1
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Soboska K, Kusiński M, Pawelczyk K, Migdalska-Sęk M, Brzeziańska-Lasota E, Czarnecka-Chrebelska KH. Expression of RASSF1A, DIRAS3, and AKAP9 Genes in Thyroid Lesions: Implications for Differential Diagnosis and Prognosis of Thyroid Carcinomas. Int J Mol Sci 2024; 25:562. [PMID: 38203733 PMCID: PMC10778957 DOI: 10.3390/ijms25010562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Thyroid carcinoma is the primary endocrine malignancy worldwide. The preoperative examination of thyroid tissue lesion is often unclear. Approximately 25% of thyroid cancers cannot be diagnosed definitively without post-surgery histopathological examination. The assessment of diagnostic and differential markers of thyroid cancers is needed to improve preoperative diagnosis and reduce unnecessary treatments. Here, we assessed the expression of RASSF1A, DIRAS3, and AKAP9 genes, and the presence of BRAF V600E point mutation in benign and malignant thyroid lesions in a Polish cohort (120 patients). We have also performed a comparative analysis of gene expression using data obtained from the Gene Expression Omnibus (GEO) database (307 samples). The expression of RASSF1A and DIRAS3 was decreased, whereas AKAP9's was increased in pathologically changed thyroid compared with normal thyroid tissue, and significantly correlated with e.g., histopathological type of lesion papillary thyroid cancer (PTC) vs follicular thyroid cancer (FTC), patient's age, tumour stage, or its encapsulation. The receiver operating characteristic (ROC) analysis for the more aggressive FTC subtype differential marker suggests value in estimating RASSF1A and AKAP9 expression, with their area under curve (AUC), specificity, and sensitivity at 0.743 (95% CI: 0.548-0.938), 82.2%, and 66.7%; for RASSF1A, and 0.848 (95% CI: 0.698-0.998), 54.8%, and 100%, for AKAP9. Our research gives new insight into the basis of the aggressiveness and progression of thyroid cancers, and provides information on potential differential markers that may improve preoperative diagnosis.
Collapse
Affiliation(s)
- Kamila Soboska
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Michał Kusiński
- Department of Endocrine, General and Vascular Surgery, Medical University of Lodz, 62 Str. Pabianicka, 93-513 Lodz, Poland;
| | - Karol Pawelczyk
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
- Faculty of Medicine, Medical University of Lodz, Av. Kościuszki 4, 90-419 Lodz, Poland
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 251 Str. Pomorska, 92-213 Lodz, Poland (M.M.-S.)
| | | |
Collapse
|
3
|
Shi Y, Feng X, Zhang Y, Gao J, Bao W, Wang J, Bai J. Downregulation of JAM3 occurs in cholangiocarcinoma by hypermethylation: A potential molecular marker for diagnosis and prognosis. J Cell Mol Med 2024; 28:e18038. [PMID: 38124399 PMCID: PMC10826425 DOI: 10.1111/jcmm.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Junctional adhesion molecular 3 (JAM3) is downregulated by hypermethylation in cancers but is unclear in cholangiocarcinoma. The JAM3 expression level was checked in cholangiocarcinoma cell lines and tissues. Methylated JAM3 was detected in cell lines, tissues and plasma cell-free DNAs (cfDNA). The roles of JAM3 in cholangiocarcinoma were studied by transfection of siRNA and pCMV3-JAM3. The survival analysis was based on the Gene Set Cancer Analysis (GSCA) database. JAM3 was downregulated in HCCC-9810 and HuCCT1 cell lines and tissues by hypermethylation. Methylated JAM3 was detected in cfDNAs with 53.3% sensitivity and 96.6% specificity. Transfection of pCMV3-JAM3 into HCCC-9810 and HuCCT1 induced apoptosis and suppressed cell proliferation, migration and invasion. The depletion of JAM3 in RBE cells using siRNA decreased apoptosis and increased cell proliferation, migration and invasion. Hypermethylation of JAM3 was associated with tumour differentiation, metastasis and TNM stage. Downregulation and hypermethylation of JAM3 were related to poor progression-free survival. Junctional adhesion molecular 3 may function as a tumour suppressor in cholangiocarcinoma. Methylated JAM3 DNA may represent a non-invasive molecular marker for the early detection of cholangiocarcinoma and prognosis.
Collapse
Affiliation(s)
- Yi Shi
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingChina
| | - Xiao Feng
- Department of Pathology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Ying Zhang
- Department of Pathology, the Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Ji Gao
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingChina
| | - Wei Bao
- Department of Pathology, the Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Jian‐dong Wang
- Department of Pathology, the Affiliated Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Jian‐feng Bai
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingChina
| |
Collapse
|
4
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Hua X, Li Y, Pentaparthi SR, McGrail DJ, Zou R, Guo L, Shrawat A, Cirillo KM, Li Q, Bhat A, Xu M, Qi D, Singh A, McGrath F, Andrews S, Aung KL, Das J, Zhou Y, Lodi A, Mills GB, Eckhardt SG, Mendillo ML, Tiziani S, Wu E, Huang JH, Sahni N, Yi SS. Landscape of MicroRNA Regulatory Network Architecture and Functional Rerouting in Cancer. Cancer Res 2023; 83:59-73. [PMID: 36265133 PMCID: PMC9811166 DOI: 10.1158/0008-5472.can-20-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/15/2020] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
Somatic mutations are a major source of cancer development, and many driver mutations have been identified in protein coding regions. However, the function of mutations located in miRNA and their target binding sites throughout the human genome remains largely unknown. Here, we built detailed cancer-specific miRNA regulatory networks across 30 cancer types to systematically analyze the effect of mutations in miRNAs and their target sites in 3' untranslated region (3' UTR), coding sequence (CDS), and 5' UTR regions. A total of 3,518,261 mutations from 9,819 samples were mapped to miRNA-gene interactions (mGI). Mutations in miRNAs showed a mutually exclusive pattern with mutations in their target genes in almost all cancer types. A linear regression method identified 148 candidate driver mutations that can significantly perturb miRNA regulatory networks. Driver mutations in 3'UTRs played their roles by altering RNA binding energy and the expression of target genes. Finally, mutated driver gene targets in 3' UTRs were significantly downregulated in cancer and functioned as tumor suppressors during cancer progression, suggesting potential miRNA candidates with significant clinical implications. A user-friendly, open-access web portal (mGI-map) was developed to facilitate further use of this data resource. Together, these results will facilitate novel noncoding biomarker identification and therapeutic drug design targeting the miRNA regulatory networks. SIGNIFICANCE A detailed miRNA-gene interaction map reveals extensive miRNA-mediated gene regulatory networks with mutation-induced perturbations across multiple cancers, serving as a resource for noncoding biomarker discovery and drug development.
Collapse
Affiliation(s)
- Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongsheng Li
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sairahul R. Pentaparthi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Daniel J. McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Zou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aditya Shrawat
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas
| | - Kara M. Cirillo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshay Bhat
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Min Xu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Dan Qi
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Ashok Singh
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Francis McGrath
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Steven Andrews
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Kyaw Lwin Aung
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yunyun Zhou
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Precision Oncology, Knight Cancer Institute, Portland, Oregon
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stefano Tiziani
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Erxi Wu
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, Texas
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, Texas
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
6
|
Huang G, Chen J, Zhou J, Xiao S, Zeng W, Xia J, Zeng X. Epigenetic modification and BRAF gene mutation in thyroid carcinoma. Cancer Cell Int 2021; 21:687. [PMID: 34923978 PMCID: PMC8684614 DOI: 10.1186/s12935-021-02405-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
AbstractThyroid cancer remains the most prevailing endocrine malignancy, and a progressively increasing incidence rate has been observed in recent years, with 95% of thyroid cancer represented by differentiated thyroid carcinomas. The genetics and epigenetics of thyroid cancer are gradually increasing, and gene mutations and methylation changes play an important roles in its occurrence and development. Although the role of RAS and BRAF mutations in thyroid cancer have been partially clarified,but the pathogenesis and molecular mechanisms of thyroid cancer remain to be elucidated. Epigenetic modification refer to genetic modification that does not change the DNA sequence of a gene but causes heritable phenotypic changes in its expression. Epigenetic modification mainly includes four aspects: DNA methylation, chromatin remodelling, noncoding RNA regulation, and histone modification. This article reviews the importance of thyroid cancer epigenetic modification and BRAF gene mutation in the treatment of thyroid cancer.
Collapse
|
7
|
Gao B, Zhao Y, Gao Y, Li G, Wu L. Identification of Common Driver Gene Modules and Associations between Cancers through Integrated Network Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100006. [PMID: 34504716 PMCID: PMC8414517 DOI: 10.1002/gch2.202100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 05/12/2023]
Abstract
High-throughput biological data has created an unprecedented opportunity for illuminating the mechanisms of tumor emergence and evolution. An important and challenging problem in deciphering cancers is to investigate the commonalities of driver genes and pathways and the associations between cancers. Aiming at this problem, a tool ComCovEx is developed to identify common cancer driver gene modules between two cancers by searching for the candidates in local signaling networks using an exclusivity-coverage iteration strategy and outputting those with significant coverage and exclusivity for both cancers. The associations of the cancer pairs are further evaluated by Fisher's exact test. Being applied to 11 TCGA cancer datasets, ComCovEx identifies 13 significantly associated cancer pairs with plenty of biologically significant common gene modules. The novel results of cancer relationship and common gene modules reveal the relevant pathological basis of different cancer types and provide new clues to diagnosis and drug treatment in associated cancers.
