lipid transport, and aging. Interestingly, for all the five members identified so far (LAMP1, LAMP2, LAMP3, CD68/Macrosialin/LAMP4, and BAD-LAMP/LAMP5), a role in cancer has been suggested. While this is well documented for LAMP1 and LAMP2, the involvement of the other three proteins in cancer progression and aggressiveness has recently been proposed and remains to be elucidated. Here we present different examples about how LAMP proteins can influence and support tumor growth and metastatic spread, emphasizing the impact of each single member of the family.
Collapse
Affiliation(s)
- Federica Alessandrini
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy.
| |
Collapse
|
24
|
Dendritic cells in hematological malignancies. Crit Rev Oncol Hematol 2016; 108:86-96. [DOI: 10.1016/j.critrevonc.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
|
25
|
Early Tumor-Infiltrating Dendritic Cells Change their Characteristics Drastically in Association with Murine Melanoma Progression. J Invest Dermatol 2016; 136:146-53. [PMID: 26763434 DOI: 10.1038/jid.2015.359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/13/2015] [Accepted: 08/27/2015] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) have a critical effect on the outcome of adaptive immune responses against growing tumors. Tumor-infiltrating dendritic cells (TIDCs) play diverse roles in the regulation of tumor regression or growth, but the characteristics that distinguish those effects are obscure. In this study, we investigated the frequency, phenotype, and function of TIDCs over time from early stages of melanoma growth in mice. Flow cytometric analysis revealed that the tumors were infiltrated by a significant population of CD11c(+) major histocompatibility complex II(+) DCs, especially at an early stage of tumor growth. The allogeneic stimulatory capacity of TIDCs increased with tumor growth, whereas this capacity of DCs in lymph nodes decreased. TIDCs harvested at an early stage of melanoma (early TIDCs) accelerated tumor growth, but those harvested at a late stage (late TIDCs) delayed tumor progression when they were coinjected with melanoma cells. Furthermore, coinjection of early TIDCs failed to induce full immunocompetent maturation of CD8(+) T cells, with much lower expression of IFN-γ, granzyme B, and perforin within the tumor microenvironment. In conclusion, TIDCs change their characteristics from an immunoinhibitory to an immunostimulatory phenotype over time in association with tumor progression.
Collapse
|
26
|
Messaoudene M, Fregni G, Enot D, Jacquelot N, Neves E, Germaud N, Garchon HJ, Boukouaci W, Tamouza R, Chanal J, Avril MF, Toubert A, Zitvogel L, Rusakiewicz S, Caignard A. NKp30 isoforms and NKp46 transcripts in metastatic melanoma patients: Unique NKp30 pattern in rare melanoma patients with favorable evolution. Oncoimmunology 2016; 5:e1154251. [PMID: 28123867 DOI: 10.1080/2162402x.2016.1154251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 01/26/2023] Open
Abstract
Given the NK cell-based immunosurveillance of melanoma, we investigated the prognostic value of NKp46 transcript and NKp30 isoform (NKp30A, NKp30B and NKp30C) profiling in blood of 187 melanoma patients including 13 long survivors (LS), metastatic patients that have controlled the disease. Compared to healthy volunteers (HV), patients had reduced amounts of transcripts of the three NKp30 isoforms (NKp30 A, B and C) but similar ratios between NKp30 isoforms (ΔAB, ΔAC, ΔBC). Stratification of patients according to disease stage showed higher NKp30C and lower NKp46 transcripts in stage IV patients. Furthermore, patients with previous history of conventional chemotherapy displayed reduced NKp30A transcripts. The expression levels of NKp30 isoforms failed to predict survival from sampling of patients, while NKp46 expression predicted melanoma outcome. LS patients displayed elevated NKp30A levels, accordingly high ΔAB and ΔBC ratios, and a unique pattern of rare allelic variants of NKp30 SNPs. Moreover, NK cells from LS displayed correlated NKp30/NKp46 membrane expression, high spontaneous and NKp30- or NKp46-triggered degranulation. These data outline the impact of NKp30 and NKp46 transcripts on melanoma evolution and identify unique genetic features of NKp30 associated with higher NK activation in rare LS melanoma patients that control a metastatic disease.
