1
|
Zhao C, Li X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Sense and anti-sense: Role of FAM83A and FAM83A-AS1 in Wnt, EGFR, PI3K, EMT pathways and tumor progression. Biomed Pharmacother 2024; 173:116372. [PMID: 38432129 DOI: 10.1016/j.biopha.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
An increasing number of studies have shown that FAM83A, a member of the family with sequence similarity 83 (FAM83), which consists of eight members, is a key tumor therapeutic target involved in multiple signaling pathways. It has been reported that FAM83A plays essential roles in the regulation of Wnt/β-catenin, EGFR, MAPK, EMT, and other signaling pathways and physiological processes in models of pancreatic cancer, lung cancer, breast cancer, and other malignant tumors. Moreover, the expression of FAM83A could be significantly affected by multiple noncoding RNAs that are dysregulated in malignant tumors, the dysregulation of which is essential for the malignant process. Among these noncoding RNAs, the most noteworthy is the antisense long noncoding (Lnc) RNA of FAM83A itself (FAM83A-AS1), indicating an outstanding synergistic carcinogenic effect between FAM83A and FAM83A-AS1. In the present study, the specific mechanisms by which FAM83A and FAM83A-AS1 cofunction in the Wnt/β-catenin and EGFR signaling pathways were reviewed in detail, which will guide subsequent research. We also described the applications of FAM83A and FAM83A-AS1 in tumor therapy and provided a certain theoretical basis for subsequent drug target development and combination therapy strategies.
Collapse
Affiliation(s)
- Chenshu Zhao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiaowen Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Neill T, Xie C, Iozzo RV. Decorin evokes reversible mitochondrial depolarization in carcinoma and vascular endothelial cells. Am J Physiol Cell Physiol 2022; 323:C1355-C1373. [PMID: 36036446 PMCID: PMC9602711 DOI: 10.1152/ajpcell.00325.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Decorin, a small leucine-rich proteoglycan with multiple biological functions, is known to evoke autophagy and mitophagy in both endothelial and cancer cells. Here, we investigated the effects of soluble decorin on mitochondrial homeostasis using live cell imaging and ex vivo angiogenic assays. We discovered that decorin triggers mitochondrial depolarization in triple-negative breast carcinoma, HeLa, and endothelial cells. This bioactivity was mediated by the protein core in a time- and dose-dependent manner and was specific for decorin insofar as biglycan, the closest homolog, failed to trigger depolarization. Mechanistically, we found that the bioactivity of decorin to promote depolarization required the MET receptor and its tyrosine kinase. Moreover, two mitochondrial interacting proteins, mitostatin and mitofusin 2, were essential for downstream decorin effects. Finally, we found that decorin relied on the canonical mitochondrial permeability transition pore to trigger tumor cell mitochondrial depolarization. Collectively, our study implicates decorin as a soluble outside-in regulator of mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Pinzi L, Rastelli G. Identification of Target Associations for Polypharmacology from Analysis of Crystallographic Ligands of the Protein Data Bank. J Chem Inf Model 2019; 60:372-390. [PMID: 31800237 DOI: 10.1021/acs.jcim.9b00821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of a chemical entity that potently and selectively binds to a biological target of therapeutic relevance has dominated the scene of drug discovery so far. However, recent findings suggest that multitarget ligands may be endowed with superior efficacy and be less prone to drug resistance. The Protein Data Bank (PDB) provides experimentally validated structural information about targets and bound ligands. Therefore, it represents a valuable source of information to help identifying active sites, understanding pharmacophore requirements, designing novel ligands, and inferring structure-activity relationships. In this study, we performed a large-scale analysis of the PDB by integrating different ligand-based and structure-based approaches, with the aim of identifying promising target associations for polypharmacology based on reported crystal structure information. First, the 2D and 3D similarity profiles of the crystallographic ligands were evaluated using different ligand-based methods. Then, activity data of pairs of similar ligands binding to different targets were inspected by comparing structural information with bioactivity annotations reported in the ChEMBL, BindingDB, BindingMOAD, and PDBbind databases. Afterward, extensive docking screenings of ligands in the identified cross-targets were made in order to validate and refine the ligand-based results. Finally, the therapeutic relevance of the identified target combinations for polypharmacology was evaluated from comparison with information on therapeutic targets reported in the Therapeutic Target Database (TTD). The results led to the identification of several target associations with high therapeutic potential for polypharmacology.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Giuseppe Campi 103 , 41125 Modena , Italy
| | - Giulio Rastelli
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Giuseppe Campi 103 , 41125 Modena , Italy
| |
Collapse
|
4
|
Tang L, Peng C, Tang B, Li Z, Wang X, Li J, Gao F, Huang L, Xu D, Zhang P, Zhuang R, Su X, Chen X, Zhang X. Radioiodinated Small-Molecule Tyrosine Kinase Inhibitor for HER2-Selective SPECT Imaging. J Nucl Med 2018; 59:1386-1391. [PMID: 29653973 DOI: 10.2967/jnumed.117.205088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most clinically relevant molecular aberrations in breast cancer is overexpression of human epidermal growth factor receptor type 2 (HER2). We aimed to develop a radiolabeled tyrosine kinase inhibitor for HER2-targeted breast cancer imaging. In this study, a radioiodinated analog (125/131I-IBA-CP) of the HER2-selective inhibitor CP724,714 was prepared and evaluated in HER2-positive or -negative subcutaneous human breast cancer xenografts. Methods: The CP724,714 analog IBA-CP was synthesized and assayed for its inhibitory activities against HER2 and 6 other tyrosine kinases. 125/131I-IBA-CP was prepared using a copper-mediated radioiodination method with enhanced labeling yield and molar activity. In vitro biologic activity, including specific and nonspecific binding of 131I-IBA-CP to its HER2 kinase target, was assessed in different cell lines. In vivo small-animal 125I-IBA-CP SPECT imaging and biodistribution studies were conducted on mice bearing HER2-positive, HER2-negative, or epidermal growth factor receptor (EGFR)-positive tumors. Nonradioactive IBA-CP and the EGFR inhibitor erlotinib were used as blocking agents to investigate the binding specificity and selectivity of 125/131I-IBA-CP toward HER2 in vitro and in vivo. Additionally, 125/131I-ICP was prepared by direct radioiodination of CP724,714 for comparison with 125/131I-IBA-CP. Results: IBA-CP displayed superior in vitro inhibitory activity (half-maximal inhibitory concentration, 16 nM) and selectivity for HER2 over 6 other cancer-related tyrosine kinases. 125/131I-IBA-CP was prepared in a typical radiochemical yield of about 65% (decay-corrected), radiochemical purity of more than 98%, and molar activity of 42 GBq/μmol at the end of synthesis. SPECT imaging revealed significantly higher uptake of 125I-IBA-CP than of 125I-ICP in the HER2-positive MDA-MB-453 tumors. Uptake in the HER2-negative MCF-7 tumors was much lower. Binding of 125I-IBA-CP in the MDA-MB-453 tumors was blocked by coinjection with an excess amount of IBA-CP, but not by erlotinib. Conclusion: The radiolabeled HER2-selective inhibitor 125/131I-IBA-CP is a promising probe for in vivo detection of HER2-positive tumors.