Collapse
Affiliation(s)
- Bo Gao
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of MathematicsShandong UniversityJinan250100China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- School of Public HealthCapital Medical UniversityBeijing100069China
- Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijing100069China
| | - Yue Zhao
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yonghang Gao
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guojun Li
- School of MathematicsShandong UniversityJinan250100China
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| | - Ling‐Yun Wu
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
8
|
Hosseinalizadeh H, Mahmoodpour M, Ebrahimi A. The Role of Cell-Free Circulating DNA in the Diagnosis and Prognosis of Breast Cancer. ANNALS OF CANCER RESEARCH AND THERAPY 2021; 29:169-177. [DOI: 10.4993/acrt.29.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences
| | - Ammar Ebrahimi
- Department of Biomedical Sciences, University of Lausanne
| |
Collapse
|
9
|
Canberk S, Lima AR, Pinto M, Máximo V. Translational Potential of Epigenetic-Based Markers on Fine-Needle Aspiration Thyroid Specimens. Front Med (Lausanne) 2021; 8:640460. [PMID: 33834032 PMCID: PMC8021713 DOI: 10.3389/fmed.2021.640460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The awareness of epigenetic alterations leading to neoplasia attracted the attention of researchers toward its potential use in the management of cancer, from diagnosis to prognosis and prediction of response to therapies. Our group has focused its attention on the epigenomics of thyroid neoplasms. Although most of the epigenetic studies have been applied on histological samples, the fact is that cytology, through fine-needle aspiration, is a primary diagnostic method for many pathologies, of which thyroid nodules are one of the most paradigmatic examples. This has led to an increasing literature report of epigenetic studies using these biological samples over the past decade. In this review, our group aimed to document recent research of epigenetic alterations and its associated assessment techniques, based on cytology material. Our review covers the main epigenetic categories—DNA methylation, histone modification, and RNA-silencing—whose evidence in thyroid cytology samples may represent solid soil for future prospectively designed studies aiming at validating patterns of epigenetic alterations and their potential use in the clinical management of thyroid neoplasms.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
10
|
Canberk S, Lima AR, Pinto M, Soares P, Máximo V. Epigenomics in Hurthle Cell Neoplasms: Filling in the Gaps Towards Clinical Application. Front Endocrinol (Lausanne) 2021; 12:674666. [PMID: 34108939 PMCID: PMC8181423 DOI: 10.3389/fendo.2021.674666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
It has been widely described that cancer genomes have frequent alterations to the epigenome, including epigenetic silencing of various tumor suppressor genes with functions in almost all cancer-relevant signalling pathways, such as apoptosis, cell proliferation, cell migration and DNA repair. Epigenetic alterations comprise DNA methylation, histone modification, and microRNAs dysregulated expression and they play a significant role in the differentiation and proliferation properties of TC. In this review, our group assessed the published evidence on the tumorigenic role of epigenomics in Hurthle cell neoplasms (HCN), highlighting the yet limited, heteregeneous and non-validated data preventing its current use in clinical practice, despite the well developed assessment techniques available. The identified evidence gaps call for a joint endeavour by the medical community towards a deeper and more systematic study of HCN, aiming at defining epigenetic markers in early diagnose, allowing for accurate stratification of maligancy and disease risk and for effective systemic treatment.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- *Correspondence: Valdemar Máximo,
| |
Collapse
|
11
|
Clinicopathological Significance of Overall Frequency of Allelic Loss (OFAL) in Lesions Derived from Thyroid Follicular Cell. Mol Diagn Ther 2020; 23:369-382. [PMID: 30747408 PMCID: PMC6548761 DOI: 10.1007/s40291-019-00387-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Loss of heterozygosity (LOH) and microsatellite instability (MSI) are frequent molecular events in thyroid tumor etiopathogenesis occurring in several chromosomal critical areas, including 3p12–25.3, 7q21–31, 10q22–24, and 15q11–13, with loci of tumor suppressor genes. Objective We evaluated the usefulness of LOH/MSI as a diagnostic/prognostic biomarker in lesions derived from thyroid follicular cells: follicular thyroid carcinoma (FTC); follicular adenoma (FA), papillary thyroid carcinoma (PTC), and nodular goiter (NG). Methods We performed allelotyping (GeneMapper Software v. 4.0.) of ten microsatellite markers linked to the 1p31.2, 3p21.3, 3p24.2, 9p21.3, 11p15.5, and 16q22.1 region on DNA from 93 primary thyroid lesions then evaluated the LOH/MSI frequency and overall frequency of allelic loss (OFAL). Results We found regions with significantly increased frequency of LOH/MSI for specific histotypes: the 3p24.2 region for FA and 1p31.2 for FTC. LOH/MSI in 3p21.3 was significantly elevated in PTC and FTC. LOH/MSI in 3p21.3 was increased for small size tumors (T1a + T1b), tumors with no regional lymph node involvement (N0 + Nx), American Joint Committee on Cancer (AJCC) stage I tumors, and tumor diameter (Td) < 10 mm; in 1p31.2 for T2–3, N1, stage II–IV, and Td 10–30 mm; in 11p15.5 for T2–3, N1, stage II–IV, and Td > 30 mm. OFAL values were significantly higher in younger patients (< 40 years), in men, in those with T2–3 stage tumors, in those with increased Td, and in FA and FTC compared with NG and PTC. Conclusions We confirmed the occurrence of LOH/MSI in 3p21.3 at an early stage of tumorigenesis and mapped 1p31.2 and 11p15.5 as characteristic for advanced-stage tumors. The results of our study may enable consideration of OFAL, defined as LOH/MSI coincidence in various chromosomal regions, as a tumor progression marker. OFAL values were significantly higher in follicular neoplasms (FA and FTC) than in PTC or NG; hence, increased OFAL values can be regarded as a characteristic feature of the follicular phenotype.
Collapse
|
12
|
Botezatu A, Iancu IV, Plesa A, Manda D, Popa O, Bostan M, Mihaila M, Albulescu A, Fudulu A, Vladoiu SV, Huica I, Dobrescu R, Anton G, Badiu C. Methylation of tumour suppressor genes associated with thyroid cancer. Cancer Biomark 2019; 25:53-65. [PMID: 31006665 DOI: 10.3233/cbm-182265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid carcinoma is the most common endocrine malignancy worldwide. Changes in DNA methylation can cause silencing of normally active genes, especially tumour suppressor genes (TSG) or activation of normally silent genes. OBJECTIVE The aim of this study is to evaluate the degree of promoter methylation for a panel of markers for thyroid neoplasms and to establish their relationship with thyroid oncogenesis. METHODS To generate a comprehensive DNA methylation signature of TSGs involved in thyroid neoplasia, we use Human TSG EpiTect Methyl II Signature PCR Array-Qiagen for 24 samples (follicular adenomas and papillary thyroid carcinomas) compared with normal thyroid tissue. We extended the evaluation for three TSGs (TP73, WIF1, PDLIM4) using qMS-PCR. Statistical analysis was performed with GraphPad Prism. RESULTS We noted four important genes NEUROG1, ESR1, RUNX3, MLH1, which presented methylated promoter in tumour samples compared to normal. We found new characteristic of thyroid tumours: methylation of TP73, WIF1 and PDLIM4 TSGs, which can contribute to thyroid neoplasia. A significant correlation between BRAF V600E mutation and RET/PTC rearrangements with TIMP3 and CDH13, RARB methylation, respectively was observed. CONCLUSIONS TSGs promoter hypermethylation is a hallmark of cancer and a test that uses methylation quantification method is suitable for diagnosis and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Anca Botezatu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Iulia V Iancu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Adriana Plesa
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Dana Manda
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania
| | - Oana Popa
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania
| | - Marinela Bostan
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Mirela Mihaila
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Adrian Albulescu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania.,National Institute for Chemical pharmaceutical Research and Development, Calea Vitan, Romania
| | - Alina Fudulu
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Susana V Vladoiu
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania
| | - Irina Huica
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Ruxandra Dobrescu
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Gabriela Anton
- 'Stefan S. Nicolau' Institute of Virology, Bucharest, Romania
| | - Corin Badiu
- 'CI Parhon' National Institute of Endocrinology, Bucharest, Romania.,'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Saffar H, Shafiee G, Mossafa A, Tavangar SM. Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:290-298. [PMID: 31754358 PMCID: PMC6824767 DOI: 10.30699/ijp.2019.94401.1922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & OBJECTIVE Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior. METHODS In this research, we determined the promoter methylation status of four tumor suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive high resolution melting (MS-HRM) assay technique. The resulting graphs of each run were compared with those of 0%, 50%, and 100% methylated controls. RESULTS Our data showed that the promoter methylation of SLC5A8, Ras association domain family member 1(RASSF1), and MGMT were significantly different between PTC tissue and goiter with P-value less than 0.05. The most significant differences were observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-methylated goiter samples (P<0.001). CONCLUSION RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 promoter methylation is under the impact of the methyltransferase genes (DNMT1 and MGMT), protein expression, and promoter methylation.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mossafa
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Shakiba E, Movahedi M, Majd A, Hedayati M. Investigating the expression and promoter methylation of RET gene in patients with medullary thyroid cancer with unmutated RET. J Cell Physiol 2019; 234:16304-16311. [PMID: 30873628 DOI: 10.1002/jcp.28295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Thyroid cancer is one of the most common endocrine malignancies. Mutations in the rearranged during transfection (RET) gene, especially in exon 10, 11, and 16, as well as epigenetic modifications, constitute the major underlying molecular events leading to medullary thyroid cancer (MTC). There are few studies on the mutations and epigenetic changes of RET gene in Iranian patients with MTC. In the present study, we aimed to address this question and explore the clinical relevance of such genetic alternations in an Iranian population. METHODS Thirty-three patients with confirmed MTC who underwent thyroidectomy surgery in Imam Khomeini Hospital (Tehran, Iran) were enrolled. DNA extracted from cancerous tissues was amplified by polymerase chain reaction (PCR) and then was sequenced for identification of RET mutations. In patients with no identified mutations, the methylation status of RET promoter and its expression were further investigated using methylation-specific PCR and real-time PCR methods, respectively. RESULTS In MTC patients with no RET mutations, the promoter of the proto-oncogene was hypomethylated. Furthermore, RET gene expression was elevated in patients who revealed no mutations in neither of exon 10, 11, or 16 of the RET gene. CONCLUSION Hypomethylation of RET promoter may contribute to MTC pathogenesis. The methylation status of RET promoter could be a new potential prognostic, diagnostic and therapeutic marker in MTC.