Collapse
Affiliation(s)
- Meriem Messaoudene
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Giulia Fregni
- Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne , Lausanne, Switzerland
| | - David Enot
- U1015 INSERM-CIC, Institut Gustave Roussy , Villejuif, France
| | - Nicolas Jacquelot
- U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France
| | - Emmanuelle Neves
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Nathalie Germaud
- Inserm U1173 and University of Versailles Saint-Quentin, Montigny-le-Bretonneux, France; APHP, Ambroise Paré Hospital, Division of Genetics, Boulogne-Billancourt, France
| | - Henri Jean Garchon
- Inserm U1173 and University of Versailles Saint-Quentin, Montigny-le-Bretonneux, France; APHP, Ambroise Paré Hospital, Division of Genetics, Boulogne-Billancourt, France
| | - Wahid Boukouaci
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Ryad Tamouza
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Johan Chanal
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes , Paris, France
| | - Marie-Françoise Avril
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Antoine Toubert
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| | - Laurence Zitvogel
- U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France; Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, Villejuif, France
| | | | - Anne Caignard
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis , Paris, France
| |
Collapse
|
27
|
Kuhn S, Yang J, Ronchese F. Monocyte-Derived Dendritic Cells Are Essential for CD8(+) T Cell Activation and Antitumor Responses After Local Immunotherapy. Front Immunol 2015; 6:584. [PMID: 26635798 PMCID: PMC4655312 DOI: 10.3389/fimmu.2015.00584] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Tumors harbor several populations of dendritic cells (DCs) with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate antitumor immune responses and is associated with the appearance of a population of monocyte-derived DCs (moDCs) in the tumor and tumor-draining lymph node (dLN). Here, we use depletion of DCs or monocytes and monocyte transfer to show that these moDCs are critical to the activation of antitumor immune responses. Treatment with the immunostimulatory agents monosodium urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the dLN, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα, and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of colony-stimulating factor-1 receptor signaling prevented the generation of moDCs, the infiltration of tumor-specific T cells into the tumor, and antitumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c(+) cells were sufficient to rescue CD8(+) T cell priming in lymph node and delay tumor growth. Thus, monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8(+) T cells and antitumor immunity.
Collapse
Affiliation(s)
- Sabine Kuhn
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Jianping Yang
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research , Wellington , New Zealand
| |
Collapse
|
28
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
29
|
Abstract
Sentinel lymph nodes (SLNs), the initial site of regional metastases, directly receive lymph containing immune-modulatory cytokines and tumor cells from primary melanomas. Immune-suppressed SLNs are ideal for studies of tissue susceptibility to metastases. They show reduced antigen-presenting dendritic cells, activated T cells, high endothelial venules, and transvenular immigration of T cells. Tumor-induced immune suppression contributes to establishment of nodal metastases. SLNs may serve as an effective model to study reversal of tumor-induced immune suppression. We reviewed this topic in Nature Reviews of Immunology in 2006. We here summarize the Nature paper and provide additional results from ongoing studies and the recent literature.
Collapse
|
30
|
Messaoudene M, Périer A, Fregni G, Neves E, Zitvogel L, Cremer I, Chanal J, Sastre-Garau X, Deschamps L, Marinho E, Larousserie F, Maubec E, Avril MF, Caignard A. Characterization of the Microenvironment in Positive and Negative Sentinel Lymph Nodes from Melanoma Patients. PLoS One 2015. [PMID: 26218530 PMCID: PMC4517810 DOI: 10.1371/journal.pone.0133363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Melanomas are aggressive skin tumors characterized by high metastatic potential. Our previous results indicate that Natural Killer (NK) cells may control growth of melanoma. The main defect of blood NK cells was a decreased expression of activating NCR1/NKp46 receptor and a positive correlation of NKp46 expression with disease outcome in stage IV melanoma patients was found. In addition, in stage III melanoma patients, we identified a new subset of mature NK cells in macro-metastatic Lymph nodes (LN). In the present studies, we evaluated the numbers of NK cells infiltrating primary cutaneous melanoma and analyzed immune cell subsets in a series of sentinel lymph nodes (SLN). First, we show that NKp46+ NK cells infiltrate primary cutaneous melanoma. Their numbers were related to age of patients and not to Breslow thickness. Then, a series of patients with tumor-negative or -positive sentinel lymph nodes matched for Breslow thickness of the cutaneous melanoma was constituted. We investigated the distribution of macrophages (CD68), endothelial cells, NK cells, granzyme B positive (GrzB+) cells and CD8+ T cells in the SLN. Negative SLN (SLN-) were characterized by frequent adipose involution and follicular hyperplasia compared to positive SLN (SLN+). High densities of macrophages and endothelial cells (CD34), prominent in SLN+, infiltrate SLN and may reflect a tumor favorable microenvironment. Few but similar numbers of NK and GrzB+ cells were found in SLN- and SLN+: NK cells and GrzB+ cells were not correlated. Numerous CD8+ T cells infiltrated SLN with a trend for higher numbers in SLN-. Moreover, CD8+ T cells and GrzB+ cells correlated in SLN- not in SLN+. We also observed that the numbers of CD8+ T cells negatively correlated with endothelial cells in SLN-. The numbers of NK, GrzB+ or CD8+ T cells had no significant impact on overall survival. However, we found that the 5 year-relapse rate was higher in SLN with higher numbers of NK cells.
