1
|
Colic E, Patel PU, Kent OA. Aberrant MAPK Signaling Offers Therapeutic Potential for Treatment of Ovarian Carcinoma. Onco Targets Ther 2022; 15:1331-1346. [PMID: 36388156 PMCID: PMC9645123 DOI: 10.2147/ott.s361512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/01/2022] [Indexed: 08/22/2023] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy worldwide due to lack of effective screening, vague early symptoms, poor description of biomarkers, and absence of effective treatment regimes. Epithelial ovarian carcinoma (EOC) is categorized into five distinct disease subtypes which collectively account for ~90% of ovarian carcinomas. Most women present at advanced stages contributing to a poor overall 5-year survival rate. Standard treatment for EOC is cytoreductive surgery and platinum-based chemotherapy; however, most patients suffer from recurrence and platinum-resistant disease, which highlights an urgent need for targeted therapy. The high frequency of molecular alterations affecting gain-of-function signaling through the RAS mitogen-activated protein kinase (MAPK) pathway in EOC has prompted pre-clinical and clinical efforts toward research into the effectiveness of MAPK pathway inhibition as a second-line treatment. The RAS/MAPK pathway is a highly conserved signal transduction cascade, often disrupted in cancer, that regulates tumorigenic phenotypes including cellular proliferation, survival, migration, apoptosis, and differentiation. Herein, the role of the MAPK pathway in EOC with emphasis on targetability of the pathway is described. Pre-clinical and clinical efforts to target MAPK signaling in EOC have identified several MAPK pathway inhibitors that offer efficacious potential for monotherapy and in combination with other compounds. Thus, inhibition of the RAS/MAPK pathway is emerging as a tractable strategy for treatment of ovarian cancer that may permit development of personalized therapy and improved prognosis for women challenged by this disease.
Collapse
Affiliation(s)
- Eva Colic
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Preya U Patel
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Zhao W, Li J, Chen MJM, Luo Y, Ju Z, Nesser NK, Johnson-Camacho K, Boniface CT, Lawrence Y, Pande NT, Davies MA, Herlyn M, Muranen T, Zervantonakis IK, von Euw E, Schultz A, Kumar SV, Korkut A, Spellman PT, Akbani R, Slamon DJ, Gray JW, Brugge JS, Lu Y, Mills GB, Liang H. Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines. Cancer Cell 2020; 38:829-843.e4. [PMID: 33157050 PMCID: PMC7738392 DOI: 10.1016/j.ccell.2020.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Ju M Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicole K Nesser
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Katie Johnson-Camacho
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Christopher T Boniface
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Yancey Lawrence
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nupur T Pande
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA 19104, USA
| | - Taru Muranen
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Ioannis K Zervantonakis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Erika von Euw
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul T Spellman
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dennis J Slamon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joe W Gray
- Center for Spatial Systems Biomedicine, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97201, USA
| | - Joan S Brugge
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Knight Cancer Institute and Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Davidson B, Bock AJ, Holth A, Nymoen DA. Expression of palladin is associated with disease progression in metastatic high-grade serous carcinoma. Cytopathology 2020; 31:572-578. [PMID: 32741023 DOI: 10.1111/cyt.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To analyse the expression and clinical role of the actin-associated molecule palladin in serous effusions. METHODS PALLD mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction in 83 high-grade serous carcinoma (HGSC) effusions. Fifteen malignant mesothelioma (MM) effusions and 18 surgical HGSC specimens from the ovary were studied for comparative purposes. Palladin protein expression by immunohistochemistry was analysed in another series consisting of 261 HGSC effusions. RESULTS PALLD mRNA was significantly overexpressed in HGSC compared to MM effusions (P < .001). Palladin expression by immunohistochemistry was found in HGSC cells in 106/261 (41%) effusions, most commonly focally (<5% of cells). PALLD expression was additionally higher in ovarian HGSC specimens compared to HGSC effusions (P < .001). However, immunohistochemistry showed only stromal expression of this protein in surgical specimens. PALLD mRNA expression in HGSC effusions was unrelated to clinicopathological parameters, chemotherapy response or survival. Palladin protein expression was higher in post-chemotherapy, mainly disease recurrence, specimens compared to chemo-naïve effusions tapped at diagnosis (P = .018), although it was unrelated to other clinicopathological parameters or survival. CONCLUSION PALLD mRNA is overexpressed in HGSC compared to MM effusions, and its protein product is overexpressed in post-chemotherapy compared to pre-chemotherapy HGSC effusions, suggesting upregulation along tumour progression. The presence of this molecule in HGSC effusions, at the mRNA or the protein level, is unrelated to disease outcome.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika Jøntvedt Bock
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Dag Andre Nymoen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
4
|