Collapse
Affiliation(s)
- Longguang Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.,Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Bowen Tang
- School of Pharmaceutical Science, Xiamen University, Xiamen, China; and
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xiangyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Fei Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lumei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Pu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xinhui Su
- Zhongshan Hospital, affiliated with Xiamen University, Xiamen, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Schmidt S, Schumacher N, Schwarz J, Tangermann S, Kenner L, Schlederer M, Sibilia M, Linder M, Altendorf-Hofmann A, Knösel T, Gruber ES, Oberhuber G, Bolik J, Rehman A, Sinha A, Lokau J, Arnold P, Cabron AS, Zunke F, Becker-Pauly C, Preaudet A, Nguyen P, Huynh J, Afshar-Sterle S, Chand AL, Westermann J, Dempsey PJ, Garbers C, Schmidt-Arras D, Rosenstiel P, Putoczki T, Ernst M, Rose-John S. ADAM17 is required for EGF-R-induced intestinal tumors via IL-6 trans-signaling. J Exp Med 2018; 215:1205-1225. [PMID: 29472497 PMCID: PMC5881468 DOI: 10.1084/jem.20171696] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Abstract
Schmidt et al. show that loss of the membrane-bound metalloprotease ADAM17 led to impaired intestinal cancer development in the murine APCmin/+ model, which also depended on IL-6 trans-signaling via the soluble IL-6R and could be blocked by the specific IL-6 trans-signaling inhibitor sgp130Fc. Colorectal cancer is treated with antibodies blocking epidermal growth factor receptor (EGF-R), but therapeutic success is limited. EGF-R is stimulated by soluble ligands, which are derived from transmembrane precursors by ADAM17-mediated proteolytic cleavage. In mouse intestinal cancer models in the absence of ADAM17, tumorigenesis was almost completely inhibited, and the few remaining tumors were of low-grade dysplasia. RNA sequencing analysis demonstrated down-regulation of STAT3 and Wnt pathway components. Because EGF-R on myeloid cells, but not on intestinal epithelial cells, is required for intestinal cancer and because IL-6 is induced via EGF-R stimulation, we analyzed the role of IL-6 signaling. Tumor formation was equally impaired in IL-6−/− mice and sgp130Fc transgenic mice, in which only trans-signaling via soluble IL-6R is abrogated. ADAM17 is needed for EGF-R–mediated induction of IL-6 synthesis, which via IL-6 trans-signaling induces β-catenin–dependent tumorigenesis. Our data reveal the possibility of a novel strategy for treatment of colorectal cancer that could circumvent intrinsic and acquired resistance to EGF-R blockade.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Neele Schumacher
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Jeanette Schwarz
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Experimental and Laboratory Animal Pathology, Medical University Vienna, Vienna, Austria
| | - Michaela Schlederer
- Department of Experimental and Laboratory Animal Pathology, Medical University Vienna, Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | | | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Elisabeth S Gruber
- Department of General Surgery, Division of Surgery and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Georg Oberhuber
- Department of Experimental and Laboratory Animal Pathology, Medical University Vienna, Vienna, Austria
| | - Julia Bolik
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Anupam Sinha
- Institute of Clinical Molecular Biology, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Juliane Lokau
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Philipp Arnold
- Anatomisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Anne-Sophie Cabron
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Friederike Zunke
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | | | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | | | - Peter J Dempsey
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Christoph Garbers
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Tracy Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Stefan Rose-John
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| |
Collapse
|
6
|
Thornton KJ, Kamanga-Sollo E, White ME, Dayton WR. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures. J Anim Sci 2017; 94:2332-43. [PMID: 27285910 DOI: 10.2527/jas.2015-0178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n TBA exhibit increased ( < 0.05) pAKT protein levels. These data indicate the TBA-mediated increases in protein synthesis likely involve GPCR, MMP2/9, hbEGF, EGFR, erbB2, and IGF-1R. However, the mechanism through which TBA mediates changes in protein degradation is different and appears to involve only the EGFR and erbB2. Furthermore, it appears the protein kinase B pathway is involved in TBA's effects on fused BSC cultures.
Collapse
|
7
|
Kersh AE, Sasaki M, Cooper LA, Kissick HT, Pollack BP. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model. Front Pharmacol 2016; 7:327. [PMID: 27729860 PMCID: PMC5052536 DOI: 10.3389/fphar.2016.00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022] Open
Abstract
Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient's cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of 'personalized medicine', it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation.
Collapse
Affiliation(s)
- Anna E Kersh
- Medical Scientist Training Program, Emory University School of Medicine Atlanta, GA, USA
| | | | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of MedicineAtlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of TechnologyAtlanta, GA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine Atlanta, GA, USA
| | - Brian P Pollack
- Atlanta VA Medical CenterDecatur, GA, USA; Department of Dermatology, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
8
|
Thornton KJ, Kamange-Sollo E, White ME, Dayton WR. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation. J Anim Sci 2016; 93:4291-301. [PMID: 26440329 DOI: 10.2527/jas.2015-9191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment with GDPβS, MMPI, CRM197, AG1024, AG1478, and/or AG879 all suppressed ( < 0.05) TBA-induced increases in proliferation. These data indicate that TBA likely initiates a nongenomic response involving GPCR, MMP2 and MMP9, hbEGF, EGFR, erbB2, and IGF-1R, which may play a role in TBA-mediated increases in BSC proliferation.
Collapse
|
9
|
Yu H, Zou B, Wang X, Li M. Effect of tyrphostin AG879 on Kv 4.2 and Kv 4.3 potassium channels. Br J Pharmacol 2015; 172:3370-82. [PMID: 25752739 DOI: 10.1111/bph.13127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND AND PURPOSE A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv 4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv 4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv 4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv 4.2/Kv channel-interacting protein 2 (KChIP2) channels. EXPERIMENTAL APPROACH To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv 4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv 4.2/KChIP2 channels using a whole-cell patch-clamp technique. KEY RESULTS Tyrphostin AG879 selectively and dose-dependently inhibited Kv 4.2 and Kv 4.3 channels. In Kv 4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv 4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. CONCLUSION AND IMPLICATIONS AG879 was identified as a selective and potent inhibitor the Kv 4.2 channel. AG879 inhibited Kv 4.2 channels by preferentially interacting with the open state and further accelerating their inactivation.