Collapse
Affiliation(s)
- Meriem Messaoudene
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Aurélie Périer
- U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France
| | - Giulia Fregni
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Emmanuelle Neves
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | | | - Isabelle Cremer
- Centre de Recherche des Cordeliers, 15, rue de l'école de Médecine, 75006, Paris, France
| | - Johan Chanal
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France
| | | | - Lydia Deschamps
- APHP, Department of Dermatology and Department of Pathology, Hospital Bichat, University Paris Diderot, Hospital Bichat, 75018, Paris, France
| | - Eduardo Marinho
- APHP, Department of Dermatology and Department of Pathology, Hospital Bichat, University Paris Diderot, Hospital Bichat, 75018, Paris, France
| | - Frederique Larousserie
- APHP, Department of Pathology, Hospital Cochin, University Paris Descartes, Paris, France
| | - Eve Maubec
- APHP, Department of Dermatology and Department of Pathology, Hospital Bichat, University Paris Diderot, Hospital Bichat, 75018, Paris, France
| | - Marie-Françoise Avril
- APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France
| | - Anne Caignard
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| |
Collapse
|
31
|
The Chemical Constituents and Pharmacological Actions of Cordyceps sinensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:575063. [PMID: 25960753 PMCID: PMC4415478 DOI: 10.1155/2015/575063] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Cordyceps sinensis, also called DongChongXiaCao (winter worm, summer grass) in Chinese, is becoming increasingly popular and important in the public and scientific communities. This study summarizes the chemical constituents and their corresponding pharmacological actions of Cordyceps sinensis. Many bioactive components of Cordyceps sinensis have been extracted including nucleoside, polysaccharide, sterol, protein, amino acid, and polypeptide. In addition, these constituents' corresponding pharmacological actions were also shown in the study such as anti-inflammatory, antioxidant, antitumour, antiapoptosis, and immunomodulatory actions. Therefore can use different effects of C. sinensis against different diseases and provide reference for the study of Cordyceps sinensis in the future.
Collapse
|
32
|
S100 expression in dendritic cells is inversely correlated with tumor grade in endometrial carcinoma. Obstet Gynecol Sci 2014; 57:201-7. [PMID: 24883291 PMCID: PMC4038686 DOI: 10.5468/ogs.2014.57.3.201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/18/2013] [Accepted: 11/25/2013] [Indexed: 11/08/2022] Open
Abstract
Objective The aim of this study was to determine the expression of S100 positive dendritic cells (DCs) and the relationship with clinicopathologic factors in endometrial carcinoma. Methods Samples were collected from 89 patients with endometrial endometrioid adenocarcinoma treated in Pusan National University Hospital from 2004 to 2011. Normal endometrial tissues were obtained from 30 hysterectomized women with benign adnexal masses and served as controls. Paraffin-embedded sections were immunohistochemically stained for S100 was performed, and the number of positive DCs was counted. The relationship of these cells to the stage, histological grade, myometrial invasion, and lymph node metastasis was analyzed. Results The proportion of S100-positive DCs in the endometrial endometrioid adenocarcinoma was 31.5% (28/89), which was significantly higher (P<0.05) than in the control group. The proportion of S100-positive DC expression was negatively correlated with the histologic grade, but was not associated with the stage, myometrial invasion, or lymph node metastasis. Conclusion High DC density was inversely correlated with histologic grade in endometrial carcinoma. Tumor-infiltrating S100+ DCs may be used as pathologic marker in endometrial carcinoma.
Collapse
|
33
|
The immunostimulatory effects of retinoblastoma cell supernatant on dendritic cells. Protein Cell 2014; 5:307-16. [PMID: 24585413 PMCID: PMC3978164 DOI: 10.1007/s13238-014-0029-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/20/2014] [Indexed: 01/31/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the induction and maintenance of tumor-specific immune responses. Studies have shown that tumor-associated DCs are immunosuppressed in some human tumors. However, phenotype and function of DCs in retinoblastoma (RB) remain unclear. RB cell supernatant (RBcs) was used to treat DCs in vitro to explore the effect of RB cells on DCs. DCs were generated from peripheral blood mononuclear cells of healthy donors. On day 5 of culture, DCs were treated with RBcs for 24 h, and then purified using magnetic beads. The maturation of DCs was induced by TNF-α or LPS. After treatment with RBcs, expression of co-stimulatory molecules CD80 and CD86 was elevated in DCs, accompanied by increased production of IL-12p70, TNF-α, IL-6, IL-1β, and IL-8 but decreased production of IL-10. RBcs neither inhibited DC maturation nor promoted DC apoptosis. Moreover, RBcs-exposed DCs stimulated allogenetic T cell proliferation and T cell-derived cytokine production. These results indicate that RBcs can improve DCs’ antigen presenting function and capability to activate T cells, suggesting that RB cells may have an immunostimulatory effect on DCs, and DC-based immunotherapy may be adopted in the treatment of RB.