Shen YA, Hong J, Asaka R, Asaka S, Hsu FC, Suryo Rahmanto Y, Jung JG, Chen YW, Yen TT, Tomaszewski A, Zhang C, Attarwala N, DeMarzo AM, Davidson B, Chuang CM, Chen X, Gaillard S, Le A, Shih IM, Wang TL. Inhibition of the MYC-Regulated Glutaminase Metabolic Axis Is an Effective Synthetic Lethal Approach for Treating Chemoresistant Ovarian Cancers. Cancer Res 2020; 80:4514-4526. [PMID: 32859605 DOI: 10.1158/0008-5472.can-19-3971] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Amplification and overexpression of the MYC oncogene in tumor cells, including ovarian cancer cells, correlates with poor responses to chemotherapy. As MYC is not directly targetable, we have analyzed molecular pathways downstream of MYC to identify potential therapeutic targets. Here we report that ovarian cancer cells overexpressing glutaminase (GLS), a target of MYC and a key enzyme in glutaminolysis, are intrinsically resistant to platinum-based chemotherapy and are enriched with intracellular antioxidant glutathione. Deprivation of glutamine by glutamine-withdrawal, GLS knockdown, or exposure to the GLS inhibitor CB-839 resulted in robust induction of reactive oxygen species in high GLS-expressing but not in low GLS-expressing ovarian cancer cells. Treatment with CB-839 rendered GLShigh cells vulnerable to the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, and prolonged survival in tumor-bearing mice. These findings suggest consideration of applying a combined therapy of GLS inhibitor and PARP inhibitor to treat chemoresistant ovarian cancers, especially those with high GLS expression. SIGNIFICANCE: Targeting glutaminase disturbs redox homeostasis and nucleotide synthesis and causes replication stress in cancer cells, representing an exploitable vulnerability for the development of effective therapeutics. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4514/F1.large.jpg.
Collapse
Affiliation(s)
- Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiaxin Hong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryoichi Asaka
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shiho Asaka
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fang-Chi Hsu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jin-Gyoung Jung
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yu-Wei Chen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ting-Tai Yen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alicja Tomaszewski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nabeel Attarwala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M DeMarzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chi-Mu Chuang
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Xi Chen
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, Virginia
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Bae H, Song G, Lee JY, Hong T, Chang MJ, Lim W. Laminarin-Derived from Brown Algae Suppresses the Growth of Ovarian Cancer Cells via Mitochondrial Dysfunction and ER Stress. Mar Drugs 2020; 18:E152. [PMID: 32182828 PMCID: PMC7143329 DOI: 10.3390/md18030152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OC) is difficult to diagnose at an early stage and leads to the high mortality rate reported in the United States. Standard treatment for OC includes maximal cytoreductive surgery followed by platinum-based chemotherapy. However, relapse due to chemoresistance is common in advanced OC patients. Therefore, it is necessary to develop new anticancer drugs to suppress OC progression. Recently, the anticancer effects of laminarin, a beta-1,3-glucan derived from brown algae, have been reported in hepatocellular carcinoma, colon cancer, leukemia, and melanoma. However, its effects in OC are not reported. We confirmed that laminarin decreases cell growth and cell cycle progression of OC cells through the regulation of intracellular signaling. Moreover, laminarin induced cell death through DNA fragmentation, reactive oxygen species generation, induction of apoptotic signals and endoplasmic reticulum (ER) stress, regulation of calcium levels, and alteration of the ER-mitochondria axis. Laminarin was not cytotoxic in a zebrafish model, while in a zebrafish xenograft model, it inhibited OC cell growth. These results suggest that laminarin may be successfully used as a novel OC suppressor.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (G.S.)
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.B.); (G.S.)
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Taeyeon Hong
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea;
| | - Moon-Jeong Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea;
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea;
| |
Collapse
|
6
|
Slomovitz B, Gourley C, Carey MS, Malpica A, Shih IM, Huntsman D, Fader AN, Grisham RN, Schlumbrecht M, Sun CC, Ludemann J, Cooney GA, Coleman R, Sood AK, Mahdi H, Wong KK, Covens A, O'Malley DM, Lecuru F, Cobb LP, Caputo TA, May T, Huang M, Siemon J, Fernández ML, Ray-Coquard I, Gershenson DM. Low-grade serous ovarian cancer: State of the science. Gynecol Oncol 2020; 156:715-725. [PMID: 31969252 DOI: 10.1016/j.ygyno.2019.12.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023]
Abstract
In January 2019, a group of basic, translational, and clinical investigators and patient advocates assembled in Miami, Florida, to discuss the current state of the science of low-grade serous carcinoma of the ovary or peritoneum-a rare ovarian cancer subtype that may arise de novo or following a diagnosis of serous borderline tumor. The purpose of the conference was to review current knowledge, discuss ongoing research by established researchers, and frame critical questions or issues for future directions. Following presentations and discussions, the primary objective was to initiate future collaborations, uniform database platforms, laboratory studies, and clinical trials to better understand this disease and to advance clinical care outside the boundaries of single academic institutions. This review summarizes the state of the science in five principal categories: epidemiology and patient outcomes, pathology, translational research, patient care and clinical trials, and patients' perspective.
Collapse
Affiliation(s)
- Brian Slomovitz
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States.