Collapse
Affiliation(s)
- Elham Shakiba
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Monireh Movahedi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Majd
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Potential of epigenetic events in human thyroid cancer. Cancer Genet 2019; 239:13-21. [PMID: 31472323 DOI: 10.1016/j.cancergen.2019.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Thyroid cancer remains the highest prevailing endocrine malignancy, and its incidence rate has progressively increased in the previous years. Above 95% of thyroid tumor are follicular cells types of carcinoma in which are considered invasive type of tumor. The pathogenesis and molecular mechanism of thyroid tumors are yet remains elucidated, in spite of activating RET, RAS and BRAF carcinogenesis have been well introduced. Nemours molecular alterations have been defined and have revealed promise for their diagnostic, prognostic and therapeutic capacity but still need further confirmation. Among different types of mechanisms, the current article reviews the importance of epigenetic modifications in thyroid cancer. Increasing data from previous reports demonstrate that acquired epigenetic abnormalities together with genetic changes plays an important role in alteration of gene expression patterns. Aberrant DNA methylation has been well known in the CpG regions and profile of microRNAs (mi-RNAs) expression also involved in cancer development. In addition, the gene expression through epigenetic control contribution to thyroid cancer is analyzed and it is semi considered in the clinic. However the epigenetic of the thyroid cancer is yet remains in its early stages, and it carries encouraging potential thyroid cancer detections in its early stages, assessment of prognosis and targeted cancer treatment.
Collapse
|
16
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
17
|
Khatami F, Teimoori-Toolabi L, Heshmat R, Nasiri S, Saffar H, Mohammadamoli M, Aghdam MH, Larijani B, Tavangar SM. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem 2019; 120:17422-17437. [PMID: 31127647 DOI: 10.1002/jcb.29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of cancer among thyroid malignancies. Tumor-related methylation of circulating tumor DNA (ctDNA) in plasma could represent tumor specific alterations can be considered as good biomarkers in circulating tumor cells. In this study, we studied the methylation status of seven promoter regions of two DNA methyl Transferases (MGMT and DNMT1) genes as the methylated ctDNA in plasma and tissue samples of patients with PTC and goiter patients as noncancerous controls. METHODS Both ctDNA and tissue genomic DNA of 57 PTC and 45 Goiter samples were isolated. After bisulfite modification, the methylation status was studied by Methylation-Sensitive High Resolution Melting (MS-HRM) assay technique. Four promoter regions of O6-methylguanine-DNA methyltransferase (MGMT) and three promoter regions of DNA methyltransferase 1 (DNMT1) were assessed. RESULTS From seven candidate promoter regions of two methyltrasferase coding genes, the methylation status of ctDNA within MGMT (a), MGMT (c), MGMT (d), and DNMT1 (b) were meaningfully different between PTC cases and controls. However, the most significant differences were seen in circulating ctDNA MGMT (c) which was hypermethylated in 25 (43.9 %) of patients with PTC vs 2 (4. 4 %) of goiter samples. Between two selected DNA methyl transferase, the methylation of MGMT as the maintenance methyltransferase was significantly higher in PTC cases than goiter controls (P-value < .001). The resulting areas under the receiver operating characteristic (ROC) curve were 0.78 for MGMT (d) for PTC versus goiter samples that can represent the overall ability of MGMT (d) methylation status to discriminate between PTC and goiter patients. CONCLUSION Among seven candidate regions of ctDNA the MGMT (c) and MGMT (d) showed higher sensitivity and specificity for PTC as a suitable candidates as biomarkers of PTC.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Zhang K, Li C, Liu J, Tang X, Li Z. DNA methylation alterations as therapeutic prospects in thyroid cancer. J Endocrinol Invest 2019; 42:363-370. [PMID: 29992502 DOI: 10.1007/s40618-018-0922-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Thyroid cancer is one of the most common endocrine malignancies. Although the 10-year survival rate of differentiated thyroid cancer (DTC) is about 90% after conventional treatments, a small proportion of patients still suffer from tumor recurrence or drug resistance. OBJECTIVE This review article summarizes recent researches and clinical trials related to target drugs that reduce mortality in thyroid cancer. METHODS This is a review of the recent literature and clinical trials on the three main aspects including methylation genes in thyroid cancers, the relationship between BRAF mutation and gene methylation, target and dehypermethylation drugs in clinical trials. RESULTS We propose new approaches to treating malignant thyroid cancer, based on advances in understanding the relationship between genetic and epigenetic changes in thyroid cancer. Although the effect of traditional treatment for thyroid cancer is relatively good, a small proportion of patients still suffer from tumor recurrence or drug resistance. Molecular targeted drugs and dehypermethylation drugs have more promising outcomes in aggressive thyroid cancer compared with conventional treatments. CONCLUSION Based on what was discussed in this review, we suggest that integration of epigenetic and targeted therapies into conventional treatments will reduce the occurrence of refractory radioiodine differentiated thyroid cancer and improve the outcomes in aggressive thyroid cancer patients.
Collapse
Affiliation(s)
- K Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
| | - C Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
- Department of Pharmacy, ZhuZhou Central Hospital, ZhuZhou, 410078, People's Republic of China
| | - J Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
| | - X Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China
- Department of Center for ADR monitoring of Hubei, Wuhan, 430071, People's Republic of China
| | - Z Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Xiangya Road #110, Changsha, 410078, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Gao B, Zhao Y, Li Y, Liu J, Wang L, Li G, Su Z. Prediction of Driver Modules via Balancing Exclusive Coverages of Mutations in Cancer Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801384. [PMID: 30828525 PMCID: PMC6382311 DOI: 10.1002/advs.201801384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/04/2018] [Indexed: 05/07/2023]
Abstract
Mutual exclusivity of cancer driving mutations is a frequently observed phenomenon in the mutational landscape of cancer. The long tail of rare mutations complicates the discovery of mutually exclusive driver modules. The existing methods usually suffer from the problem that only few genes in some identified modules cover most of the cancer samples. To overcome this hurdle, an efficient method UniCovEx is presented via identifying mutually exclusive driver modules of balanced exclusive coverages. UniCovEx first searches for candidate driver modules with a strong topological relationship in signaling networks using a greedy strategy. It then evaluates the candidate modules by considering their coverage, exclusivity, and balance of coverage, using a novel metric termed exclusive entropy of modules, which measures how balanced the modules are. Finally, UniCovEx predicts sample-specific driver modules by solving a minimum set cover problem using a greedy strategy. When tested on 12 The Cancer Genome Atlas datasets of different cancer types, UniCovEx shows a significant superiority over the previous methods. The software is available at: https://sourceforge.net/projects/cancer-pathway/files/.