Collapse
|
34
|
Rolinski J, Hus I. Breaking immunotolerance of tumors: a new perspective for dendritic cell therapy. J Immunotoxicol 2014; 11:311-8. [PMID: 24495309 DOI: 10.3109/1547691x.2013.865094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of dendritic cells (DC) in cancer immunotherapy is based on their potent abilities to present antigens, so they can act as 'natural adjuvants' to enhance immunogenicity of tumor antigens and stimulate specific cytotoxic T-cells. Large amounts of DC can be generated from bone marrow, neonatal cord blood, and peripheral blood CD34(+) hematopoietic stem cells, or from peripheral blood monocytes. The DC can then be pulsed with tumor antigens and re-infused. In vitro, antigen-pulsed DC can stimulate allogeneic T-cell proliferation and induction of autologous specific cytotoxic T-cells; in vivo, the cells inhibit the growth of tumors or protect hosts (i.e. mice) from development of inoculated tumors. The results of preliminary clinical trials have shown that DC vaccines are safe and elicit immune responses; however, the rates of clinical responses are low. It has become quite clear that one key reason for unsatisfactory clinical results is tumor-induced immunosuppression. Among the factors contributing to this type of immunosuppression are populations of regulatory cells including: T-regulatory (T(reg)) cells, myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and DC expressing 2,3-dioxygenase indoleamine (IDO-DC). This review presents an overview of the current understanding about populations of regulatory cells and the most current research efforts directed to overcome immunosuppressive activity due to the tumor microenvironment.
Collapse
|
35
|
Mathan TSMM, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 2013; 4:372. [PMID: 24282405 PMCID: PMC3825182 DOI: 10.3389/fimmu.2013.00372] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.
Collapse
Affiliation(s)
- Till S M Manuel Mathan
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | | | | |
Collapse
|
36
|
Fregni G, Messaoudene M, Fourmentraux-Neves E, Mazouz-Dorval S, Chanal J, Maubec E, Marinho E, Scheer-Senyarich I, Cremer I, Avril MF, Caignard A. Phenotypic and functional characteristics of blood natural killer cells from melanoma patients at different clinical stages. PLoS One 2013; 8:e76928. [PMID: 24204708 PMCID: PMC3799851 DOI: 10.1371/journal.pone.0076928] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
Melanomas are aggressive skin tumors characterized by high metastatic potential. Immunotherapy is a valuable alternative for metastatic melanoma patients resistant to chemotherapy. Natural Killer (NK) cells are efficient anti-tumor cytotoxic effectors. We previously showed that blood NK cells from stage IV metastatic melanoma patients display decreased NK receptors and that chemotherapy modifies the functional status of blood NK cells. To investigate the role of NK cells along melanoma progression, we have here studied NK cells from patients at different stages of the disease. First, we showed that ex vivo NK cells from certain stage III-IV patients displayed low degranulation potential. Using a dynamic label-free assay, we found that immunoselected IL-2 activated blood NK cells from patients efficiently lysed melanoma cells through NKp46 and NKG2D receptors, independently to the clinical stage. Moreover, the ex vivo phenotype of circulating NK cells from 33 patients (stage I to IV) was extensively analyzed. NK cells from patients displayed higher variability in the percentages of Natural Cytotoxicity Receptors (NCR) and Natural Killer Group 2D (NKG2D) receptor expression compared to donor NK cells. The main defect was the decreased expression of NCR1 (NKp46) by NK cells from metastatic patients. Interestingly, we found a positive correlation between the NK cell percentages of NKp46 and the duration of stage IV in melanoma patients. Finally, we showed that NK cells infiltrated primary melanomas and displayed a predominant peritumoral distribution. These results are new arguments for the development of NK-based therapies in melanoma patients.