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Mark S Carey
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Anais Malpica
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ie-Ming Shih
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amanda N Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel N Grisham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Weil Cornell Medical College, New York, NY, United States
| | - Matthew Schlumbrecht
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Charlotte C Sun
- Division of Surgery, Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jane Ludemann
- Cure Our Ovarian Cancer, cureourovariancancer.org, New Zealand
| | - Gail Austin Cooney
- University of Miami/JFK Medical Center Palm Beach Regional Graduate Medical Education Consortium, Hospice and Palliative Medicine Program, West Palm Beach, FL, United States
| | - Robert Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Haider Mahdi
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, United States; Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Kwong K Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Allan Covens
- University of Toronto, Division of Gynecologic Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David M O'Malley
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The James CCC at the Wexner Medical Center-The Ohio State University College of Medicine, Columbus, OH, United States
| | - Fabrice Lecuru
- Service de Chirurgie Cancérologique Gynécologique et du Sein, Hôpital Européen George Pompidou, APHP, Paris, France; Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Lauren P Cobb
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas A Caputo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Taymaa May
- Division of Gynecologic Oncology, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Marilyn Huang
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - John Siemon
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | | | - Isabelle Ray-Coquard
- Centre Leon Bèrard, Université Claude Bernard Lyon, Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire (GINECO), Lyon, France
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Kenny HA, Lal-Nag M, Shen M, Kara B, Nahotko DA, Wroblewski K, Fazal S, Chen S, Chiang CY, Chen YJ, Brimacombe KR, Marugan J, Ferrer M, Lengyel E. Quantitative High-Throughput Screening Using an Organotypic Model Identifies Compounds that Inhibit Ovarian Cancer Metastasis. Mol Cancer Ther 2019; 19:52-62. [PMID: 31562255 DOI: 10.1158/1535-7163.mct-19-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/31/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment (TME) is a key determinant of metastatic efficiency. We performed a quantitative high-throughput screen (qHTS) of diverse medicinal chemistry tractable scaffolds (44,420 compounds) and pharmacologically active small molecules (386 compounds) using a layered organotypic, robust assay representing the ovarian cancer metastatic TME. This 3D model contains primary human mesothelial cells, fibroblasts, and extracellular matrix, to which fluorescently labeled ovarian cancer cells are added. Initially, 100 compounds inhibiting ovarian cancer adhesion/invasion to the 3D model in a dose-dependent manner were identified. Of those, eight compounds were confirmed active in five high-grade serous ovarian cancer cell lines and were further validated in secondary in vitro and in vivo biological assays. Two tyrosine kinase inhibitors, PP-121 and milciclib, and a previously unreported compound, NCGC00117362, were selected because they had potency at 1 μmol/L in vitro Specifically, NCGC00117362 and PP-121 inhibited ovarian cancer adhesion, invasion, and proliferation, whereas milciclib inhibited ovarian cancer invasion and proliferation. Using in situ kinase profiling and immunoblotting, we found that milciclib targeted Cdk2 and Cdk6, and PP-121 targeted mTOR. In vivo, all three compounds prevented ovarian cancer adhesion/invasion and metastasis, prolonged survival, and reduced omental tumor growth in an intervention study. To evaluate the clinical potential of NCGC00117362, structure-activity relationship studies were performed. Four close analogues of NCGC00117362 efficiently inhibited cancer aggressiveness in vitro and metastasis in vivo Collectively, these data show that a complex 3D culture of the TME is effective in qHTS. The three compounds identified have promise as therapeutics for prevention and treatment of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois.
| | - Madhu Lal-Nag
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Min Shen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Betul Kara
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Dominik A Nahotko
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Sarah Fazal
- Cellular Screening Center, University of Chicago, Chicago, Illinois
| | - Siquan Chen
- Cellular Screening Center, University of Chicago, Chicago, Illinois
| | - Chun-Yi Chiang
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Yen-Ju Chen
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Kyle R Brimacombe
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Juan Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Yu Y, Suryo Rahmanto Y, Shen YA, Ardighieri L, Davidson B, Gaillard S, Ayhan A, Shi X, Xuan J, Wang TL, Shih IM. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBioMedicine 2019; 47:184-194. [PMID: 31492560 PMCID: PMC6796592 DOI: 10.1016/j.ebiom.2019.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America.