Collapse
Affiliation(s)
- Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD, USA
| | - Beiyan Zou
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Luca T, Barresi V, Privitera G, Musso N, Caruso M, Condorelli DF, Castorina S. In vitro combined treatment with cetuximab and trastuzumab inhibits growth of colon cancer cells. Cell Prolif 2014; 47:435-47. [PMID: 25131935 DOI: 10.1111/cpr.12125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/20/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Overexpression or constitutive activation of epidermal growth factor receptors (EGFR) is involved in growth of human cancers. We investigated effects of EGFR and HER-2 blockade in colon cancer cell lines using cetuximab and trastuzumab, with the aim of developing novel approaches to cancer therapy. MATERIALS AND METHODS We studied effects of treatment on cell growth, cell cycle distribution, induction of apoptosis, changes in EGFR and HER-2 mRNA-protein expression and EGFR and HER-2 gene copy number in Caco-2, HT-29 and HCT-116 cells. RESULTS Treatment of cells resulted in no effect in one of the three cell lines and in inhibition of cell proliferation in a time- and dose-dependent manner in the other two, with modulation of EGFR and HER-2 mRNA and protein levels. Differences in sensitivity to cetuximab and trastuzumab were observed. Treatment induced specific changes in cell cycle distribution in both cell lines affected, while apoptosis was not increased. Fluorescence in situ hybridization analysis revealed abnormal copy number of two genes resulting from aneuploidy; this was not responsible for different sensitivity to combination between the two cell lines. CONCLUSIONS Targeting EGFR and HER-2 simultaneously could have useful applications in colorectal cancer treatment. To improve pharmacological efficacy of cetuximab and trastuzumab combination, molecular mechanisms involved in their activity need to be elucidated.
Collapse
Affiliation(s)
- T Luca
- Fondazione Mediterranea "G.B. Morgagni", 95125, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
The EGF receptor and HER2 participate in TNF-α-dependent MAPK activation and IL-8 secretion in intestinal epithelial cells. Mediators Inflamm 2012; 2012:207398. [PMID: 22988345 PMCID: PMC3440955 DOI: 10.1155/2012/207398] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022] Open
Abstract
TNF-α activates multiple mitogen-activated protein kinase (MAPK) cascades in intestinal epithelial cells (IECs) leading to the secretion of interleukin 8 (IL-8), a neutrophil chemoattractant and an angiogenic factor with tumor promoting properties. As the epidermal growth factor receptor (EGFR) is a known transducer of proliferative signals and a potent activator of MAPKs, we hypothesized that the EGFR participates in TNF-dependent MAPK activation and IL-8 secretion by intestinal epithelial cells (IECs).
We show that the EGFR is tyrosine-phosphorylated following treatment of IECs (HT-29 and IEC-6) with TNF-α. This requires EGFR autophosphorylation as it was blocked by the EGFR kinase inhibitor AG1478. Autophosphorylation was also inhibited by both a Src-kinase inhibitor and the metalloproteinase inhibitor batimastat. TNF treatment of IECs resulted in the accumulation of soluble TGF-α; treatment of IECs with batimastat suppressed TGF-α release and immunoneutralization of TGF-α resulted in decreased EGFR and ERK phosphorylations. TNF-α treatment of IECs resulted in an association between EGFR and HER2 and inhibition of HER2 using a specific inhibitor AG879 in combination with AG1478-suppressed TNF-α-dependent ERK phosphorylation and IL-8 release. Downregulation of HER2 via siRNA resulted in a significant decrease in ERK phosphorylation and a 50% reduction in IL-8 secretion.
Collapse
|
12
|
NLRR1 Enhances EGF-Mediated MYCN Induction in Neuroblastoma and Accelerates Tumor Growth In Vivo. Cancer Res 2012; 72:4587-96. [DOI: 10.1158/0008-5472.can-12-0943] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Simms NAK, Rajput A, Sharratt EA, Ongchin M, Teggart CA, Wang J, Brattain MG. Transforming growth factor-β suppresses metastasis in a subset of human colon carcinoma cells. BMC Cancer 2012; 12:221. [PMID: 22672900 PMCID: PMC3517326 DOI: 10.1186/1471-2407-12-221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Background TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling. Methods To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation was assessed histologically and by imaging. Results Abrogation of TGFβ signaling through introduction of a dominant negative TGFβ receptor II (TGFβRII) in non-metastatic FETα human colon cancer cells permits metastasis to distal organs, but importantly does not reduce invasive behavior at the primary site. Loss of TGFβ signaling in FETα-DN cells generated enhanced cell survival capabilities in response to cellular stress in vitro. We show that enhanced cellular survival is associated with increased AKT phosphorylation and cytoplasmic expression of inhibitor of apoptosis (IAP) family members (survivin and XIAP) that elicit a cytoprotective effect through inhibition of caspases in response to stress. To confirm that TGFβ signaling is a metastasis suppressor, we rescued TGFβ signaling in CBS metastatic colon cancer cells that had lost TGFβ receptor expression due to epigenetic repression. Restoration of TGFβ signaling resulted in the inhibition of metastatic colony formation in distal organs by these cells. These results indicate that TGFβ signaling has an important role in the suppression of metastatic potential in tumors that have already progressed to the stage of an invasive carcinoma. Conclusions The observations presented here indicate a metastasis suppressor role for TGFβ signaling in human colon cancer cells. This raises the concern that therapies targeting inhibition of TGFβ signaling may be imprudent in some patient populations with residual TGFβ tumor suppressor activity.
Collapse
Affiliation(s)
- Neka A K Simms
- Eppley Institute for Research in Cancer and Allied Diseases, University at Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Chowdhury S, Howell GM, Teggart CA, Chowdhury A, Person JJ, Bowers DM, Brattain MG. Histone deacetylase inhibitor belinostat represses survivin expression through reactivation of transforming growth factor beta (TGFbeta) receptor II leading to cancer cell death. J Biol Chem 2011; 286:30937-30948. [PMID: 21757750 DOI: 10.1074/jbc.m110.212035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Survivin is a cancer-associated gene that functions to promote cell survival, cell division, and angiogenesis and is a marker of poor prognosis. Histone deacetylase inhibitors induce apoptosis and re-expression of epigenetically silenced tumor suppressor genes in cancer cells. In association with increased expression of the tumor suppressor gene transforming growth factor β receptor II (TGFβRII) induced by the histone deacetylase inhibitor belinostat, we observed repressed survivin expression. We investigated the molecular mechanisms involved in survivin down-regulation by belinostat downstream of reactivation of TGFβ signaling. We identified two mechanisms. At early time points, survivin protein half-life was decreased with its proteasomal degradation. We observed that belinostat activated protein kinase A at early time points in a TGFβ signaling-dependent mechanism. After longer times (48 h), survivin mRNA was also decreased by belinostat. We made the novel observation that belinostat mediated cell death through the TGFβ/protein kinase A signaling pathway. Induction of TGFβRII with concomitant survivin repression may represent a significant mechanism in the anticancer effects of this drug. Therefore, patient populations exhibiting high survivin expression with epigenetically silenced TGFβRII might potentially benefit from the use of this histone deacetylase inhibitor.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Gillian M Howell
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Carol A Teggart
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Aparajita Chowdhury
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Jonathan J Person
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696
| | - Dawn M Bowers
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michael G Brattain
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696.