Collapse
Affiliation(s)
- Bo Gao
- School of MathematicsShandong UniversityJinan250100China
- State Key Laboratory of Microbial TechnologyShandong UniversityJinan250100China
| | - Yue Zhao
- IAMMADISNCMISAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yang Li
- School of MathematicsShandong UniversityJinan250100China
- State Key Laboratory of Microbial TechnologyShandong UniversityJinan250100China
| | - Juntao Liu
- School of MathematicsShandong UniversityJinan250100China
| | - Lushan Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityJinan250100China
| | - Guojun Li
- School of MathematicsShandong UniversityJinan250100China
- State Key Laboratory of Microbial TechnologyShandong UniversityJinan250100China
| | - Zhengchang Su
- Department of Bioinformatics and GenomicsCollege of Computing and InformaticsThe University of North Carolina at Charlotte9201 University City BlvdCharlotteNC28223USA
| |
Collapse
|
20
|
Asa SL, Ezzat S. The epigenetic landscape of differentiated thyroid cancer. Mol Cell Endocrinol 2018; 469:3-10. [PMID: 28711609 DOI: 10.1016/j.mce.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Differentiated thyroid carcinoma of follicular cell-derivation is the most common endocrine neoplasm with a rapidly increasing incidence. The majority represent papillary carcinomas; more rarely, they are follicular carcinomas. The vast majority have indolent behavior, however a significant proportion progress to develop lymph node metastases and a smaller proportion disseminate systemically. While common and frequent genetic events have been described to underlie the development of these neoplasms, the factors contributing to differing behaviors among tumors with similar genetic alterations remain unclear. This review focuses on epigenetic mechanisms targeting major signaling pathways that underlie the spectrum of biological behaviors and that may have potential diagnostic, prognostic and therapeutic value.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Shereen Ezzat
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Sasanakietkul T, Murtha TD, Javid M, Korah R, Carling T. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol 2018; 469:23-37. [PMID: 28552796 DOI: 10.1016/j.mce.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 12/25/2022]
Abstract
Well-differentiated thyroid cancer accounts for the majority of endocrine malignancies and, in general, has an excellent prognosis. In contrast, the less common poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) are two of the most aggressive human malignancies. Recently, there has been an increased focus on the epigenetic alterations underlying thyroid carcinogenesis, including those that drive PDTC and ATC. Dysregulated epigenetic candidates identified include the Aurora group, KMT2D, PTEN, RASSF1A, multiple non-coding RNAs (ncRNA), and the SWI/SNF chromatin-remodeling complex. A deeper understanding of the signaling pathways affected by epigenetic dysregulation may improve prognostic testing and support the advancement of thyroid-specific epigenetic therapies. This review outlines the current understanding of epigenetic alterations observed in PDTC and ATC and explores the potential for exploiting this understanding in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Thanyawat Sasanakietkul
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Timothy D Murtha
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mahsa Javid
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Surgery, Section of Endocrine Surgery, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Stephen JK, Chen KM, Merritt J, Chitale D, Divine G, Worsham MJ. Methylation markers differentiate thyroid cancer from benign nodules. J Endocrinol Invest 2018; 41:163-170. [PMID: 28612287 DOI: 10.1007/s40618-017-0702-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The incidence of thyroid cancer (TC) is increasing. Cytology by itself cannot distinguish TC from some benign nodules especially in certain subtypes of TC. Our immediate goal is to identify DNA methylation markers for early detection of TC and to molecularly differentiate TC subtypes from benign nodules. METHODS Promoter methylation status of 21 candidate genes was examined on formalin-fixed paraffin-embedded tissue (FFPE) utilizing quantitative methylation-specific polymerase chain reaction (QMSP) in a retrospective cohort of 329 patients (56% white, 29% African American, 61% female) comprising 71 normal thyroid, 83 benign nodules [follicular adenomas (FA)], 90 follicular TC (FTC) and 85 papillary TC (PTC). All genes were analyzed individually (Kruskal-Wallis and Wilcoxon rank sum tests) and in combination (logistic regression models) to identify genes whose methylation levels might best separate groups. RESULTS Combination gene panels TPO and UCHL1 (ROC = 0.607, sensitivity 78%) discriminated FTC from FA, and RASSF1 and TPO (ROC = 0.881, sensitivity 78%) discriminated FTC from normal. Methylation of TSHR distinguished PTC from FTC (ROC = 0.701, sensitivity 84%) and PTC from FA (ROC = 0.685, sensitivity 70%). The six gene panel of TIMP3, RARB2, SERPINB5, RASSF1, TPO and TSHR, which differentiates PTC from normal thyroid, had the best combination sensitivity (91%) and specificity (81%) of the panels addressing discrimination of cancer tissue. CONCLUSIONS Aberrant gene methylation used in combination panels may be useful clinically in differentiating FTC and PTC from benign nodules. If confirmed in additional studies, these findings could help reduce the over diagnosis of thyroid cancer and surgeries related to over diagnosis.
Collapse
Affiliation(s)
- J K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA.
| | - K M Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| | - J Merritt
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| | - D Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - G Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - M J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, 1 Ford Place, 1D-06, Detroit, MI, 48202, USA
| |
Collapse
|
23
|
Khatami F, Larijani B, Heshmat R, Keshtkar A, Mohammadamoli M, Teimoori-Toolabi L, Nasiri S, Tavangar SM. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PLoS One 2017; 12:e0184892. [PMID: 28926589 PMCID: PMC5605048 DOI: 10.1371/journal.pone.0184892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/03/2017] [Indexed: 01/11/2023] Open
Abstract
Promoter methylation in a number of tumor-suppressor genes (TSGs) can play crucial roles in the development of thyroid carcinogenesis. The focus of the current meta-analysis was to determine the impact of promoter methylation of eight selected candidate TSGs on thyroid cancer and to identify the most important molecules in this carcinogenesis pathway. A comprehensive search was performed using Pub Med, Scopus, and ISI Web of Knowledge databases, and eligible studies were included. The methodological quality of the included studies was evaluated according to the Newcastle Ottawa scale table and pooled odds ratios (ORs); 95% confidence intervals (CIs) were used to estimate the strength of the associations with Stata 12.0 software. Egger's and Begg's tests were applied to detect publication bias, in addition to the "Metatrim" method. A total of 55 articles were selected, and 135 genes with altered promoter methylation were found. Finally, we included eight TSGs that were found in more than four studies (RASSF1, TSHR, PTEN, SLC5A, DAPK, P16, RARβ2, and CDH1). The order of the pooled ORs for these eight TSGs from more to less significant was CDH1 (OR = 6.73), SLC5 (OR = 6.15), RASSF1 (OR = 4.16), PTEN (OR = 3.61), DAPK (OR = 3.51), P16 (OR = 3.31), TSHR (OR = 2.93), and RARβ2 (OR = 1.50). Analyses of publication bias and sensitivity confirmed that there was very little bias. Thus, our findings showed that CDH1 and SCL5A8 genes were associated with the risk of thyroid tumor genesis.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Shou F, Xu F, Li G, Zhao Z, Mao Y, Yang F, Wang H, Guo H. RASSF1A promoter methylation is associated with increased risk of thyroid cancer: a meta-analysis. Onco Targets Ther 2017; 10:247-257. [PMID: 28123306 PMCID: PMC5234557 DOI: 10.2147/ott.s124417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective Previous studies have reported that Ras-associated domain family 1A (RASSF1A), the most commonly silenced tumor suppressor via promoter methylation, played vital roles in the development of carcinogenesis. The purpose of this meta-analysis was to determine whether RASSF1A promoter methylation increased the risk of thyroid cancer. Methods PubMed, Embase, ISI Web of Knowledge, and Chinese National Knowledge Infrastructure databases were searched to obtain eligible studies. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of the associations, using Stata 12.0 software. The methodological quality of included studies was evaluated using Newcastle–Ottawa scale table. Egger’s test and Begg’s test were applied to detect publication biases. TSA 0.9 software was used to calculate the required information size and whether the result was conclusive. Results A total of 10 articles with 12 studies that included 422 thyroid cancer patients, identifying the association of RASSF1A promoter methylation with thyroid cancer risk, were collected in this meta-analysis. Overall, RASSF1A promoter methylation significantly increased the risk of thyroid cancer (total, OR=8.27, CI=4.38–15.62, P<0.05; Caucasian, OR=9.25, CI=3.97–21.56, P<0.05; Asian, OR=7.01, CI=2.68–18.38, P<0.05). In the subgroup analysis based on sample type, a significant association between thyroid cancer group and control group was found (normal tissue, OR=9.55, CI=4.21–21.67, P<0.05; adjacent tissue, OR=6.80, CI=2.49–18.56, P<0.05). The frequency of RASSF1A promoter methylation in follicular thyroid carcinoma was higher than in control group (OR=11.88, CI=5.80–24.32, P<0.05). In addition, the results indicated that the RASSF1A promoter methylation was correlated with papillary thyroid carcinoma in Caucasians and Asians (total, OR=8.07, CI=3.54–18.41, P<0.05; Caucasian, OR=11.35, CI=2.39–53.98, P<0.05; Asian, OR=6.67, CI=2.53–17.64, P<0.05). On the basis of the trial sequential analysis, the significant association of RASSF1A promoter methylation with thyroid cancer risk was found, and there was no need to perform further studies. Conclusion This meta-analysis confirms that RASSF1A promoter methylation is a risk factor for thyroid tumor.
Collapse
Affiliation(s)
| | - Feng Xu
- Department of Breast and Thyroid Surgery
| | - Gang Li
- Department of General Practice
| | | | - Ying Mao
- Department of Special Inspection Section
| | | | - Hongming Wang
- Department of Acupuncture and Moxibustion, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | | |
Collapse
|
25
|
REC8 is a novel tumor suppressor gene epigenetically robustly targeted by the PI3K pathway in thyroid cancer. Oncotarget 2016; 6:39211-24. [PMID: 26472282 PMCID: PMC4770767 DOI: 10.18632/oncotarget.5391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
The role of the PI3K pathway in human cancer has been well established, but much of its molecular mechanism, particularly the epigenetic aspect, remains to be defined. We hypothesized that aberrant methylation and hence altered expression of certain unknown important genes induced by the genetically activated PI3K pathway signaling is a major epigenetic mechanism in human tumorigenesis. Through a genome-wide search for such genes that were epigenetically controlled by the PI3K pathway in thyroid cancer cells, we found a wide range of genes with broad functions epigenetically targeted by the PI3K pathway. The most prominent among these genes was REC8, classically known as a meiotic-specific gene, which we found to be robustly down-regulated by the PI3K pathway through hypermethylation. REC8 hypermethylation was strongly associated with genetic alterations and activities of the PI3K pathway in thyroid cancer cell lines, thyroid cancer tumors, and some other human cancers; it was also associated with poor clinicopathological outcomes of thyroid cancer, including advanced disease stages and patient mortality. Demethylating the hypermethylated REC8 gene restored its expression in thyroid cancer cells in which the PI3K pathway was genetically over-activated and induced expression of REC8 protein inhibited the proliferation and colony formation of these cells. These findings are consistent with REC8 being a novel major bona fide tumor suppressor gene and a robust epigenetic target of the PI3K pathway. Aberrant inactivation of REC8 through hypermethylation by the PI3K pathway may represent an important mechanism mediating the oncogenic functions of the PI3K pathway.