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Laura Ardighieri
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu and Hiroshima Universities Schools of Medicine, Hamamatsu 431-3192, Japan
| | - Xu Shi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| |
Collapse
|
9
|
Song G, Chen L, Zhang B, Song Q, Yu Y, Moore C, Wang TL, Shih IM, Zhang H, Chan DW, Zhang Z, Zhu H. Proteome-wide Tyrosine Phosphorylation Analysis Reveals Dysregulated Signaling Pathways in Ovarian Tumors. Mol Cell Proteomics 2019; 18:448-460. [PMID: 30523211 PMCID: PMC6398206 DOI: 10.1074/mcp.ra118.000851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/20/2018] [Indexed: 11/06/2022] Open
Abstract
The recent accomplishment of comprehensive proteogenomic analysis of high-grade serous ovarian carcinoma (HGSOC) tissues reveals cancer associated molecular alterations were not limited to variations among DNA, and mRNA/protein expression, but are a result of complex reprogramming of signaling pathways/networks mediated by the protein and post-translational modification (PTM) interactomes. A systematic, multiplexed approach interrogating enzyme-substrate relationships in the context of PTMs is fundamental in understanding the dynamics of these pathways, regulation of cellular processes, and their roles in disease processes. Here, as part of Clinical Proteomic Tumor Analysis Consortium (CPTAC) project, we established a multiplexed PTM assay (tyrosine phosphorylation, and lysine acetylation, ubiquitylation and SUMOylation) method to identify protein probes' PTMs on the human proteome array. Further, we focused on the tyrosine phosphorylation and identified 19 kinases are potentially responsible for the dysregulated signaling pathways observed in HGSOC. Additionally, elevated kinase activity was observed when 14 ovarian cancer cell lines or tumor tissues were subjected to test the autophosphorylation status of PTK2 (pY397) and PTK2B (pY402) as a proxy for kinase activity. Taken together, this report demonstrates that PTM signatures based on lysate reactions on human proteome array is a powerful, unbiased approach to identify dysregulated PTM pathways in tumors.
Collapse
Affiliation(s)
- Guang Song
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Li Chen
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Bai Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Qifeng Song
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Yu Yu
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Cedric Moore
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Tian-Li Wang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
- ¶Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Ie-Ming Shih
- ¶Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Hui Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Daniel W Chan
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Zhen Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231;
| | - Heng Zhu
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
10
|
El-Balat A, Schmeil I, Gasimli K, Sänger N, Karn T, Ahr A, Becker S, Arsenic R, Holtrich U, Engels K. Claudin-1 is linked to presence of implants and micropapillary pattern in serous borderline epithelial tumours of the ovary. J Clin Pathol 2018; 71:1060-1064. [PMID: 30171086 DOI: 10.1136/jclinpath-2018-205292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
Abstract
AIMS Expression of Claudin-1 has been associated with prognosis in several cancers. Here we investigated the expression pattern of Claudin-1 in borderline tumours of the ovary (BOT). METHODS We analysed a cohort of 114 cases of borderline tumour (BOT). Claudin-1 expression was studied by immunohistochemistry using a polyclonal antibody and was compared with clinical and histopathological characteristics. RESULTS Strong Claudin-1 expression was found in 30 cases (26.3%) independent of histological subtype. Expression was significantly less frequent in International Federation of Gynecology and Obstetrics (FIGO) stage I (p= 0.045), while the presence of microinvasion did not correlate with Claudin-1 expression. In contrast, we detected a highly significant association of Claudin-1 expression with the presence of peritoneal implants (p=0.003) and micropapillary pattern (p=0.047), which are features exclusively seen in serous BOT. Moreover, when we restricted our analysis to the subtype of serous BOT, the association of Claudin-1 expression with peritoneal implants (p<0.001) and micropapillary pattern (p =0.003) remained highly significant. CONCLUSIONS In conclusion, Claudin-1 expression is associated with the presence of peritoneal implants and micropapillary pattern, which have been shown to be associated with poor prognosis. We speculate that overexpression of Claudin-1 might be linked to the mitogen-activated protein kinase pathway activation in BOT and suggest further studies to define its prognostic and potential therapeutic value.
Collapse
Affiliation(s)
- Ahmed El-Balat
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Iryna Schmeil
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Khayal Gasimli
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Nicole Sänger
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas Karn
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Andre Ahr
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Sven Becker
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ruza Arsenic
- Institute of Pathology, Charite University Hospital, Berlin, Germany
| | - Uwe Holtrich
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | - Knut Engels
- Center for Pathology, Cytology and Molecular Pathology, Neuss, Germany
| |