Collapse
Affiliation(s)
- Giulia Fregni
- Cochin Institute, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, University Paris Descartes, Paris, France
| | - Meriem Messaoudene
- Cochin Institute, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, University Paris Descartes, Paris, France
| | - Emmanuelle Fourmentraux-Neves
- Cochin Institute, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, University Paris Descartes, Paris, France
| | - Sarra Mazouz-Dorval
- Cochin Institute, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, University Paris Descartes, Paris, France
| | - Johan Chanal
- Cochin Institute, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, University Paris Descartes, Paris, France
- Assistance Publique-Hôpitaux de Paris, University Paris Descartes, Department of Dermatology, Cochin Hospital, Paris, France
| | - Eve Maubec
- Assistance Publique-Hôpitaux de Paris, University Paris Diderot, Department of Dermatology and Department of Pathology, Bichat Hospital, Paris, France
| | - Eduardo Marinho
- Assistance Publique-Hôpitaux de Paris, University Paris Diderot, Department of Dermatology and Department of Pathology, Bichat Hospital, Paris, France
| | - Isabelle Scheer-Senyarich
- Assistance Publique-Hôpitaux de Paris, University Paris Diderot, Department of Dermatology and Department of Pathology, Bichat Hospital, Paris, France
| | | | - Marie-Françoise Avril
- Cochin Institute, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, University Paris Descartes, Paris, France
- Assistance Publique-Hôpitaux de Paris, University Paris Descartes, Department of Dermatology, Cochin Hospital, Paris, France
| | - Anne Caignard
- Cochin Institute, Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, University Paris Descartes, Paris, France
| |
Collapse
|
37
|
Hargadon KM. Tumor-altered dendritic cell function: implications for anti-tumor immunity. Front Immunol 2013; 4:192. [PMID: 23874338 PMCID: PMC3708450 DOI: 10.3389/fimmu.2013.00192] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023] Open
Abstract
Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College , Hampden-Sydney, VA , USA
| |
Collapse
|
38
|
Min S, Liang X, Zhang M, Zhang Y, Mei S, Liu J, Liu J, Su X, Cao S, Zhong X, Li Y, Sun J, Liu Q, Jiang X, Che Y, Yang R. Multiple Tumor-Associated MicroRNAs Modulate the Survival and Longevity of Dendritic Cells by Targeting YWHAZ and Bcl2 Signaling Pathways. THE JOURNAL OF IMMUNOLOGY 2013; 190:2437-46. [DOI: 10.4049/jimmunol.1202282] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Tumor-Infiltrating Dendritic Cells May Be Used as Clinicopathologic Prognostic Factors in Endometrial Carcinoma. Int J Gynecol Cancer 2012; 22:836-41. [DOI: 10.1097/igc.0b013e31825401c6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
40
|
Proietti A, Ugolini C, Melillo RM, Crisman G, Elisei R, Santoro M, Minuto M, Vitti P, Miccoli P, Basolo F. Higher intratumoral expression of CD1a, tryptase, and CD68 in a follicular variant of papillary thyroid carcinoma compared to adenomas: correlation with clinical and pathological parameters. Thyroid 2011; 21:1209-15. [PMID: 22007938 DOI: 10.1089/thy.2011.0059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND In a number of human malignancies, the presence of lymphocytic infiltration in or around tumor tissue is commonly considered to be part of the host tumor immune response. An association between thyroid carcinoma and chronic inflammation has been described. This relationship is not fully understood, so we performed a systematic study on a follicular variant of papillary thyroid carcinoma (FVPTC), to evaluate the type and distribution of certain immunological cells and their relationship with prognostic factors. METHODS We selected 91 consecutive cases of FVPTC, in which we evaluated the presence of three different immunological cells: dendritic cells (DC), immature CD1a+ and mature DC-Lamp+; mast cells (MC), tryptase+; and macrophages (M), CD68+, in the intratumoral, peritumoral, and extratumoral areas. As a control we analyzed 44 cases of thyroid adenomas (A). RESULTS In the intratumoral and peritumoral areas, the expression of CD1a, tryptase, and CD68 was significantly higher in FVPTC than in adenomas. Expression of CD1a and tryptase was comparable in the extratumoral compartment, whereas CD68 expression in the extratumoral area was significantly higher in FVPTC than in adenoma (p=0.0015). DC-Lamp expression was not significantly different among the intra-tumor, peri-tumor, and extra-tumor areas of FVPTC or adenoma. It was also very interesting that nonencapsulated FVPTC were more positive to tryptase. CONCLUSION We highlight a higher presence of immunological cells in carcinomas than in adenomas. On this basis, it is possible to speculate that these inflammatory elements could be involved in tumor progression and invasion, as appears to be the case for MC and M.