Collapse
|
26
|
Daneshpour M, moradi LS, Izadi P, Omidfar K. Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe 3 O 4 /TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron 2016; 77:1095-103. [DOI: 10.1016/j.bios.2015.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/20/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|
27
|
Ozer B, Sezerman OU. A novel analysis strategy for integrating methylation and expression data reveals core pathways for thyroid cancer aetiology. BMC Genomics 2015; 16 Suppl 12:S7. [PMID: 26678064 PMCID: PMC4682414 DOI: 10.1186/1471-2164-16-s12-s7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Recently, a wide range of diseases have been associated with changes in DNA methylation levels, which play a vital role in gene expression regulation. With ongoing developments in technology, attempts to understand disease mechanism have benefited greatly from epigenetics and transcriptomics studies. In this work, we have used expression and methylation data of thyroid carcinoma as a case study and explored how to optimally incorporate expression and methylation information into the disease study when both data are available. Moreover, we have also investigated whether there are important post-translational modifiers which could drive critical insights on thyroid cancer genetics. Results In this study, we have conducted a threshold analysis for varying methylation levels to identify whether setting a methylation level threshold increases the performance of functional enrichment. Moreover, in order to decide on best-performing analysis strategy, we have performed data integration analysis including comparison of 10 different analysis strategies. As a result, combining methylation with expression and using genes with more than 15% methylation change led to optimal detection rate of thyroid-cancer associated pathways in top 20 functional enrichment results. Furthermore, pooling the data from different experiments increased analysis confidence by improving the data range. Consequently, we have identified 207 transcription factors and 245 post-translational modifiers with more than 15% methylation change which may be important in understanding underlying mechanisms of thyroid cancer. Conclusion While only expression or only methylation information would not reveal both primary and secondary mechanisms involved in disease state, combining expression and methylation led to a better detection of thyroid cancer-related genes and pathways that are found in the recent literature. Moreover, focusing on genes that have certain level of methylation change improved the functional enrichment results, revealing the core pathways involved in disease development such as; endocytosis, apoptosis, glutamatergic synapse, MAPK, ErbB, TGF-beta and Toll-like receptor pathways. Overall, in addition to novel analysis framework, our study reveals important thyroid-cancer related mechanisms, secondary molecular alterations and contributes to better knowledge of thyroid cancer aetiology.
Collapse
|
28
|
Zhou L, Patel KN. The management of thyroid nodules and cancer in the molecular era. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.15.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The incidence of thyroid cancer is increasing worldwide. Current standards in the diagnosis and management of thyroid cancer are limited by the uncertainty of fine-needle aspiration samples that are indeterminate in nature. Molecular markers have the potential to improve the accuracy of thyroid fine-needle aspiration and to aid the physician in giving a more accurate diagnosis and prognosis. This paper summarizes the various molecular markers currently available.
Collapse
Affiliation(s)
- Ling Zhou
- Division of Endocrine Surgery, Department of Surgery, Biochemistry & Otolaryngology, Thyroid Cancer Interdisciplinary Program, NYU Langone Medical Center, 530 First Avenue, Suite 6H, NY 10016, USA
| | - Kepal N Patel
- Division of Endocrine Surgery, Department of Surgery, Biochemistry & Otolaryngology, Thyroid Cancer Interdisciplinary Program, NYU Langone Medical Center, 530 First Avenue, Suite 6H, NY 10016, USA
| |
Collapse
|
29
|
Jiang JL, Tian GL, Chen SJ, Xu LI, Wang HQ. Promoter methylation of p16 and RASSF1A genes may contribute to the risk of papillary thyroid cancer: A meta-analysis. Exp Ther Med 2015; 10:1549-1555. [PMID: 26622524 DOI: 10.3892/etm.2015.2656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
The aim of the present meta-analysis was to investigate the correlation of promoter methylation of the p16 and Ras association domain family 1 isoform A (RASSF1A) genes with the risk of the development of papillary thyroid cancer (PTC). A number of electronic databases were searched without language restrictions as follows: Medline (1966-2013), the Cochrane Library database (Issue 12, 2013), Embase (1980-2013), CINAHL (1982-2013), Web of Science (1945-2013) and the Chinese Biomedical Database (CBM; 1982-2013). A meta-analysis was performed with the use of Stata statistical software. The odds ratios (ORs), ratio differences (RDs) and 95% confidence intervals (95% CIs) were calculated. In the present meta-analysis, eleven clinical cohort studies with a total of 734 patients with PTC were included. The results of the current meta-analysis indicated that the frequency of promoter methylation of p16 in cancer tissues was significantly higher compared with that in normal, adjacent and benign tissues (cancer tissues vs. normal tissues: OR=7.14; 95% CI, 3.30-15.47; P<0.001; cancer tissues vs. adjacent tissues: OR=11.90; 95% CI, 5.55-25.52; P<0.001; cancer tissues vs. benign tissues: OR=2.25; 95% CI, 1.67-3.03; P<0.001, respectively). The results also suggest that RASSF1A promoter methylation may be implicated in the pathogenesis of PTC (cancer tissues vs. normal tissues: RD=0.53; 95% CI, 0.42-0.64; P<0.001; cancer tissues vs. adjacent tissues: RD=0.39; 95% CI, 0.31-0.48; P<0.001; cancer tissues vs. benign tissues: RD=0.39; 95% CI, 0.31-0.47; P<0.001; respectively). Thus, the present meta-analysis indicates that aberrant promoter methylation of p16 and RASSF1A genes may play a crucial role in the pathogenesis of PTC.
Collapse
Affiliation(s)
- Jia-Li Jiang
- Department of Clinical Laboratory, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, P.R. China
| | - Gui-Lan Tian
- Department of Obstetrics and Gynecology, Center Hospital of Xiji Town, Zaozhuang, Shandong 277200, P.R. China
| | - Shu-Jiao Chen
- Department of Clinical Laboratory, Blood Center of Zaozhuang, Zaozhuang, Shandong 277000, P.R. China
| | - L I Xu
- Department of Clinical Laboratory, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, P.R. China
| | - Hui-Qin Wang
- Department of Clinical Laboratory, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, P.R. China
| |
Collapse
|
30
|
Neapolitan R, Horvath CM, Jiang X. Pan-cancer analysis of TCGA data reveals notable signaling pathways. BMC Cancer 2015; 15:516. [PMID: 26169172 PMCID: PMC4501083 DOI: 10.1186/s12885-015-1484-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/09/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND A signal transduction pathway (STP) is a network of intercellular information flow initiated when extracellular signaling molecules bind to cell-surface receptors. Many aberrant STPs have been associated with various cancers. To develop optimal treatments for cancer patients, it is important to discover which STPs are implicated in a cancer or cancer-subtype. The Cancer Genome Atlas (TCGA) makes available gene expression level data on cases and controls in ten different types of cancer including breast cancer, colon adenocarcinoma, glioblastoma, kidney renal papillary cell carcinoma, low grade glioma, lung adenocarcinoma, lung squamous cell carcinoma, ovarian carcinoma, rectum adenocarcinoma, and uterine corpus endometriod carcinoma. Signaling Pathway Impact Analysis (SPIA) is a software package that analyzes gene expression data to identify whether a pathway is relevant in a given condition. METHODS We present the results of a study that uses SPIA to investigate all 157 signaling pathways in the KEGG PATHWAY database. We analyzed each of the ten cancer types mentioned above separately, and we perform a pan-cancer analysis by grouping the data for all the cancer types. RESULTS In each analysis several pathways were found to be markedly more significant than all the other pathways. We call them notable. Research has already established a connection between many of these pathways and the corresponding cancer type. However, some of our discovered pathways appear to be new findings. Altogether there were 37 notable findings in the separate analyses, 26 of them occurred in 7 pathways. These 7 pathways included the 4 notable pathways discovered in the pan-cancer analysis. So, our results suggest that these 7 pathways account for much of the mechanisms of cancer. Furthermore, by looking at the overlap among pathways, we identified possible regions on the pathways where the aberrant activity is occurring. CONCLUSIONS We obtained 37 notable findings concerning 18 pathways. Some of them appear to be new discoveries. Furthermore, we identified regions on pathways where the aberrant activity might be occurring. We conclude that our results will prove to be valuable to cancer researchers because they provide many opportunities for laboratory and clinical follow-up studies.
Collapse
Affiliation(s)
- Richard Neapolitan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Il, USA.
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA.
| | - Xia Jiang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Stephen JK, Chen KM, Merritt J, Chitale D, Divine G, Worsham MJ. Methylation Markers for Early Detection and Differentiation of Follicular Thyroid Cancer Subtypes. ACTA ACUST UNITED AC 2015; 4:1-12. [PMID: 27158284 PMCID: PMC4859763 DOI: 10.5539/cco.v4n2p1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thyroid cancer has the fastest rising incidence rates and is the fifth most common cancer in women. There are four main types of which the papillary and follicular types together account for >90%, followed by medullary cancers (3%−5%) and anaplastic carcinomas (<3%). For individuals who present with early stage disease of papillary and follicular cancers, there are no accurate markers to predict whether they will develop metastatic or recurrent disease. Our immediate goal is to molecularly differentiate follicular cancer subtypes for enhanced classification. Promoter methylation status of genes with reported associations in thyroid cancer (CASP8, CDKN2A, DAPK1, ESR1, NIS, RASSF1 and TIMP3) were examined in a cohort of follicular thyroid cancers comprising of 26 Hurthle and 27 Classic subtypes utilizing quantitative methylation-specific PCR. RASSF1 was differentially methylated in Classic tumor tissue compared to Hurthle (p<0.001). Methylation of RASSF1 pointed to racial group differences between African Americans and Caucasian Americans (p=0.05). Extra thyroidal extension was found to be associated with DAPK1 (p=0.014) and ESR1 (p=0.036) methylation. Late stage disease was associated with older age (p<0.001) and methylation of DAPK1 (p=0.034) and ESR1 (p=0.035). The methylation status of RASSF1, DAPK1 and ESR1 suggests the utility of methylation markers to molecularly differentiate thyroid cancer subtypes for enhanced classification and early detection of thyroid cancer.