Collapse
|
11
|
Yu Y, Suryo Rahmanto Y, Lee MH, Wu PH, Phillip JM, Huang CH, Vitolo MI, Gaillard S, Martin SS, Wirtz D, Shih IM, Wang TL. Inhibition of ovarian tumor cell invasiveness by targeting SYK in the tyrosine kinase signaling pathway. Oncogene 2018; 37:3778-3789. [PMID: 29643476 PMCID: PMC6043408 DOI: 10.1038/s41388-018-0241-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/27/2018] [Accepted: 03/03/2018] [Indexed: 02/02/2023]
Abstract
Cell motility and invasiveness are prerequisites for dissemination, and largely account for cancer mortality. We have identified an actionable kinase, spleen tyrosine kinase (SYK), which is keenly tightly associated with tumor progression in ovarian cancer. Here, we report that active recombinant SYK directly phosphorylates cortactin and cofilin, which are critically involved in assembly and dynamics of actin filament through phosphorylation signaling. Enhancing SYK activity by inducing expression of a constitutively active SYK mutant, SYK130E, increased growth factor-stimulated migration and invasion of ovarian cancer cells, which was abrogated by cortactin knockdown. Similarly, SYK inhibitors significantly decreased invasion of ovarian cancer cells across basement membrane in real-time transwell assays and in 3D tumor spheroid models. SYK inactivation by targeted gene knockout or by small molecule inhibition reduced actin polymerization. Collectively, this study reported a new mechanism by which SYK signaling regulates ovarian cancer cell motility and invasiveness, and suggest a target-based strategy to prevent or suppress the advancement of ovarian malignancies.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Meng-Horng Lee
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Michele I Vitolo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Stuart S Martin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Qiu C, Wang Y, Wang X, Zhang Q, Li Y, Xu Y, Jin C, Bu H, Zheng W, Yang X, Lu N, Kong B. Combination of TP53 and AGR3 to distinguish ovarian high-grade serous carcinoma from low-grade serous carcinoma. Int J Oncol 2018; 52:2041-2050. [PMID: 29620196 DOI: 10.3892/ijo.2018.4360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/19/2018] [Indexed: 11/06/2022] Open
Abstract
Ovarian high-grade serous carcinoma (HGSC) and low-grade serous carcinoma (LGSC) are distinct gynecologic neoplasms with diverse pathogenesis and characteristic features. They respond differently to same modalities of treatment protocol and have dissimilar prognosis. Thus, it is essential to obtain accurate differential diagnosis of HGSC and LGSC prior to clinical treatment. In the present study, mRNA expression profiles were generated from 5 HGSC and 6 LGSC specimen using HTSeq, and 699 differentially expressed genes (>2-fold difference) were identified using the DESeq R package. Dendrograms produced by unsupervised hierarchical clustering completely distinguished HGSC from LGSC. Among differentially expressed genes between HGSC and LGSC, anterior gradient homolog 3 (AGR3) was highly upregulated in LGSC compared to HGSC, which was validated by reverse transcription‑quantitative polymerase chain reaction and western blotting. Then, anti‑tumor protein 53 (TP53) and anti-AGR3 immunohistochemistry were performed on 145 HGSC and 30 LGSC samples. Consistent with previous studies, abnormal expression of TP53 (0 or ≥75% positive expression) was observed in 87.6% of HGSC and 13.3% of LGSC samples. Positive staining of AGR3 had a sensitivity of 80.0% and specificity of 89.7% for LGSC. TP53 and AGR3 were both efficient in distinguishing HGSC from LGSC (P<0.001). Receiver operating characteristic analysis revealed a similar area under the curve for AGR3 (0.848) and TP53 (0.871). Through combination of the two markers (TP53 wild‑type pattern and AGR3‑positive expression), the accuracy of differential diagnosis was up to 93.1%. These findings provide compelling evidence that differential diagnosis of HGSC and LGSC can be improved by combined application of these two markers on the basis of conventional histopathological diagnosis.
Collapse
Affiliation(s)
- Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao Wang
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hualei Bu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Nan Lu
- Department of Diagnostics, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Abstract
Over the past decade, the strategy for clinical trial design in making progress against epithelial cancers of the ovary/peritoneum/fallopian tube has changed dramatically. The NRG (GOG) Rare Tumor Committee has been a leader in this transformation. No longer does 'one size fit all'. Rather, separate clinical trials for rare subtypes have been developed and, in some cases, completed. An enhanced understanding of their pathologic diagnosis, molecular biology, and clinical behavior has galvanized this change. Low-grade serous carcinoma may occur de novo or following an initial diagnosis of serous tumor of low malignant potential. It is characterized by young age at diagnosis, relative chemoresistance, and prolonged survival compared with high-grade serous carcinoma. Historically, conventional chemotherapy has demonstrated very limited activity in this subtype. Hormonal therapy may provide benefit in this subtype. Preclinical studies have identified and elucidated genes and pathways-MAP kinase pathway, IGF1-R, the angiogenesis pathway, and possibly, the PI3K/AKT/mTOR pathway in low-grade serous carcinoma. To date, clinical evidence supports the activity of MEK and BRAF inhibitors and bevacizumab. Further pursuit of targeted therapy trials is clearly warranted.