Collapse
|
41
|
Abstract
Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the hosts and sites where tumors develop. Tumors arising in mucosal tissues may progress in an inflammatory context linked to local viral and/or bacterial infections. At the opposite, tumors developing in immunoprivileged sites are protected from microorganisms and grow in an immunosuppressive environment. In the present review, we summarize and present our recent data on the influence of infectious context and immune cell infiltration organization in human Non-Small Cell Lung Cancers (NSCLC) progression. We show that stimulation of tumor cells by TLR for viral ssRNA, such as TLR7/8, or bacteria, such as TLR4, promotes cell survival and induces chemoresistance. On the opposite, stimulation by TLR3, receptor for double-stranded viral RNA, decreases tumor cell viability and induces chemosensitivity in some lung tumor cell lines. Since fresh lung tumor cells exhibit a gene expression profile characteristic of TLR-stimulated lung tumor cell lines, we suspect that viral and bacterial influence may not only act on the host immune system but also directly on tumor growth and sensitivity to chemotherapy. The stroma of NSCLC contains tertiary lymphoid structures (or Tumor-induced Bronchus-Associated Lymphoid Tissues (Ti-BALT)) with mature DC, follicular DC, and T and B cells. Two subsets of immature DC, Langerhans cells (LC) and interstitial DC (intDC), were detected in the tumor nests and the stroma, respectively. Here, we show that the densities of the three DC subsets, mature DC, LC, and intDC, are highly predictive of disease-specific survival in a series of 74 early-stage NSCLC patients. We hypothesize that the mature DC may derive from local activation and migration of the immature DC--and especially LC which contact the tumor cells--to the tertiary lymphoid structures, after sampling and processing of the tumor antigens. In view of the prominent role of DC in the immune response, we suggest that the microenvironment of early-stage NSCLC may allow the in situ activation of the adaptive response. Finally, we find that the eyes or brain of mice with growing B cell lymphoma are infiltrated with T cells and that the cytokines produced ex vivo by the tumoral tissues have an impaired Th1 cytokine profile. Our work illustrates that the host and external tumor microenvironments are multifaceted and strongly influence tumor progression and anti-tumor immune responses.
Collapse
|
42
|
Ex vivo stimulation of murine dendritic cells by an exopolysaccharide from one of the anamorph of Cordyceps sinensis. Cell Biochem Funct 2011; 29:555-61. [DOI: 10.1002/cbf.1787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/19/2011] [Accepted: 06/06/2011] [Indexed: 11/07/2022]
|
43
|
Lee HE, Park DJ, Kim WH, Kim HH, Lee HS. High FOXP3+ regulatory T-cell density in the sentinel lymph node is associated with downstream non-sentinel lymph-node metastasis in gastric cancer. Br J Cancer 2011; 105:413-9. [PMID: 21730981 PMCID: PMC3172906 DOI: 10.1038/bjc.2011.248] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: We aimed to evaluate the immunologic nature of sentinel lymph nodes (SLNs) in gastric cancer patients and to determine whether it can predict non-SLN metastasis. Methods: Sentinel lymph node samples were collected from 64 gastric carcinoma patients who had undergone gastrectomy with SLN biopsy. One representative SLN sample was selected from each patient and was subjected to immunostaining for CD8, CD57, FOXP3, and DC-LAMP. The numbers of marker-positive cells in each sample were counted. The relationships between various immune cell densities and clinicopathologic parameters or metastasis status of SLNs and non-SLNs were sought. Results: High FOXP3+ Treg density of the SLN was found to be significantly associated with the presence of metastasis in either SLNs or non-SLNs. DC-LAMP+ cell density of the SLN was the highest at the isolated tumours cell level, and this decreased along with an increase in tumour metastasis in either SLNs or non-SLNs. Univariate and multivariate logistic regression models revealed that high FOXP3+ Treg density of the SLN was an independently significant predictor of non-SLN metastasis. Conclusions: This study is the first to indicate an important role of SLNs in metastatic dissemination of gastric cancer. Our findings suggest that Tregs could be a new therapeutic target for regulating the metastasis of gastric cancer.
Collapse
Affiliation(s)
- H E Lee
- Department of Pathology, Seoul National University Hospital, 28 Yeongon-dong, Jongno-gu, Seoul 110-744, Korea
| | | | | | | | | |
Collapse
|
44
|
Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 2011; 33:369-83. [PMID: 21611872 DOI: 10.1007/s00281-011-0245-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/12/2011] [Indexed: 12/11/2022]
Abstract
Drug repositioning refers to the utilization of a known compound in a novel indication underscoring a new mode of action that predicts innovative therapeutic options. Since 1959, alkylating agents, such as the lead compound cyclophosphamide (CTX), have always been conceived, at high dosages, as potent cytotoxic and lymphoablative drugs, indispensable for dose intensity and immunosuppressive regimen in the oncological and internal medicine armamentarium. However, more recent work highlighted the immunostimulatory and/or antiangiogenic effects of low dosing CTX (also called "metronomic CTX") opening up novel indications in the field of cancer immunotherapy. CTX markedly influences dendritic cell homeostasis and promotes IFN type I secretion, contributing to the induction of antitumor cytotoxic T lymphocytes and/or the proliferation of adoptively transferred T cells, to the polarization of CD4(+) T cells into TH1 and/or TH17 lymphocytes eventually affecting the Treg/Teffector ratio in favor of tumor regression. Moreover, CTX has intrinsic "pro-immunogenic" activities on tumor cells, inducing the hallmarks of immunogenic cell death on a variety of tumor types. Fifty years after its Food and Drug Administration approval, CTX remains a safe and affordable compound endowed with multifaceted properties and plethora of clinical indications. Here we review its immunomodulatory effects and advocate why low dosing CTX could be successfully combined to new-generation cancer vaccines.