Collapse
Affiliation(s)
- Josena K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | - Kang Mei Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | - Jason Merritt
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | - George Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan 48202USA
| | - Maria J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, Michigan 48202, USA
| |
Collapse
|
32
|
Babur Ö, Gönen M, Aksoy BA, Schultz N, Ciriello G, Sander C, Demir E. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations. Genome Biol 2015; 16:45. [PMID: 25887147 PMCID: PMC4381444 DOI: 10.1186/s13059-015-0612-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
We present a novel method for the identification of sets of mutually exclusive gene alterations in a given set of genomic profiles. We scan the groups of genes with a common downstream effect on the signaling network, using a mutual exclusivity criterion that ensures that each gene in the group significantly contributes to the mutual exclusivity pattern. We test the method on all available TCGA cancer genomics datasets, and detect multiple previously unreported alterations that show significant mutual exclusivity and are likely to be driver events.
Collapse
Affiliation(s)
- Özgün Babur
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, 10065, USA.
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, 10065, USA.
| | - Bülent Arman Aksoy
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, 10065, USA.
- Tri-Institutional Training Program in Computational Biology and Medicine, 1275 York Avenue, New York, 10065, USA.
| | - Nikolaus Schultz
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, 10065, USA.
| | - Giovanni Ciriello
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, 10065, USA.
| | - Chris Sander
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, 10065, USA.
| | - Emek Demir
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 460, New York, 10065, USA.
| |
Collapse
|
33
|
Zhao Z, Herman JG, Brock MV, Sheng J, Zhang M, Liu B, Guo M. Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling. PLoS One 2014; 9:e112336. [PMID: 25375359 PMCID: PMC4223043 DOI: 10.1371/journal.pone.0112336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/08/2014] [Indexed: 01/26/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignant disease and the incidence is increasing. DACT2 was found frequently methylated in human lung cancer and hepatocellular carcinoma. To explore the epigenetic change and the role of DACT2 in thyroid cancer, 7 thyroid cancer cell lines, 10 cases of non-cancerous thyroid tissue samples and 99 cases of primary thyroid cancer samples were involved in this study. DACT2 was expressed and unmethylated in K1, SW579, FTC-133, TT, W3 and 8505C cell lines. Loss of expression and complete methylation was found in TPC-1 cells. Restoration of DACT2 expression was induced by 5-aza-2′deoxycytidine treatment. It demonstrates that the expression of DACT2 was regulated by promoter region methylation. In human primary papillary thyroid cancer, 64.6% (64/99) was methylated and methylation of DACT2 was related to lymph node metastasis (p<0.01). Re-expression of DACT2 suppresses cell proliferation, invasion and migration in TPC-1 cells. The activity of TCF/LEF was inhibited by DACT2 in wild-type or mutant β-catenin cells. The activity of TCF/LEF was increased by co-transfecting DACT2 and Dvl2 in wild-type or mutant β-catenin cells. Overexpression of wild-type β-catenin promotes cell migration and invasion in DACT2 stably expressed cells. The expression of β-catenin, c-myc, cyclinD1 and MMP-9 were decreased and the level of phosphorylated β-catenin (p-β-catenin) was increased after restoration of DACT2 expression in TPC-1 cells. The expression of β-catenin, c-myc, cyclinD1 and MMP-9 were increased and the level of p-β-catenin was reduced after knockdown of DACT2 in W3 and SW579 cells. These results suggest that DACT2 suppresses human papillary thyroid cancer growth and metastasis by inhibiting Wnt signaling. In conclusion, DACT2 is frequently methylated in papillary thyroid cancer. DACT2 expression was regulated by promoter region methylation. DACT2 suppresses papillary thyroid cancer proliferation and metastasis by inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Zhiyan Zhao
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - James G. Herman
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, Room 543, 1650 Orleans Street, Baltimore, Maryland 21231, United States of America
| | - Malcolm V. Brock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, Room 543, 1650 Orleans Street, Baltimore, Maryland 21231, United States of America
| | - Jindong Sheng
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
| | - Meiying Zhang
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
- The Medical College of Nan Kai University, #94 Weijin Road, Tianjin 300071, China
| | - Baoguo Liu
- The Department of Head & Neck Surgery, Peking University Cancer Hospital and Institute, #52 Fucheng Road, Beijing 100036, China
- * E-mail: (MG); (BL)
| | - Mingzhou Guo
- The Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
- * E-mail: (MG); (BL)
| |
Collapse
|
34
|
Faam B, Ghaffari MA, Ghadiri A, Azizi F. Epigenetic modifications in human thyroid cancer. Biomed Rep 2014; 3:3-8. [PMID: 25469237 DOI: 10.3892/br.2014.375] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/09/2014] [Indexed: 12/24/2022] Open
Abstract
Thyroid carcinoma is the most common endocrine malignancy of the endocrine organs, and its incidence rate has steadily increased over the last decade. Over 95% of thyroid carcinoma is derived from follicular cells that have a spectrum of differentiation to the most invasive malignancy. The molecular pathogenesis of thyroid cancer remains to be clarified, although activating the RET, RAS and BRAF oncogenes have been well characterized. Increasing evidence from previous studies demonstrates that acquired epigenetic abnormalities participating with genetic alteration results in altered patterns of gene expression/function. Aberrant DNA methylation has been established in the CpG regions and microRNAs (miRNAs) expression profile recognized in cancer development. In the present review, a literature review was performed using MEDLINE and PubMed with the terms 'epigenetic patterns in thyroid cancer [or papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), medullary thyroid cancer (MTC), anaplastic thyroid cancer (ATC)]', 'DNA methylation in thyroid cancer (or PTC, FTC, MTC, ATC)', 'miRNA expression in thyroid cancer (or PTC, FTC, MTC, ATC)', 'epigenetic patterns in cancer' and the current understanding of epigenetic patterns in thyroid cancer was discussed.
Collapse
Affiliation(s)
- Bita Faam
- Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Tehran, Iran
| | - Mohammad Ali Ghaffari
- Cellular and Molecular Research Center, Department of Biochemistry, School of Medicine, Tehran, Iran
| | - Ata Ghadiri
- Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Tehran, Iran ; Department of Immunology, Faculty of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Neapolitan R, Jiang X. Inferring Aberrant Signal Transduction Pathways in Ovarian Cancer from TCGA Data. Cancer Inform 2014; 13:29-36. [PMID: 25392681 PMCID: PMC4216062 DOI: 10.4137/cin.s13881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
This paper concerns a new method for identifying aberrant signal transduction pathways (STPs) in cancer using case/control gene expression-level datasets, and applying that method and an existing method to an ovarian carcinoma dataset. Both methods identify STPs that are plausibly linked to all cancers based on current knowledge. Thus, the paper is most appropriate for the cancer informatics community. Our hypothesis is that STPs that are altered in tumorous tissue can be identified by applying a new Bayesian network (BN)-based method (causal analysis of STP aberration (CASA)) and an existing method (signaling pathway impact analysis (SPIA)) to the cancer genome atlas (TCGA) gene expression-level datasets. To test this hypothesis, we analyzed 20 cancer-related STPs and 6 randomly chosen STPs using the 591 cases in the TCGA ovarian carcinoma dataset, and the 102 controls in all 5 TCGA cancer datasets. We identified all the genes related to each of the 26 pathways, and developed separate gene expression datasets for each pathway. The results of the two methods were highly correlated. Furthermore, many of the STPs that ranked highest according to both methods are plausibly linked to all cancers based on current knowledge. Finally, CASA ranked the cancer-related STPs over the randomly selected STPs at a significance level below 0.05 (P = 0.047), but SPIA did not (P = 0.083).
Collapse
Affiliation(s)
- Richard Neapolitan
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Xia Jiang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Neapolitan R, Xue D, Jiang X. Modeling the altered expression levels of genes on signaling pathways in tumors as causal bayesian networks. Cancer Inform 2014; 13:77-84. [PMID: 24932098 PMCID: PMC4051800 DOI: 10.4137/cin.s13578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
This paper concerns a study indicating that the expression levels of genes in signaling pathways can be modeled using a causal Bayesian network (BN) that is altered in tumorous tissue. These results open up promising areas of future research that can help identify driver genes and therapeutic targets. So, it is most appropriate for the cancer informatics community. Our central hypothesis is that the expression levels of genes that code for proteins on a signal transduction network (STP) are causally related and that this causal structure is altered when the STP is involved in cancer. To test this hypothesis, we analyzed 5 STPs associated with breast cancer, 7 STPs associated with other cancers, and 10 randomly chosen pathways, using a breast cancer gene expression level dataset containing 529 cases and 61 controls. We identified all the genes related to each of the 22 pathways and developed separate gene expression datasets for each pathway. We obtained significant results indicating that the causal structure of the expression levels of genes coding for proteins on STPs, which are believed to be implicated in both breast cancer and in all cancers, is more altered in the cases relative to the controls than the causal structure of the randomly chosen pathways.