| |
Collapse
|
15
|
Zhang Z, Oyesanya RA, Campbell DJW, Almenara JA, Dewitt JL, Sirica AE. Preclinical assessment of simultaneous targeting of epidermal growth factor receptor (ErbB1) and ErbB2 as a strategy for cholangiocarcinoma therapy. Hepatology 2010; 52:975-86. [PMID: 20607690 DOI: 10.1002/hep.23773] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Overexpression of epidermal growth factor receptor (ErbB1) and/or ErbB2 has been implicated in the pathogenesis of cholangiocarcinoma, suggesting that combined ErbB1/ErbB2 targeting might serve as a target-based therapeutic strategy for this highly lethal cancer. To test this strategy, we investigated targeting with the ErbB1 inhibitor tryphostin AG1517 and the ErbB2 inhibitor tryphostin AG879, in combination and alone, as well as with the dual ErbB1/ErbB2 inhibitor lapatinib, to assess the effectiveness of simultaneous targeting of ErbB1 and ErbB2 signaling over single inhibitor treatments in suppressing cholangiocarcinoma cell growth in vitro and the therapeutic efficacy of lapatinib in vivo. Our in vitro studies were carried out using rat (BDEneu and C611B) and human (HuCCT1 and TFK1) cholangiocarcinoma cell lines. The efficacy of lapatinib to significantly suppress liver tumor growth was tested in an orthotopic, syngeneic rat model of intrahepatic cholangiocarcinoma progression. Our results demonstrated that simultaneous targeting of ErbB1 and ErbB2 signaling was significantly more effective in suppressing the in vitro growth of both rat and human cholangiocarcinoma cells than individual receptor targeting. Lapatinib was an even more potent inhibitor of cholangiocarcinoma cell growth and inducer of apoptosis than either tryphostin when tested in vitro against these respective cholangiocarcinoma cell lines, regardless of differences in their levels of ErbB1 or ErbB2 protein expression and/or mechanism of activation. Lapatinib treatment also produced a significant suppression of intrahepatic cholangiocarcinoma growth when administered early to rats, but was without effect in inhibiting liver tumor growth in rats with more advanced tumors. CONCLUSION Our findings suggest that simultaneous targeting of ErbB1 and ErbB2 could be a potentially selective strategy for cholangiocarcinoma therapy, but is likely to be ineffective by itself against advanced cancer.
Collapse
Affiliation(s)
- Zichen Zhang
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Medical College of Virginia Campus, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gong L, Debruyne PR, Witek M, Nielsen K, Snook A, Lin JE, Bombonati A, Palazzo J, Schulz S, Waldman SA. Bile acids initiate lineage-addicted gastroesophageal tumorigenesis by suppressing the EGF receptor-AKT axis. Clin Transl Sci 2010; 2:286-93. [PMID: 20443907 PMCID: PMC5407481 DOI: 10.1111/j.1752-8062.2009.00131.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
While bile acids are a risk factor for tumorigenesis induced by reflux disease, the mechanisms by which they contribute to neoplasia remain undefined. Here, we reveal that in gastroesophageal junction (GEJ) cells bile acids activate a tissue-specific developmental program defining the intestinal epithelial cell phenotype characterizing GEJ metaplasia. Deoxycholic acid (DCA) inhibited phosphorylation of EGF receptors (EGFRs) suppressing the proto-oncogene AKT. Suppression of EGFRs and AKT by DCA actuated an intestine-specific cascade in which NF-kappaB transactivated the tissue-specific transcription factor CDX2. In turn, CDX2 orchestrated a lineage-specific differentiation program encompassing genes characterizing intestinal epithelial cells. Conversely, progression from metaplasia to invasive carcinoma in patients, universally associated with autonomous activation of EGFRs and/or AKT, was coupled with loss of this intestinal program. Thus, bile acids induce intestinal metaplasia at the GEJ by activating the lineage-specific differentiation program involving suppression of EGFR and AKT, activating the NF-kappaB-CDX2 axis. Induction of this axis provides the context for lineage-addicted tumorigenesis, in which autonomous activation of AKT corrupts adaptive intestinal NF-kappaB signaling, amplifying tumorigenic programs.
Collapse
Affiliation(s)
- Li Gong
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Choi S, Choi Y, Dat NT, Hwangbo C, Lee JJ, Lee JH. Tephrosin induces internalization and degradation of EGFR and ErbB2 in HT-29 human colon cancer cells. Cancer Lett 2010; 293:23-30. [PMID: 20056314 DOI: 10.1016/j.canlet.2009.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 01/17/2023]
Abstract
Inactivation of epidermal growth factor receptor (EGFR) family members are prime targets for cancer therapy. Here, we show that tephrosin, a natural rotenoid which has potent antitumor activities, induced internalization of EGFR and ErbB2, and thereby induced degradation of the receptors. Treatment of HT-29 cells with tephrosin inhibited both the ligand-induced and constitutive phosphorylation of EGFR, ErbB2 and ErbB3, and concomitantly suppressed the activation of the downstream signaling molecules such as Akt and Erk1/2 mitogen-activated protein kinase (MAPK). Tephrosin caused internalization of EGFR and ErbB2 into vehicles, which resulted in degradation of the receptors. This degradation was blocked by the lysosomal inhibitor, chloroquine. We also showed that tephrosin induced apoptosis. Tephrosin did not induce the proteolytic processing of caspase-3 and poly(ADP-ribose) polymerase (PARP), but did nuclear translocation of apoptosis-inducing factor (AIF), suggesting that tephrosin may induce caspase-independent apoptosis. These findings provide the first evidence that tephrosin could exert antitumor effects by inducing internalization and degradation of inactivated EGFR and ErbB2 in human colon cancer cells.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations. Cancer Immunol Immunother 2009; 59:397-408. [PMID: 19756595 DOI: 10.1007/s00262-009-0759-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Studies comparing two or more vaccine platforms have historically evaluated each platform based on its ability to induce an immune response and may conclude that one vaccine is more efficacious than the other(s), leading to a recommendation for development of the more effective vaccine for clinical studies. Alternatively, these studies have documented the advantages of a diversified prime and boost regimen due to amplification of the antigen-specific T-cell population. We hypothesize here that two vaccine platforms targeting the same antigen might induce shared and distinct antigen-specific T-cell populations, and examined the possibility that two distinct vaccines could be used concomitantly. EXPERIMENTAL DESIGN Using recombinant poxvirus and yeast vaccines, we compared the T-cell populations induced by these two platforms in terms of serum cytokine response, T-cell gene expression, T-cell receptor phenotype, antigen-specific cytokine expression, T-cell avidity, and T-cell antigen-specific tumor cell lysis. RESULTS These studies demonstrate for the first time that vaccination with a recombinant poxvirus platform (rV/F-CEA/TRICOM) or a heat-killed yeast vaccine platform (yeast-CEA) elicits T-cell populations with both shared and unique phenotypic and functional characteristics. Furthermore, both the antigen and the vector play a role in the induction of distinct T-cell populations. CONCLUSIONS In this study, we demonstrate that concurrent administration of two vaccines targeting the same antigen induces a more diverse T-cell population that leads to enhanced antitumor efficacy. These studies provide the rationale for future clinical studies investigating concurrent administration of vaccine platforms targeting a single antigen to enhance the antigen-specific immune response.