Collapse
Affiliation(s)
- D M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
14
|
Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology. Methods 2017; 129:60-80. [DOI: 10.1016/j.ymeth.2017.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023] Open
|
15
|
Cheng JC, Chang HM, Leung PCK. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis. Oncotarget 2017; 8:85224-85233. [PMID: 29156715 PMCID: PMC5689605 DOI: 10.18632/oncotarget.19626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
16
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
17
|
Jung JG, Shih IM, Park JT, Gerry E, Kim TH, Ayhan A, Handschuh K, Davidson B, Fader AN, Selleri L, Wang TL. Ovarian Cancer Chemoresistance Relies on the Stem Cell Reprogramming Factor PBX1. Cancer Res 2016; 76:6351-6361. [PMID: 27590741 PMCID: PMC7375390 DOI: 10.1158/0008-5472.can-16-0980] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/14/2016] [Indexed: 12/18/2022]
Abstract
The evolution of chemoresistance is a fundamental characteristic of cancer that ultimately hampers its clinical management. However, it may be possible to improve patient outcomes significantly by a better understanding of resistance mechanisms, which cancers rely upon during the evolution to an untreatable state. Here we report an essential role of the stem cell reprogramming factor, PBX1, in mediating chemoresistance in ovarian carcinomas. In the clinical setting, high levels of PBX1 expression correlated with shorter survival in post-chemotherapy ovarian cancer patients. In tumor cells with low endogenous levels of PBX1, its enforced expression promoted cancer stem cell-like phenotypes, including most notably an increase in resistance to platinum-based therapy used most commonly for treating this disease. Conversely, silencing PBX1 in platinum-resistant cells that overexpressed PBX1 sensitized them to platinum treatment and reduced their stem-like properties. An analysis of published genome-wide chromatin immunoprecipitation data indicated that PBX1 binds directly to promoters of genes involved in stem cell maintenance and the response to tissue injury. We confirmed direct regulation of one of these genes, STAT3, demonstrating that the PBX1 binding motif at its promoter acted to positively regulate STAT3 transcription. We further demonstrated that a STAT3/JAK2 inhibitor could potently sensitize platinum-resistant cells to carboplatin and suppress their growth in vivo Our findings offer a mechanistic rationale to target the PBX1/STAT3 axis to antagonize a key mechanism of chemoresistance in ovarian cancers and possibly other human cancers. Cancer Res; 76(21); 6351-61. ©2016 AACR.
Collapse
Affiliation(s)
- Jin-Gyoung Jung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Joon Tae Park
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Emily Gerry
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tae Hoen Kim
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu, Japan
- Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Karen Handschuh
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Amanda N Fader
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
18
|
Yang MQ, Elnitski L. A Systems Biology Comparison of Ovarian Cancers Implicates Putative Somatic Driver Mutations through Protein-Protein Interaction Models. PLoS One 2016; 11:e0163353. [PMID: 27788148 PMCID: PMC5082879 DOI: 10.1371/journal.pone.0163353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022] Open
Abstract
Ovarian carcinomas can be aggressive with a high mortality rate (e.g., high-grade serous ovarian carcinomas, or HGSOCs), or indolent with much better long-term outcomes (e.g., low-malignant-potential, or LMP, serous ovarian carcinomas). By comparing LMP and HGSOC tumors, we can gain insight into the mechanisms underlying malignant progression in ovarian cancer. However, previous studies of the two subtypes have been focused on gene expression analysis. Here, we applied a systems biology approach, integrating gene expression profiles derived from two independent data sets containing both LMP and HGSOC tumors with protein-protein interaction data. Genes and related networks implicated by both data sets involved both known and novel disease mechanisms and highlighted the different roles of BRCA1 and CREBBP in the two tumor types. In addition, the incorporation of somatic mutation data revealed that amplification of PAK4 is associated with poor survival in patients with HGSOC. Thus, perturbations in protein interaction networks demonstrate differential trafficking of network information between malignant and benign ovarian cancers. The novel network-based molecular signatures identified here may be used to identify new targets for intervention and to improve the treatment of invasive ovarian cancer as well as early diagnosis.
Collapse
Affiliation(s)
- Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Ph.D. Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Avenue, Little Rock, Arkansas, 72204, United States of America
- * E-mail: (MQY); (LE)
| | - Laura Elnitski
- National Human Genome Research Institute, National Institutes of Health, Rockville, MD, 20852, United States of America
- * E-mail: (MQY); (LE)
| |
Collapse
|
19
|
Kurman RJ, Shih IM. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:733-47. [PMID: 27012190 DOI: 10.1016/j.ajpath.2015.11.011] [Citation(s) in RCA: 663] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/07/2015] [Accepted: 11/02/2015] [Indexed: 01/06/2023]
Abstract
Since our proposal of a dualistic model of epithelial ovarian carcinogenesis more than a decade ago, a large number of molecular and histopathologic studies were published that have provided important insights into the origin and molecular pathogenesis of this disease. This has required that the original model be revised and expanded to incorporate these findings. The new model divides type I tumors into three groups: i) endometriosis-related tumors that include endometrioid, clear cell, and seromucinous carcinomas; ii) low-grade serous carcinomas; and iii) mucinous carcinomas and malignant Brenner tumors. As in the previous model, type II tumors are composed, for the most part, of high-grade serous carcinomas that can be further subdivided into morphologic and molecular subtypes. Type I tumors develop from benign extraovarian lesions that implant on the ovary and which can subsequently undergo malignant transformation, whereas many type II carcinomas develop from intraepithelial carcinomas in the fallopian tube and, as a result, disseminate as carcinomas that involve the ovary and extraovarian sites, which probably accounts for their clinically aggressive behavior. The new molecular genetic data, especially those derived from next-generation sequencing, further underline the heterogeneity of ovarian cancer and identify actionable mutations. The dualistic model highlights these differences between type I and type II tumors which, it can be argued, describe entirely different groups of diseases.