Collapse
|
45
|
Abstract
In order to characterize the degree of immunosuppression in regional immunity in patients with melanoma, we used immunohistochemistry to analyze markers of T-cell subtype and polarity, costimulation, dendritic cell maturation, monocytes, lymphatic vasculature, and angiogenesis. Specifically, we analyzed expression of CD4, CD8, CD14, CD40, CD86, CD123, HLA-DR, IL-10, LYVE, VEGFR3, and VEGF-C in lymph nodes. We compared sentinel lymph nodes with and without metastasis from patients with melanoma with both infection inflamed (reactive) and dormant human lymph nodes. There were no differences demonstrated between sentinel lymph nodes with or without metastasis from patients with melanoma in any of the markers that were tested. Both groups of sentinel lymph nodes had fewer CD8(+) T cells than either set of control nodes. Whereas the infection inflamed lymph nodes demonstrated Th2 polarity, the dormant lymph nodes demonstrated Th1 polarity. In conclusion, changes in regional immunity appeared to precede metastasis in melanoma. Whether there was tumor present in sentinel lymph nodes or not, these nodes demonstrated a marked decrease in cytotoxic T cells compared with both sets of controls. Furthermore, the control lymph nodes used for comparison can significantly impact interpretation, as the dormant and reactive lymph nodes markedly varied in their immune profiles. These immunologic changes may explain the successful metastasis of melanoma in the midst of the immune environment of the sentinel lymph node, and lend insights into the mechanisms of lymphatic metastases in other solid malignancies.
Collapse
|
46
|
Lee JS, Kim DH, Lee CM, Ha TK, Noh KT, Park JW, Heo DR, Son KH, Jung ID, Lee EK, Shin YK, Ahn SC, Park YM. Deoxypodophyllotoxin Induces a Th1 Response and Enhances the Antitumor Efficacy of a Dendritic Cell-based Vaccine. Immune Netw 2011; 11:79-94. [PMID: 21494377 PMCID: PMC3072678 DOI: 10.4110/in.2011.11.1.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 01/07/2023] Open
Abstract
Background Dendritic cell (DC)-based vaccines are currently being evaluated as a novel strategy for tumor vaccination and immunotherapy. However, inducing long-term regression in established tumor-implanted mice is difficult. Here, we show that deoxypohophyllotoxin (DPT) induces maturation and activation of bone marrow-derived DCs via Toll-like receptor (TLR) 4 activation of MAPK and NF-κB. Methods The phenotypic and functional maturation of DPT-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. DPT-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity and for tumor regression against melanoma. Results DPT promoted the activation of CD8+ T cells and the Th1 immune response by inducing IL-12 production in DCs. In a B16F10 melanoma-implanted mouse model, we demonstrated that DPT-treated DCs (DPT-DCs) enhance immune priming and regression of an established tumor in vivo. Furthermore, migration of DPT-DCs to the draining lymph nodes was induced via CCR7 upregulation. Mice that received DPT-DCs displayed enhanced antitumor therapeutic efficacy, which was associated with increased IFN-γ production and induction of cytotoxic T lymphocyte activity. Conclusion These findings strongly suggest that the adjuvant effect of DPT in DC vaccination is associated with the polarization of T effector cells toward a Th1 phenotype and provides a potential therapeutic antitumor immunity.