Collapse
|
19
|
Hu YP, Patil SB, Panasiewicz M, Li W, Hauser J, Humphrey LE, Brattain MG. Heterogeneity of receptor function in colon carcinoma cells determined by cross-talk between type I insulin-like growth factor receptor and epidermal growth factor receptor. Cancer Res 2008; 68:8004-13. [PMID: 18829558 DOI: 10.1158/0008-5472.can-08-0280] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study identifies a novel cross-talk paradigm between the type I insulin-like growth factor receptor (IGF1R) and epidermal growth factor receptor (EGFR) in colon cancer cells. IGF1R activation by ligand exposure in growth factor-deprived cells induces Akt activation in the FET, CBS, and GEO colon cancer cell lines. Investigation of IGF1R-mediated signaling pathways using small interfering RNA approaches indicated that, as expected, phosphatidylinositol 3'-kinase (PI3K) was activated by IGF1R. Mitogen-activated protein kinase (MAPK) activity as reflected by phospho-extracellular signal-regulated kinase (ERK) induction was not significantly activated until later times following release of these cells from growth factor deprivation stress. The appearance of phospho-ERK was proximal to EGFR activation. Treatment of cells with the PI3K inhibitor LY294002 before release from stress resulted in a concentration-dependent loss of EGFR activation, whereas treatment with the MAPK inhibitor PD98059 did not block EGFR activation, indicating that EGFR activation was downstream of the IGF1R/PI3K pathway. PD98059 inhibition of MAPK was associated with a concentration-dependent reduction in EGFR-mediated phospho-ERK. EGFR inhibitor blocked induction of phospho-ERK, showing that MAPK activity was a consequence of EGFR-mediated signaling. On the other hand, a small-molecule IGF1R inhibitor, PQIP, blocked Akt phosphorylation. The divergent signaling functions of IGF1R and EGFR suggested the potential for synergism by a combination of therapy directed at the two receptors. Combination treatment with PQIP and EGFR inhibitor Tarceva resulted in synergistic effects as indicated by combination index analysis in all three cell lines tested.
Collapse
Affiliation(s)
- Yi Peter Hu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Fridrich D, Teller N, Esselen M, Pahlke G, Marko D. Comparison of delphinidin, quercetin and (-)-epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol Nutr Food Res 2008; 52:815-22. [PMID: 18618485 DOI: 10.1002/mnfr.200800026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, delphinidin was found to suppress the phosphorylation of the epidermal growth factor receptor (EGFR) within human tumour cells (human colon carcinoma cell line (HT29), human vulva carcinoma cell line (A431)), albeit less effective than the flavonol quercetin. The higher potency of quercetin was also observed downstream on the level of the mitogen-activated protein kinase (MAPK) cascade. In addition, delphinidin, quercetin and (-)-epigallocatechin-3-gallate (EGCG) were found to suppress the phosphorylation of the ErbB2 receptor, with delphinidin exhibiting the strongest inhibitory properties. Their potency to suppress the ErbB2 receptor phosphorylation can be summarised as delphinidin > EGCG > quercetin. The effectiveness of delphinidin against the EGFR and the ErbB2 receptor was comparable, indicating a broader spectrum of activity against receptor tyrosine kinases. At low micromolar concentrations delphinidin showed some preference towards the ErbB2 receptor. In summary, quercetin and delphinidin appear to differ in their activity profile towards the ErbB receptor family members. Whereas quercetin was most effective against the EGFR, delphinidin exhibited some preference towards the ErbB2 receptor.
Collapse
Affiliation(s)
- Diana Fridrich
- Institute of Applied Biosciences, Section of Food Toxicology, Universität Karlsruhe (TH), Adenauerring 20, 76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
21
|
Goldoni S, Seidler DG, Heath J, Fassan M, Baffa R, Thakur ML, Owens RT, McQuillan DJ, Iozzo RV. An antimetastatic role for decorin in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:844-55. [PMID: 18688028 DOI: 10.2353/ajpath.2008.080275] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Decorin, a member of the small leucine-rich proteoglycan gene family, down-regulates members of the ErbB receptor tyrosine kinase family and attenuates their signaling, leading to growth inhibition. We investigated the effects of decorin on the growth of ErbB2-overexpressing mammary carcinoma cells in comparison with AG879, an established ErbB2 kinase inhibitor. Cell proliferation and anchorage-independent growth assays showed that decorin was a potent inhibitor of breast cancer cell growth and a pro-apoptotic agent. When decorin and AG879 were used in combination, the inhibitory effect was synergistic in proliferation assays but only additive in both colony formation and apoptosis assays. Active recombinant human decorin protein core, AG879, or a combination of both was administered systemically to mice bearing orthotopic mammary carcinoma xenografts. Primary tumor growth and metabolism were reduced by approximately 50% by both decorin and AG879. However, no synergism was observed in vivo. Decorin specifically targeted the tumor cells and caused a significant reduction of ErbB2 levels in the tumor xenografts. Most importantly, systemic delivery of decorin prevented metastatic spreading to the lungs, as detected by novel species-specific DNA detection and quantitative assays. In contrast, AG879 failed to have any effect. Our data support a role for decorin as a powerful and effective therapeutic agent against breast cancer due to its inhibition of both primary tumor growth and metastatic spreading.
Collapse
Affiliation(s)
- Silvia Goldoni
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fleming IN, Hogben M, Frame S, McClue SJ, Green SR. Synergistic inhibition of ErbB signaling by combined treatment with seliciclib and ErbB-targeting agents. Clin Cancer Res 2008; 14:4326-35. [PMID: 18594016 DOI: 10.1158/1078-0432.ccr-07-4633] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aims of this study were to investigate whether the cyclin-dependent kinase inhibitor seliciclib could synergize with agents that target ErbB receptors and to elucidate the molecular mechanism of the observed synergy. EXPERIMENTAL DESIGN Synergy between seliciclib and ErbB receptor targeted agents was investigated in various cell lines using the Calcusyn median effect model. The molecular mechanism of the observed synergy was studied in cultured cells, and the combination of seliciclib and the epidermal growth factor receptor (EGFR) inhibitor erlotinib was evaluated in an H358 xenograft model. RESULTS Seliciclib synergized with the anti-HER2 antibody trastuzumab in a breast cancer cell line, which overexpresses the HER2 receptor, and with the erlotinib analogue AG1478 in non-small cell lung cancer cell lines. In the H358 non-small cell lung cancer cell line, synergy involved decreased signaling from the EGFR, with AG1478 directly inhibiting kinase activity while seliciclib decreased the levels of key components of the receptor signaling pathway, resulting in enhanced loss of phosphorylated extracellular signal-regulated kinase and cyclin D1. The combination of seliciclib and erlotinib was evaluated further in an H358 xenograft and shown to be significantly more active than either agent alone. An enhanced loss of cyclin D1 was also seen in vivo. CONCLUSIONS This is the first report that investigates combining seliciclib with an EGFR inhibitor. The combination decreased signaling from the EGFR in vitro and in vivo and was effective in cell lines containing either wild-type or mutant EGFR, suggesting that it may expand the range of tumors that respond to erlotinib, and therefore, such combinations are worth exploring in the clinic.