Collapse
Affiliation(s)
- Robert J Kurman
- Departments of Pathology, Gynecology and Obstetrics and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Ie-Ming Shih
- Departments of Pathology, Gynecology and Obstetrics and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
20
|
McLachlan J, Gore M, Banerjee S. Targeting the mitogen-activated protein kinase pathway in low-grade serous carcinoma of the ovary. Pharmacogenomics 2016; 17:1353-63. [PMID: 27469379 DOI: 10.2217/pgs.16.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Until recently, there has been little change in the management of epithelial ovarian cancer with the majority of women receiving identical systemic therapy, regardless of histological subtype. The heterogeneity of epithelial ovarian cancer is now well established, with distinct subtypes characterized by specific molecular alterations and patterns of clinical behavior. Low-grade serous carcinoma is a rare subtype associated with an indolent biological behavior and inherent resistance to chemotherapy. The mitogen-activated protein kinase pathway plays a prominent role in the pathogenesis of low-grade serous carcinoma, and provides an attractive target for novel therapeutic agents. Selumetinib, a MEK1/2 inhibitor, demonstrates promising efficacy in women with relapsed low-grade serous carcinoma, and further trials of MEK-inhibition are underway. Translational research will be essential to identify predictive biomarkers for this treatment approach.
Collapse
Affiliation(s)
- Jennifer McLachlan
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Martin Gore
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
21
|
Kurman RJ, Shih IM. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 27012190 DOI: 10.1016/j.ajpath.2015.11.011] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since our proposal of a dualistic model of epithelial ovarian carcinogenesis more than a decade ago, a large number of molecular and histopathologic studies were published that have provided important insights into the origin and molecular pathogenesis of this disease. This has required that the original model be revised and expanded to incorporate these findings. The new model divides type I tumors into three groups: i) endometriosis-related tumors that include endometrioid, clear cell, and seromucinous carcinomas; ii) low-grade serous carcinomas; and iii) mucinous carcinomas and malignant Brenner tumors. As in the previous model, type II tumors are composed, for the most part, of high-grade serous carcinomas that can be further subdivided into morphologic and molecular subtypes. Type I tumors develop from benign extraovarian lesions that implant on the ovary and which can subsequently undergo malignant transformation, whereas many type II carcinomas develop from intraepithelial carcinomas in the fallopian tube and, as a result, disseminate as carcinomas that involve the ovary and extraovarian sites, which probably accounts for their clinically aggressive behavior. The new molecular genetic data, especially those derived from next-generation sequencing, further underline the heterogeneity of ovarian cancer and identify actionable mutations. The dualistic model highlights these differences between type I and type II tumors which, it can be argued, describe entirely different groups of diseases.
Collapse
Affiliation(s)
- Robert J Kurman
- Departments of Pathology, Gynecology and Obstetrics and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Ie-Ming Shih
- Departments of Pathology, Gynecology and Obstetrics and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
22
|
Kurman RJ, Shih IM. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 27012190 DOI: 10.1016/j.ajpath.2015.11.011]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since our proposal of a dualistic model of epithelial ovarian carcinogenesis more than a decade ago, a large number of molecular and histopathologic studies were published that have provided important insights into the origin and molecular pathogenesis of this disease. This has required that the original model be revised and expanded to incorporate these findings. The new model divides type I tumors into three groups: i) endometriosis-related tumors that include endometrioid, clear cell, and seromucinous carcinomas; ii) low-grade serous carcinomas; and iii) mucinous carcinomas and malignant Brenner tumors. As in the previous model, type II tumors are composed, for the most part, of high-grade serous carcinomas that can be further subdivided into morphologic and molecular subtypes. Type I tumors develop from benign extraovarian lesions that implant on the ovary and which can subsequently undergo malignant transformation, whereas many type II carcinomas develop from intraepithelial carcinomas in the fallopian tube and, as a result, disseminate as carcinomas that involve the ovary and extraovarian sites, which probably accounts for their clinically aggressive behavior. The new molecular genetic data, especially those derived from next-generation sequencing, further underline the heterogeneity of ovarian cancer and identify actionable mutations. The dualistic model highlights these differences between type I and type II tumors which, it can be argued, describe entirely different groups of diseases.