Collapse
Affiliation(s)
- Jun Sik Lee
- Department of Biology, College of Natural Sciences, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Middel P, Brauneck S, Meyer W, Radzun HJ. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma. BMC Cancer 2010; 10:578. [PMID: 20969772 PMCID: PMC2972287 DOI: 10.1186/1471-2407-10-578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 10/22/2010] [Indexed: 12/31/2022] Open
Abstract
Background Renal cell carcinoma (RCC) represents one of the most immunoresponsive cancers. Antigen-specific vaccination with dendritic cells (DCs) in patients with metastatic RCC has been shown to induce cytotoxic T-cell responses associated with objective clinical responses. Thus, clinical trials utilizing DCs for immunotherapy of advanced RCCs appear to be promising; however, detailed analyses concerning the distribution and function of DC subsets in RCCs are lacking. Methods We characterized the distribution of the different immature and mature myeloid DC subsets in RCC tumour tissue and the corresponding normal kidney tissues. In further analyses, the expression of various chemokines and chemokine receptors controlling the migration of DC subsets was investigated. Results The highest numbers of immature CD1a+ DCs were found within RCC tumour tissue. In contrast, the accumulation of mature CD83+/DC-LAMP+ DCs were restricted to the invasive margin of the RCCs. The mature DCs formed clusters with proliferating T-cells. Furthermore, a close association was observed between MIP-3α-producing tumour cells and immature CCR6+ DC recruitment to the tumour bed. Conversely, MIP-3β and SLC expression was only detected at the tumour border, where CCR7-expressing T-cells and mature DCs formed clusters. Conclusion Increased numbers of immature DCs were observed within the tumour tissue of RCCs, whereas mature DCs were found in increased numbers at the tumour margin. Our results strongly implicate that the distribution of DC subsets is controlled by local lymphoid chemokine expression. Thus, increased expression of MIP-3α favours recruitment of immature DCs to the tumour bed, whereas de novo local expression of SLC and MIP-3β induces accumulation of mature DCs at the tumour margin forming clusters with proliferating T-cells reflecting a local anti-tumour immune response.
Collapse
Affiliation(s)
- Peter Middel
- Institut für Pathologie Nordhessen, Germaniastrasse 7-9, Kassel, Germany.
| | | | | | | |
Collapse
|
48
|
Charles J, Di Domizio J, Salameire D, Bendriss-Vermare N, Aspord C, Muhammad R, Lefebvre C, Plumas J, Leccia MT, Chaperot L. Characterization of Circulating Dendritic Cells in Melanoma: Role of CCR6 in Plasmacytoid Dendritic Cell Recruitment to the Tumor. J Invest Dermatol 2010; 130:1646-56. [DOI: 10.1038/jid.2010.24] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Yang XF, Yang WM, Liu Z, Zhao HY, Wang CY, Wu JH. Prognostic significance of CD83, CD1a and Ki-67 expression in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:256-261. [DOI: 10.11569/wcjd.v18.i3.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the prognostic significance of CD83, CD1a, and Ki-67 expression in colorectal carcinoma.
METHODS: The expression of CD83, CD1a, and Ki-67 in 60 cases of colorectal cancer was detected by immunohistochemistry and flow cytometry (FCM). The correlations of CD83, CD1a, and Ki-67 expression with clinicopathological parameters and prognosis in colorectal cancer were analyzed.
RESULTS: Immunohistochemistry analysis showed that the positive rates of CD83 and CD1a in early-stage (Dukes' stage) colorectal cancer patients and those with a good prognosis were significantly higher than those in advanced-stage patients and those with a poor prognosis, respectively (all P < 0.05). FCM analysis showed that the positive rate of CD1a was significantly higher in early-stage colorectal cancer patients and those with a good prognosis than in advanced-stage patients and those with a poor prognosis, respectively (both P < 0.05). Both immunohistochemistry and FCM results showed that the positive rate of Ki-67 was significantly lower in early-stage colorectal cancer patients and those with a good prognosis than in advanced-stage patients and those with a poor prognosis, respectively (both P < 0.05).
CONCLUSION: CD83, CD1a, and Ki-67 expression is correlated with the Dukes' stage and prognosis of colorectal cancer and can therefore be used as a prognostic parameter for the disease.
Collapse
|
50
|
Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, Vile RG. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther 2009; 20:1119-32. [PMID: 19630549 PMCID: PMC2829276 DOI: 10.1089/hum.2009.135] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 02/07/2023] Open
Abstract
The three-way interaction between oncolytic viruses, the tumor microenvironment, and the immune system is critical to the outcome of antitumor therapy. Classically, the immune system is thought to limit the efficacy of therapy, leading to viral clearance. However, preclinical and clinical data suggest that in some cases virotherapy may in fact act as cancer immunotherapy. In this review we discuss the ability of oncolytic viruses to alter the immunogenic milieu of the tumor microenvironment, and the role of innate and adaptive immunity in both restricting and augmenting therapy. Strategies to improve virotherapy by immunomodulation, including suppression or enhancement of the innate and adaptive responses, are discussed.
Collapse
Affiliation(s)
- Robin J. Prestwich
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Fiona Errington
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Hardev S. Pandha
- Postgraduate Medical School, University of Surrey, Guildford GU2 7XX, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Laboratory, Institute of Cancer Research, Cancer Research UK, Chester Beatty Laboratories, London SW3 6JB, United Kingdom
| | - Alan A. Melcher
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Richard G. Vile
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|