Collapse
|
23
|
Liver regeneration and tumor stimulation--a review of cytokine and angiogenic factors. J Gastrointest Surg 2008; 12:966-80. [PMID: 18181006 DOI: 10.1007/s11605-007-0459-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/06/2007] [Indexed: 01/31/2023]
Abstract
Liver resection for metastatic (colorectal carcinoma) tumors is often followed by a significant incidence of tumor recurrence. Cellular and molecular changes resulting from hepatectomy and the subsequent liver regeneration process may influence the kinetics of tumor growth and contribute to recurrence. Clinical and experimental evidence suggests that factors involved in liver regeneration may also stimulate the growth of occult tumors and the reactivation of dormant micrometastases. An understanding of the underlying changes may enable alternative strategies to minimize tumor recurrence and improve patient survival after hepatectomy.
Collapse
|
24
|
Weyergang A, Kaalhus O, Berg K. Photodynamic targeting of EGFR does not predict the treatment outcome in combination with the EGFR tyrosine kinase inhibitor Tyrphostin AG1478. Photochem Photobiol Sci 2008; 7:1032-40. [DOI: 10.1039/b806209a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Shen X, Rychahou PG, Evers BM, Falzon M. PTHrP increases xenograft growth and promotes integrin alpha6beta4 expression and Akt activation in colon cancer. Cancer Lett 2007; 258:241-52. [PMID: 17964713 PMCID: PMC2180421 DOI: 10.1016/j.canlet.2007.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/05/2007] [Accepted: 09/11/2007] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is expressed by human colon cancer tissue and cell lines. Expression of PTHrP and phosphatidylinositol 3-kinase (PI3-K) pathway components correlates with the severity of colon carcinoma. Here we observed a positive effect of endogenous PTHrP on LoVo (human colon cancer) cell proliferation, migration, invasion, integrin alpha6 and beta4 expression, and p-Akt levels. There was a direct correlation between PTHrP expression and anchorage-independent cell growth. PTHrP significantly increased xenograft growth; tumors from PTHrP-overexpressing cells showed increased expression of integrins alpha6 and beta4, and PI3-K pathway components. The higher expression of PTHrP in human colon cancer adenocarcinoma vs. normal colonic mucosa was accompanied by increased integrin alpha6 and beta4 levels. Elevated PTHrP expression in colon cancer may thus upregulate integrin alpha6beta4 expression, with consequent PI3-K activation. Targeting PTHrP might result in effective inhibition of tumor growth, migration, and invasion.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - Piotr G. Rychahou
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - B. Mark Evers
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
26
|
Targeting the epidermal growth factor receptor in metastatic colorectal cancer. Crit Rev Oncol Hematol 2007; 65:8-20. [PMID: 18006328 DOI: 10.1016/j.critrevonc.2007.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 09/15/2007] [Accepted: 09/25/2007] [Indexed: 01/02/2023] Open
Abstract
Although significant advances have been made in the treatment of metastatic colorectal cancer (CRC), prognosis remains poor, with a 5-year survival of less than 10%. Monoclonal antibodies that target the epidermal growth factor receptor (EGFR) have shown clinical benefit as single agents and in combination with standard chemotherapy in the refractory setting, with tolerable toxicity. This article will discuss the role of the EGFR pathway in the pathogenesis of CRC, the data supporting the current use of cetuximab and panitumumab in the treatment of CRC, and clinical trials of EGFR tyrosine kinase inhibitors in CRC. Novel strategies of targeting the EGFR pathway to improve efficacy, as well as ongoing research in identifying molecular predictors of response to anti-EGFR agents, will also be reviewed.
Collapse
|
27
|
Sequist LV. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Oncologist 2007; 12:325-30. [PMID: 17405897 DOI: 10.1634/theoncologist.12-3-325] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inhibiting epidermal growth factor receptor (EGFR) signaling has proven to be an effective strategy for treating non-small cell lung cancer (NSCLC) patients and the first generation of agents developed for this purpose, gefitinib and erlotinib, stimulated a unique escalation in both biologic and clinical research within the field. Second-generation EGFR-targeted agents that aim to further improve patient outcomes are now in preclinical and clinical trials. This review discusses four promising agents that are currently being studied in NSCLC: EKB-569, HKI-272, CI-1033, and ZD6474.
Collapse
Affiliation(s)
- Lecia V Sequist
- Massachusetts General Hospital Cancer Center, 32 Fruit Street, Yawkey Suite 7B, Boston, Massachusetts 02114, USA.
| |
Collapse
|
28
|
Needle E, Piparo K, Cole D, Worrall C, Whitehead I, Mahon G, Goldsmith LT. Protein kinase A-independent cAMP stimulation of progesterone in a luteal cell model is tyrosine kinase dependent but phosphatidylinositol-3-kinase and mitogen-activated protein kinase independent. Biol Reprod 2007; 77:147-55. [PMID: 17392500 DOI: 10.1095/biolreprod.106.053918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Comprehensive understanding of the cellular mechanisms utilized by luteal cells in response to extracellular hormonal signals resulting in the normal synthesis and secretion of their steroid and peptide products has yet to be achieved. Previous studies have established that cAMP functions as a second messenger in mediating gonadotropin stimulated luteal progesterone secretion. Classically, increased intracellular concentrations of cAMP result in activation of protein kinase A (PKA), which in turn phosphorylates gene regulatory transcription factors. Recent studies demonstrate that non-PKA mediated actions of cAMP exist, yet the mechanisms are not well understood. In addition to gonadotropic hormones, such growth factors as insulin, insulin-like growth factor 1, and epidermal growth factor have been shown to modulate luteal steroid hormone synthesis and steroidogenic enzyme expression as either independent effects or via amplification or modulation of the action of gonadotropic hormones or cAMP. Thus, mechanisms independent of cAMP and also downstream to cAMP that do not involve PKA are likely to be important in steroidogenesis in mammalian cells. The present studies were performed to help define the cellular mediators involved in cAMP-stimulated progesterone expression. Our data demonstrate that, in an in vitro steroidogenic cell model, 1) cAMP-stimulated progesterone occurs in a manner that is independent of PKA, 2) neither phosphatidylinositol-3-kinase nor mitogen-activated protein kinase are involved in PKA-independent cAMP-stimulated progesterone production, 3) tyrosine kinase activity does mediate cAMP-stimulated progesterone production, and 4) cAMP directly activates the Ras protein. These data suggest novel mediators of cAMP-stimulated progesterone production.
Collapse
Affiliation(s)
- Elie Needle
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine & Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Uray IP, Brown PH. Prevention of breast cancer: current state of the science and future opportunities. Expert Opin Investig Drugs 2007; 15:1583-600. [PMID: 17107283 DOI: 10.1517/13543784.15.12.1583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite significant progress in breast cancer treatment, mammary tumours still represent the second most frequent cause of cancer-related death in women in the US, with > 211,000 new cases in 2005; however, an expanding range of options for early diagnosis and more reliable risk assessment offers new alternatives for disease control by cancer prevention. Completed large studies with the classical selective estrogen receptor modulator (SERM) tamoxifen have demonstrated that preventing breast cancer pharmacologically is now possible. Novel SERMs, aromatase inhibitors and gonadotropin-releasing hormone agonists targeting hormonal pathways are being tested in clinical trials, revealing the potential for dramatic reductions in tumour incidence with minimal side effects; however, SERMs and aromatase inhibitors are effective only against estrogen receptor-positive tumours, thus chemopreventive drugs targeting other critical signalling pathways (such as retinoids, selective COX inhibitors and tyrosine kinase inhibitors) may provide a means to prevent estrogen receptor-negative breast cancer. In the future, hormonal and estrogen receptor-independent agents may be combined to prevent the development of all mammary tumours. This article reviews the current and novel strategies for breast cancer prevention.