Collapse
Affiliation(s)
- Richard Neapolitan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Diyang Xue
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xia Jiang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S. RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett 2014; 588:2671-84. [DOI: 10.1016/j.febslet.2014.02.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
|
38
|
Zhang B, Liu S, Zhang Z, Wei J, Qu Y, Wu K, Yang Q, Hou P, Shi B. Analysis of BRAF(V600E) mutation and DNA methylation improves the diagnostics of thyroid fine needle aspiration biopsies. Diagn Pathol 2014; 9:45. [PMID: 24588959 PMCID: PMC3944809 DOI: 10.1186/1746-1596-9-45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/21/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thyroid nodules with indeterminate cytological features on fine needle aspiration biopsy specimens (FNABs) have a ~20% risk of thyroid cancer. BRAF(V600E) mutation and DNA methylation are useful markers to distinguish malignant thyroid neoplasm from benign. The aim of this study was to determine whether combined detection of BRAF(V600E) mutation and methylation markers on FNABs could improve the diagnostic accuracy of thyroid cancer. METHODS Using pyrosequencing and quantitative methylation-specific PCR (Q-MSP) methods, FNABs from 79 and 38 patients with thyroid nodules in training and test groups, respectively, were analyzed for BRAF(V600E) mutation and gene methylation. RESULTS BRAF(V600E) mutation was found in 30/42 (71.4%) and 14/20 (70%) FNABs in training and test groups, respectively. All BRAF(V600E)-positive samples were histologically diagnosed as papillary thyroid cancer (PTC) after thyroidectomy. As expected, BRAF mutation was not found in all benign nodules. Moreover, we demonstrated that the five genes, including CALCA, DAPK1, TIMP3, RAR-beta and RASSF1A, were aberrantly methylated in FNABs. Of them, methylation level of DAPK1 in PTCs was significantly higher than that in benign samples (P <0.0001). Conversely, methylation level of RASSF1A in PTCs was significantly lower than that in benign samples (P =0.003). Notably, compared with BRAF mutation testing alone, combined detection of BRAF mutation and methylation markers increased the diagnostic sensitivity and accuracy of PTC with excellent specificity. CONCLUSION Our data have demonstrated that combine analysis of BRAF mutation and DNA methylation markers on FNABs may be a useful strategy to facilitate the diagnosis of malignant thyroid neoplasm, particularly PTC. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6080878071149177.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P, R, China.
| | | |
Collapse
|
39
|
Stamatelli A, Vlachou C, Aroni K, Papassideri I, Patsouris E, Saetta AA. Epigenetic alterations in sporadic basal cell carcinomas. Arch Dermatol Res 2014; 306:561-9. [PMID: 24573469 DOI: 10.1007/s00403-014-1454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
Basal cell carcinoma (BCC) is the most common malignant human neoplasm characterized by slow growth and virtual absence of metastases. Recently, it has become evident that along with genetic mutations epigenetic alterations play a key role in the pathogenesis of human cancer. We searched for promoter methylation of hMLH1, RASSF1A, DAPK, APC, DCR1 and DCR2 genes and BRAF mutations in BCCs in association with the clinicopathological parameters and the histological subtypes of the tumours. Fifty-two BCCs, 17 FFPE along with 35 fresh tissue samples with matching normal tissues for 26 cases were analyzed by methylation-specific PCR to assess the methylation status of hMLH1, RASSF1A, DAPK, APC, DCR1 and DCR2 genes after sodium bisulfite treatment of the tumour and normal DNA. hMLH1 and DCR1 gene expression was investigated by immunohistochemistry. BRAF mutations were studied by high resolution melting analysis. Methylation was detected at a variable frequency of 44, 33, 32.5, 32 and 14 % of DCR2, APC, DCR1, RASSF1 and DAPK promoters, respectively, whereas methylation of hMLH1 promoter was absent. No BRAF mutations were found. There was no correlation between the frequency of the promoter methylation of the above-mentioned genes and the clinicopathological features or the histological subtypes of the tumours. The relatively high frequency of RASSF1A, DCR1, DCR2 and APC promoter methylation may imply that methylation constitutes an important pathway in the tumourigenesis of BCC that could provide new opportunities in developing epigenetic therapies for BCC patients. Nevertheless, further studies are needed to establish the above-mentioned hypothesis.
Collapse
Affiliation(s)
- Angeliki Stamatelli
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
40
|
Kikuchi Y, Tsuji E, Yagi K, Matsusaka K, Tsuji S, Kurebayashi J, Ogawa T, Aburatani H, Kaneda A. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation. Front Genet 2013; 4:271. [PMID: 24367375 PMCID: PMC3851831 DOI: 10.3389/fgene.2013.00271] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/18/2013] [Indexed: 12/03/2022] Open
Abstract
Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7) was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2′-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P = 0.04, Fisher's exact test). Thus, we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer.
Collapse
Affiliation(s)
- Yasuko Kikuchi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan ; Department of Metabolic Care and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Eiichi Tsuji
- Department of Metabolic Care and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Koichi Yagi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Keisuke Matsusaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Shingo Tsuji
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Junichi Kurebayashi
- Department of Breast and Endocrine Surgery, Kawasaki Medical University Okayama, Japan
| | - Toshihisa Ogawa
- Department of Metabolic Care and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Atsushi Kaneda
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan ; Department of Molecular Oncology, Graduate School of Medicine, Chiba University Chiba, Japan ; CREST, Japan Science and Technology Agency Saitama, Japan
| |
Collapse
|
41
|
Kunstman JW, Korah R, Healy JM, Prasad M, Carling T. Quantitative assessment of RASSF1A methylation as a putative molecular marker in papillary thyroid carcinoma. Surgery 2013; 154:1255-61; discussion 1261-2. [DOI: 10.1016/j.surg.2013.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Abstract
Thyroid cancer is the most common endocrine cancer with 1,690 deaths each year. There are four main types of which the papillary and follicular types together account for >90% followed by medullary cancers with 3% to 5% and anaplastic carcinomas making up <3%. Epigenetic events of DNA hypermethylation are emerging as promising molecular targets for cancer detection. Our immediate and long term goal is to identify DNA methylation markers for early detection of thyroid cancer. This pilot study comprised of 21 patients to include 11 papillary thyroid cancers (PTC), 2 follicular thyroid cancers (FTC), 5 normal thyroid cases, and 3 hyperthyroid cases. Aberrant promoter methylation was examined in 24 tumor suppressor genes using the methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) assay and in the NIS gene using methylation-specific PCR (MSP). The frequently methylated genes were CASP8 (17/21), RASSF1 (16/21) and NIS (9/21). In the normal samples, CASP8, RASSF1 and NIS were methylated in 5/5, 4/5 and 1/5 respectively. In the hyperthyroid samples, CASP8, RASSF1 and NIS were methylated in 3/3, 2/3 and 1/3 respectively. In the thyroid cancers, CASP8, RASSF1, and NIS were methylated in 9/13, 10/13, and 7/13 respectively. CASP8, RASSF1 and NIS were also methylated in concurrently present normal thyroid tissue in 3/11, 4/11 and 3/11 matched thyroid cancer cases (matched for presence of both normal thyroid tissue and thyroid cancer), respectively. Our data suggests that aberrant methylation of CASP8, RASSF1, and NIS maybe an early change in thyroid tumorigenesis regardless of cell type.
Collapse
|
43
|
Ngeow J, Eng C. RASAL1 in thyroid cancer: wisdom from an old foe. J Natl Cancer Inst 2013; 105:1597-9. [PMID: 24136888 DOI: 10.1093/jnci/djt291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Joanne Ngeow
- Affiliations of authors: Genomic Medicine Institute (JN, CE), Lerner Research Institute (JN, CE), Stanley Shalom Zielony Institute of Nursing Excellence (CE), and Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (CE); Department of Genetics and Genome Sciences, and CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH (CE)
| | | |
Collapse
|
44
|
Liu D, Yang C, Bojdani E, Murugan AK, Xing M. Identification of RASAL1 as a major tumor suppressor gene in thyroid cancer. J Natl Cancer Inst 2013; 105:1617-27. [PMID: 24136889 DOI: 10.1093/jnci/djt249] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND RAS-coupled MAPK and PI3K pathways play a fundamental role in thyroid tumorigenesis, and classical genetic alterations upregulating these pathways are well characterized. We hypothesized that gene abnormality of negative modulators of these signaling pathways might be an important alternative genetic background for thyroid cancer. METHODS By examining gene expression patterns of negative modulators of RAS signaling, we attempted to identify potential tumor suppressor genes. We then analyzed the methylation and mutation patterns of the identified gene in 101 thyroid tumors and tested its functions in vitro and in vivo to establish the tumor suppressor role in thyroid cancer. RESULTS Among 13 negative modulators of the RAS pathway screened, RASAL1, encoding a RAS GTPase-activating protein, was frequently hypermethylated in thyroid cancers, which was coupled to its silencing in thyroid cancer cells. We also, for the first time, identified the presence of RASAL1 mutations, with a prevalence of 4.88% (n = 2 of 41) in follicular thyroid cancer (FTC) and 16.67% (n = 5 of 30) in anaplastic thyroid cancer (ATC). RASAL1 displayed MAPK- and PI3K-suppressing and thyroid tumor-suppressing activities, which were all impaired by the mutations. Hypermethylation and mutations of RASAL1 were mutually exclusive and collectively found in zero of 20 benign thyroid tumors, 3.22% (n = 1 of 31) of papillary thyroid cancers, 31.70% (n = 13 of 41) of FTCs, and 33.33% (n = 10 of 30) of ATCs. A rate of 20.83% (n = 5 of 24) of tumors carrying RASAL1 mutation or methylation at high levels (>50%) vs 44.16% (n = 34 of 77) of tumors carrying no RASAL1 mutation or methylation at low levels (< 50%) harbored any of the classical mutations (two-sided P = .02, Fisher exact test) in RAS, BRAF, PTEN, and PIK3CA genes in the MAPK and PI3K pathways, revealing a largely mutually exclusive relationship. CONCLUSIONS We identified RASAL1 as a major tumor suppressor gene that is frequently inactivated by hypermethylation and mutations, providing a new alternative genetic background for thyroid cancer, particularly FTC and ATC.