Collapse
Affiliation(s)
- Ivan P Uray
- Breast Care Center, Department of Medicine, Baylor College of Medicine, Methodist Hospital, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Rajput A, Koterba AP, Kreisberg JI, Foster JM, Willson JKV, Brattain MG. A novel mechanism of resistance to epidermal growth factor receptor antagonism in vivo. Cancer Res 2007; 67:665-73. [PMID: 17234777 DOI: 10.1158/0008-5472.can-06-2773] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) is widely expressed in a number of solid tumors including colorectal cancers. Overexpression of this receptor is one means by which a cell can achieve positive signals for survival and proliferation; another effective means is by constitutive activation of EGFR. We have elucidated the role of constitutive EGFR signaling in malignant progression by stably transfecting colon cancer cells with a human transforming growth factor-alpha cDNA (a ligand for EGFR) under repressible control by tetracycline. We show that constitutive expression of transforming growth factor-alpha and its subsequent constitutive activation of EGFR allows for cancer cell survival in response to environmental stress in vitro and in vivo as well. The reversal of constitutive EGFR activation results in the loss of downstream mitogen-activated protein kinase and Akt activation, and a reduction in xenograft size that is associated with decreased proliferation and increased apoptosis. We used CI-1033, a small molecule antagonist of EGFR, to dissect an activation pathway that shows the ability of ERBb2 to activate Akt, but not Erk in the face of EGFR antagonism. This novel escape mechanism is a possible explanation of why anti-EGFR therapies have shown disappointing results in clinical trials.
Collapse
Affiliation(s)
- Ashwani Rajput
- Department of Surgical Oncology, Roswell Park Cancer Institute, The State University of New York at Buffalo, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
31
|
Walker F, Zhang HH, Burgess AW. Identification of a novel EGF-sensitive cell cycle checkpoint. Exp Cell Res 2007; 313:511-26. [PMID: 17157295 DOI: 10.1016/j.yexcr.2006.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/27/2006] [Accepted: 10/27/2006] [Indexed: 12/21/2022]
Abstract
The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells.
Collapse
Affiliation(s)
- Francesca Walker
- Ludwig Institute for Cancer Research, P.O Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
32
|
Liu Y, Tao YM, Woo RS, Xiong WC, Mei L. Stimulated ErbB4 internalization is necessary for neuregulin signaling in neurons. Biochem Biophys Res Commun 2007; 354:505-10. [PMID: 17250808 PMCID: PMC2696396 DOI: 10.1016/j.bbrc.2007.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/03/2007] [Indexed: 11/24/2022]
Abstract
Neuregulin-1 (NRG1) plays an important role in neural development, synapse formation, and synaptic plasticity by activating ErbB receptor tyrosine kinases. Although ligand-induced endocytosis has been shown to be important for many receptor tyrosine kinases, whether NRG1 signaling depends on ErbB endocytosis remains controversial. Here, we provide evidence that ErbB4, a prominent ErbB protein in the brain, becomes internalized in NRG1-stimulated neurons. The induced ErbB4 endocytosis requires its kinase activity. Remarkably, inhibition of ErbB endocytosis attenuates NRG1-induced activation of Erk and Akt in neurons. These observations indicate a role of ErbB endocytosis in NRG1 signaling in neurons.
Collapse
Affiliation(s)
- Yu Liu
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
- Department of Radiochemotherapy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Yan-Mei Tao
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
| | - Ran-Sook Woo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
| | - Wen-Cheng. Xiong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta GA 30912, USA
- Corresponding author. Fax: +1 706 721 8685. E-mail address: (L. Mei)
| |
Collapse
|
33
|
Nagasawa J, Mizokami A, Koshida K, Yoshida S, Naito K, Namiki M. Novel HER2 selective tyrosine kinase inhibitor, TAK-165, inhibits bladder, kidney and androgen-independent prostate cancer in vitro and in vivo. Int J Urol 2006; 13:587-92. [PMID: 16771730 DOI: 10.1111/j.1442-2042.2006.01342.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE TAK-165 is a new potent inhibitor of human epidermal growth factor receptor 2 (HER2) tyrosine kinase. Several reports suggest HER2 expression in bladder cancer, renal cell carcinoma (RCC) and androgen-independent prostate cancer. We therefore investigated the antitumor effect of TAK-165 on these urological cancer cells. MATERIALS AND METHODS Western blot analysis was performed to confirm HER2 expression in cell lines. To study in vitro efficacy, cells were treated with TAK-165 at various concentrations for 72 h and then counted using a hemocytometer. Then the IC50 value was calculated. In the xenograft model, after the tumor reached 200-300 mm3 in volume, mice were orally administered TAK-165 10 mg/kg per day or 20 mg/kg per day or saline for 14 consecutive days (n=6-8). RESULTS HER2 expression was observed in HT1376, UMUC3, T24 (bladder), ACHN (kidney), DU145, LNCaP, LN-REC4 (prostate), although the expression level in these cells was weak compared with BT474 (a breast cancer cell line which expresses HER2 strongly). IC50 was varied from 0.09 to greater than 25 micromol/L in the bladder cancer cell line. ACHN cells were less sensitive in vitro. The prostate cancer cell lines studied were all sensitive (IC50 0.053-4.62 micromol/L). In the xenograft model, treatment with TAK-165 significantly inhibited growth of UMUC-3, ACHN, and LN-REC4. The antitumor effect (T/C [%]=growth of TAK-165 treated tumor/average growth of control tumorx100) after 14 days treatment were 22.9%, 26.0%, and 26.5% in UMUC3, ACHN and LN-REC4, respectively. CONCLUSIONS TAK-165 may be a hopeful new agent for bladder, kidney and androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Joji Nagasawa
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Inhibition of leiomyoma cell proliferation in vitro by genistein and the protein tyrosine kinase inhibitor TKS050. Fertil Steril 2006; 87:127-35. [PMID: 17074332 DOI: 10.1016/j.fertnstert.2006.05.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine the potency of TKS050, a new epidermal growth factor receptor (EGFR) inhibitor and genistein, a naturally occurring protein tyrosine kinase inhibitor, to inhibit leiomyoma cell proliferation in vitro. DESIGN Establishment of paired cultures of leiomyoma and normal myometrial samples. SETTING University clinical research laboratory. PATIENT(S) Hysterectomy specimens from premenopausal women affected by uterine leiomyomas. INTERVENTION(S) The suppressive effect of TKS050 and genistein on the cells, before and after steroidal hormone treatment, was examined. MAIN OUTCOME MEASURE(S) Cell proliferation, recovery after treatment, cell cycle analysis, and immunochemical analysis of relevant proteins were performed. RESULT(S) TKS050 (2 micromol/L) and genistein (50 micromol/L) completely suppressed leiomyoma cell proliferation, and the cells did not recover after cessation of treatment. TKS050 induced cell cycle arrest and apoptosis in a dose- and time-dependent manner. Cells accumulated in the G(0)/G(1) phase of the cell cycle at the expense of the S and G(2)+M phases. Treatment of cells with TKS050 resulted in a dose-dependent inhibition of EGFR autophosphorylation and of phosphorylated signal transducer and activator of transcription 3 (Stat3). Genistein inhibited the phosphorylated Stat3 but did not affect EGFR autophosphorylation. The inhibitory effects of TKS050 or genistein were unaffected by the presence of physiologic concentrations of estradiol-17beta. CONCLUSION(S) Leiomyoma cell growth is effectively blocked by TKS050 and genistein. The inhibitory action of newly developed and natural inhibitors derived from diet may be useful as a possible alternative therapy for leiomyomas.