Collapse
Affiliation(s)
- Dingxie Liu
- Affiliation of authors: Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD (DL, CY, EB, AKM, MX)
| | | | | | | | | |
Collapse
|
45
|
Santoro A, Pannone G, Carosi MA, Francesconi A, Pescarmona E, Russo GM, Feola A, Losito S, Franco R, Nappi L, Aquino G, De Rosa G, Di Domenico M, Bufo P. BRAF mutation and RASSF1A expression in thyroid carcinoma of southern Italy. J Cell Biochem 2013. [PMID: 23192464 DOI: 10.1002/jcb.24460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aim of this work is to provide a detailed comparison of clinical-pathologic features between well-differentiated and poorly differentiated tumors according to their BRAF and RASSF1A status. We analyzed RASSF1A methylation by MSP and BRAF mutation by LCRT-PCR with LightMix® kit BRAF V600E in neoplastic thyroid tissues. Immunohistochemical evaluation of RASSF1A expression was also performed by standard automated LSAB-HRP technique. An overall higher degree of RASSF1A over-expression than normal thyroid parenchyma surrounding tumors (P < 0.05) has been found in all malignant well-differentiated lesions. Moreover, statistically significant higher levels of RASSF1A expression were observed in differentiated cancers associated to an inflammatory autoimmune background (P = 0.01). Amplifiable DNA for LC PCR with LightMix® kit BRAF V600E was obtained in nine PTCs, four FVPTCs, five ATCs, and one control. The V600E mutation was found in 13 of 18 (72%) tumors. BRAF was mutated in 6 of 9 (66%) classical PTC, in 2 of 4 (50%) follicular variant PTC and in all ACs (100%). The overall frequency of RASSF1A promoter methylation observed was 20.5% (9 cases out 44). Hypermethylation of RASSF1A in primary tumors was variable according to histotypes ranging from100% (5/5) in ACs to only 12.5% (4/32) in PTCs. We show a correlation between RASSF1A methylation status and RASSF1A protein expression. Finally, we conclude that BRAF V600E mutation and RASSF1A methylation were pathogenetic event restricted to a subgroup of PTC/FVPTCs in early stage and to clinically aggressive ATCs.
Collapse
Affiliation(s)
- Angela Santoro
- Department of Clinical and Experimental Medicine, Section of Anatomic Pathology, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Korah R, Healy JM, Kunstman JW, Fonseca AL, Ameri AH, Prasad ML, Carling T. Epigenetic silencing of RASSF1A deregulates cytoskeleton and promotes malignant behavior of adrenocortical carcinoma. Mol Cancer 2013; 12:87. [PMID: 23915220 PMCID: PMC3750604 DOI: 10.1186/1476-4598-12-87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/03/2013] [Indexed: 12/17/2022] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with high mutational heterogeneity and a generally poor clinical outcome. Despite implicated roles of deregulated TP53, IGF-2 and Wnt signaling pathways, a clear genetic association or unique mutational link to the disease is still missing. Recent studies suggest a crucial role for epigenetic modifications in the genesis and/or progression of ACC. This study specifically evaluates the potential role of epigenetic silencing of RASSF1A, the most commonly silenced tumor suppressor gene, in adrenocortical malignancy. Results Using adrenocortical tumor and normal tissue specimens, we show a significant reduction in expression of RASSF1A mRNA and protein in ACC. Methylation-sensitive and -dependent restriction enzyme based PCR assays revealed significant DNA hypermethylation of the RASSF1A promoter, suggesting an epigenetic mechanism for RASSF1A silencing in ACC. Conversely, the RASSF1A promoter methylation profile in benign adrenocortical adenomas (ACAs) was found to be very similar to that found in normal adrenal cortex. Enforced expression of ectopic RASSF1A in the SW-13 ACC cell line reduced the overall malignant behavior of the cells, which included impairment of invasion through the basement membrane, cell motility, and solitary cell survival and growth. On the other hand, expression of RASSF1A/A133S, a loss-of-function mutant form of RASSF1A, failed to elicit similar malignancy-suppressing responses in ACC cells. Moreover, association of RASSF1A with the cytoskeleton in RASSF1A-expressing ACC cells and normal adrenal cortex suggests a role for RASSF1A in modulating microtubule dynamics in the adrenal cortex, and thereby potentially blocking malignant progression. Conclusions Downregulation of RASSF1A via promoter hypermethylation may play a role in the malignant progression of adrenocortical carcinoma possibly by abrogating differentiation-promoting RASSF1A- microtubule interactions.
Collapse
Affiliation(s)
- Reju Korah
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Rodríguez-Rodero S, Fernández AF, Fernández-Morera JL, Castro-Santos P, Bayon GF, Ferrero C, Urdinguio RG, Gonzalez-Marquez R, Suarez C, Fernández-Vega I, Fresno Forcelledo MF, Martínez-Camblor P, Mancikova V, Castelblanco E, Perez M, Marrón PI, Mendiola M, Hardisson D, Santisteban P, Riesco-Eizaguirre G, Matías-Guiu X, Carnero A, Robledo M, Delgado-Álvarez E, Menéndez-Torre E, Fraga MF. DNA methylation signatures identify biologically distinct thyroid cancer subtypes. J Clin Endocrinol Metab 2013; 98:2811-21. [PMID: 23666970 DOI: 10.1210/jc.2012-3566] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the global patterns of aberrant DNA methylation in thyroid cancer. RESEARCH DESIGN AND METHODS We have used DNA methylation arrays to determine, for the first time, the genome-wide promoter methylation status of papillary, follicular, medullary, and anaplastic thyroid tumors. RESULTS We identified 262 and 352 hypermethylated and 13 and 21 hypomethylated genes in differentiated papillary and follicular tumors, respectively. Interestingly, the other tumor types analyzed displayed more hypomethylated genes (280 in anaplastic and 393 in medullary tumors) than aberrantly hypermethylated genes (86 in anaplastic and 131 in medullary tumors). Among the genes indentified, we show that 4 potential tumor suppressor genes (ADAMTS8, HOXB4, ZIC1, and KISS1R) and 4 potential oncogenes (INSL4, DPPA2, TCL1B, and NOTCH4) are frequently regulated by aberrant methylation in primary thyroid tumors. In addition, we show that aberrant promoter hypomethylation-associated overexpression of MAP17 might promote tumor growth in thyroid cancer. CONCLUSIONS Thyroid cancer subtypes present differential promoter methylation signatures, and nondifferentiated subtypes are characterized by aberrant promoter hypomethylation rather than hypermethylation. Additional studies are needed to determine the potential clinical interest of the tumor subtype-specific DNA methylation signatures described herein and the role of aberrant promoter hypomethylation in nondifferentiated thyroid tumors.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma/pathology
- Carcinoma, Medullary/genetics
- Carcinoma, Medullary/metabolism
- Carcinoma, Medullary/pathology
- Carcinoma, Neuroendocrine
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Cell Line, Tumor
- Cohort Studies
- DNA Methylation
- Down-Regulation
- Genome-Wide Association Study
- Humans
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- Thyroid Cancer, Papillary
- Thyroid Carcinoma, Anaplastic
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Tissue Banks
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Department of Endocrinology and Nutrition, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lei Y, Hu C, Xu H, Tian Y. HPV16 infection regulates RASSF1A transcription mediated by p53. Mol Med Rep 2013; 8:413-8. [PMID: 23779024 DOI: 10.3892/mmr.2013.1529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/10/2013] [Indexed: 11/06/2022] Open
Abstract
Human papillomavirus (HPV) 16 infection and RASSF1A expression play important roles in tumor development and progression. However, the precise mechanisms underlying their concerted function in the development of reproductive system tumors still remain to be elucidated. In the present study, we showed that HPV16-E6 selectively upregulates RASSF1A expression via degradation of p53, which interacts with the RASSF1A promoter and regulates apoptosis. Overexpression of p53 triggered a decrease in endogenous RASSF1A in SiHa cells, accompanied by apoptosis. Similarly, knockdown of endogenous HPV16-E6 in SiHa cells with RNA interference (RNAi) led to downregulation of RASSF1A mediated by p53 and the subsequent induction of apoptosis. These findings collectively suggest that HPV16 infection regulates p53-mediated RASSF1A expression and suppresses apoptosis. Moreover, RASSF1A may form an element of the negative autoregulatory feedback loops that act on the HPV16 response and are involved in p53-dependent apoptosis. Our results provide novel insights into the cellular mechanism of tumor development, and present a starting point for the development of novel strategies in cancer treatment and effective diagnosis.
Collapse
Affiliation(s)
- Yueshan Lei
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | | | | | | |
Collapse
|
49
|
Abstract
Recent molecular studies have described a number of abnormalities associated with the pathogenesis of thyroid carcinoma. These distinct molecular events are often associated with specific stages of tumor development and may serve as prognostic factors and therapeutic targets. A better understanding of the mechanisms involved in thyroid cancer pathogenesis, will hopefully help translate these discoveries to improved patient care.
Collapse
Affiliation(s)
- Kepal N Patel
- Thyroid Cancer Interdisciplinary Program, Division of Endocrine Surgery, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
50
|
Abstract
Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer.
Collapse
Affiliation(s)
- Mingzhao Xing
- Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, Maryland 21287, USA.
| |
Collapse
|