Collapse
|
35
|
Fina D, Franchi L, Caruso R, Peluso I, Naccari GC, Bellinvia S, Testi R, Pallone F, Monteleone G. 5-aminosalicylic acid enhances anchorage-independent colorectal cancer cell death. Eur J Cancer 2006; 42:2609-16. [PMID: 16914308 DOI: 10.1016/j.ejca.2006.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/07/2006] [Accepted: 03/10/2006] [Indexed: 11/26/2022]
Abstract
Resistance to anoikis, the cell death triggered by the loss of anchorage to the substratum, is an essential prerequisite in the proliferation and diffusion of colorectal cancer (CRC) cells. We examined whether 5-aminosalicylic acid (5-ASA), a drug that seems to reduce the risk of colitis-associated CRC, enhances CRC cell anoikis. To this end, Colo205 cells were treated with 5-ASA in the presence or absence of inhibitors of caspases (zVAD-fmk) and reactive oxygen species (ROS). We demonstrate that 5-ASA enhances Colo205 cell death. Although 5-ASA induces dissipation of mitochondrial transmembrane potential and caspase-3 activation, zVAD-fmk does not completely prevent the 5-ASA-induced cell death. 5-ASA also enhances the synthesis of ROS. However, inhibitors of ROS reduce the fraction of 5-ASA-induced Colo205 cell death but do not confer protection. In contrast, the 5-ASA-mediated Colo205 cell death is preventable by Bcl-2 over-expression. These data suggest a mechanism by which 5-ASA interferes with colon carcinogenesis.
Collapse
Affiliation(s)
- Daniele Fina
- Dipartimento di Medicina Interna, Cattedra di Gastroenterologia, e Centro di Eccellenza per lo studio delle malattie complesse e multifattoriali, Università Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou Y, Li S, Hu YP, Wang J, Hauser J, Conway AN, Vinci MA, Humphrey L, Zborowska E, Willson JKV, Brattain MG. Blockade of EGFR and ErbB2 by the novel dual EGFR and ErbB2 tyrosine kinase inhibitor GW572016 sensitizes human colon carcinoma GEO cells to apoptosis. Cancer Res 2006; 66:404-11. [PMID: 16397255 DOI: 10.1158/0008-5472.can-05-2506] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coexpression of the epidermal growth factor receptor (EGFR) family receptors is found in a subset of colon cancers, which may cooperatively promote cancer cell growth and survival, as heterodimerization is known to provide for diversification of signal transduction. Recently, efforts have been made to develop novel 4-anilinoquinazoline and pyridopyrimidine derivatives to inhibit EGFR and ErbB2 kinases simultaneously. In this study, we tested the efficacy of a novel reversible dual inhibitor GW572016 compared with the selective EGFR and ErbB2 tyrosine kinase inhibitors (TKI) AG1478 and AG879 and their combination, using the human colon adenocarcinoma GEO mode. GEO cells depend on multiple ErbB receptors for aberrant growth. A synergistic effect on inhibition of cell proliferation associated with induction of apoptosis was observed from the combination of AG1478 and AG879. Compared with AG1478 or AG879, the single TKI compound GW572016 was a more potent inhibitor of GEO cell proliferation and was able to induce apoptosis at lower concentrations. Western blot analysis revealed that AG1478 and AG879 were unable to suppress both EGFR and ErbB2 activation as well as the downstream mitogen-activated protein kinase (MAPK) and AKT pathways as single agents. In contrast, GW572016 suppressed the activation of EGFR, ErbB2, MAPK, and AKT in a concentration-dependent manner. Finally, in vivo studies showed that GW572016 treatment efficiently blocked GEO xenograft growth at a dose range of 30 to 200 mg/kg with a twice-daily schedule. In summary, our study indicates that targeting both EGFR and ErbB2 simultaneously could enhance therapy over that of single agents directed at EGFR or ErbB2 in cancers that can be identified as being primarily heterodimer-dependent.
Collapse
Affiliation(s)
- Yunfei Zhou
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bishnupuri KS, Luo Q, Murmu N, Houchen CW, Anant S, Dieckgraefe BK. Reg IV activates the epidermal growth factor receptor/Akt/AP-1 signaling pathway in colon adenocarcinomas. Gastroenterology 2006; 130:137-49. [PMID: 16401477 DOI: 10.1053/j.gastro.2005.10.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 09/28/2005] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Reg IV, a secreted protein and member of the Reg multigene family, is up-regulated in malignancies of the human gastrointestinal tract, including colorectal carcinoma (CRC). However, in vitro signal transduction pathway(s) utilized by Reg IV are not yet known. METHODS To determine the signaling pathway(s) responsive to Reg IV, we examined the effects of purified recombinant human Reg IV (rhR4) on HCT116 and HT29 colon adenocarcinoma cells. RESULTS Addition of rhR4 to cultures led to a dose-dependent increase in cell number similar to that observed after treatment with epidermal growth factor (EGF). In addition, rhR4 treatment resulted in rapid phosphorylation of EGF receptor at Tyr992 and Tyr1068 and Akt at Thr308 and Ser473. Using luciferase reporter gene assays, we demonstrated that Reg IV signaling through EGF receptor and Akt results in increased activator protein-1 (AP-1) transcription factor activity. Real-time reverse-transcription polymerase chain reaction and Western blot analyses revealed quantitative increases in c-Jun, JunB, JunD, and FosB expression associated with increased AP-1 activity. Electrophoretic mobility shift assay further revealed significant increases in AP-1 binding activity in rhR4-treated cells, with increased supershift in the presence of antibodies to JunB, JunD, and FosB. Furthermore, rhR4 treatments led to the increased expression of Bcl-2, Bcl-XL, survivin, and matrilysin, genes associated with a poor prognosis in advanced CRC. CONCLUSIONS Reg IV is a potent activator of the EGF receptor/Akt/AP-1 signaling pathway in CRC. Disruption of Reg signaling may have utility as a therapeutic intervention for human gastrointestinal adenocarcinomas.
Collapse
Affiliation(s)
- Kumar S Bishnupuri
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|