Collapse
Affiliation(s)
- Robert J Kurman
- Departments of Pathology, Gynecology and Obstetrics and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Ie-Ming Shih
- Departments of Pathology, Gynecology and Obstetrics and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
23
|
Grabowski JP, Harter P, Heitz F, Pujade-Lauraine E, Reuss A, Kristensen G, Ray-Coquard I, Heitz J, Traut A, Pfisterer J, du Bois A. Operability and chemotherapy responsiveness in advanced low-grade serous ovarian cancer. An analysis of the AGO Study Group metadatabase. Gynecol Oncol 2016; 140:457-62. [PMID: 26807488 DOI: 10.1016/j.ygyno.2016.01.022] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Since almost two decades standard 1st-line chemotherapy for advanced ovarian cancer (AOC) has been a platinum/taxane combination. More recently, this general strategy has been challenged because different types of AOC may not benefit homogenously. Low-grade serous ovarian cancer (LGSOC) is one of the candidates in whom efficacy of standard chemotherapy should be revised. METHODS This study is an exploratory case control study of the AGO-metadatabase of 4 randomized phase III trials with first-line platinum combination chemotherapy without any targeted therapy. Patients with advanced FIGO IIIBIV low-grade serous ovarian cancer were included and compared with control cases having high-grade serous AOC. RESULTS Out of 5114 patients in this AGO database 145 (2.8%) had LGSOC and of those thirty-nine (24.1%) had suboptimal debulking with post-operative residual tumor >1cm, thus being eligible for response evaluation. An objective response was observed in only 10 patients and this 23.1% response rate (RR) was significantly lower compared to 90.1% RR in the control cohort of high-grade serous ovarian cancer (HGSOC) (p<0.001). Both, LGSOC and HGSOC patients who underwent complete cytoreduction had significantly better progression free survival (PFS) and overall survival (OS) in comparison to those with residuals after primary surgery, accordingly (p<0.001). CONCLUSIONS Our observation indicates that low-grade serous cancer is not as responsive to platinum-taxane-based chemotherapy as high-grade serous AOC. In contrast, surgical debulking showed a similar impact on outcome in both types of AOC thus indicating different roles for both standard treatment modalities. Systemic treatment of low grade serous AOC urgently warrants further investigations.
Collapse
Affiliation(s)
- Jacek P Grabowski
- Department of Gynecology and Gynecological Oncology, Kliniken Essen Mitte, Henricistrasse 92, 45136 Essen, Germany; Department of Gynecology, European Competence Center for Ovarian Cancer, Charite-University Medicine of Berlin, Augustenberger Platz 1, 13353 Berlin, Germany.
| | - Philipp Harter
- Department of Gynecology and Gynecological Oncology, Kliniken Essen Mitte, Henricistrasse 92, 45136 Essen, Germany
| | - Florian Heitz
- Department of Gynecology and Gynecological Oncology, Kliniken Essen Mitte, Henricistrasse 92, 45136 Essen, Germany
| | - Eric Pujade-Lauraine
- Group d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Oncology Department, Universite Paris Descartes, AP-HP, Hopitaux Universitaires Paris Centre, Site Hotel Dieu, Paris, France
| | - Alexander Reuss
- Koordinierungszentrum fuer Klinische Studien, Philipps-Universitaet Marburg, Karl-von-Frisch-Str. 4, 35043 Marburg, Germany
| | - Gunnar Kristensen
- Nordic Society of Gynaecological Oncology Group (NSGO), Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, PB4953 Nydalen, 0424 Oslo, Norway
| | - Isabelle Ray-Coquard
- Group d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Université de Lyon-Centre Léon Bérard, Department of Medical Oncology and EA SIS, 4128 Lyon, France
| | - Julia Heitz
- Department of Gynecology and Obstetrics, Klinikum Duisburg, Zu den Rehwiesen 9-11, 47055 Duisburg, Germany
| | - Alexander Traut
- Department of Gynecology and Gynecological Oncology, Kliniken Essen Mitte, Henricistrasse 92, 45136 Essen, Germany
| | - Jacobus Pfisterer
- Gynecologic Oncology Center, Kiel, Herzog-Friedrich-Str. 21, 24103 Kiel, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecological Oncology, Kliniken Essen Mitte, Henricistrasse 92, 45136 Essen, Germany
| |
Collapse
|
24
|
CD40 ligand induces RIP1-dependent, necroptosis-like cell death in low-grade serous but not serous borderline ovarian tumor cells. Cell Death Dis 2015; 6:e1864. [PMID: 26313915 PMCID: PMC4558516 DOI: 10.1038/cddis.2015.229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 01/28/2023]
Abstract
Ovarian high-grade serous carcinomas (HGSCs) and invasive low-grade serous carcinomas (LGSCs) are considered to be distinct entities. In particular, LGSCs are thought to arise from non-invasive serous borderline ovarian tumors (SBOTs) and show poor responsiveness to conventional chemotherapy. The pro-apoptotic effects of CD40 ligand (CD40L) have been demonstrated in HGSC, though the underlying mechanisms are not fully understood. Conversely, the therapeutic potential of the CD40L-CD40 system has yet to be evaluated in LGSC. We now show that CD40 protein is focally expressed on tumor cells in two of five primary LGSCs compared with no expression in eight primary SBOTs. Treatment with CD40L or agonistic CD40 antibody decreased the viability of LGSC-derived MPSC1 and VOA1312 cells, but not SBOT3.1 cells. Small interfering RNA (siRNA) targeting CD40 was used to show that it is required for these reductions in cell viability. CD40L treatment increased cleaved caspase-3 levels in MPSC1 cells though, surprisingly, neither pan-caspase inhibitor nor caspase-3 siRNA reversed or even attenuated CD40L-induced cell death. In addition, CD40-induced cell death was not affected by knockdown of the mitochondrial proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG). Interestingly, CD40L-induced cell death was blocked by necrostatin-1, an inhibitor of receptor-interacting protein 1 (RIP1), and attenuated by inhibitors of RIP3 (GSK'872) or MLKL (mixed lineage kinase domain-like; necrosulfonamide). Our results indicate that the upregulation of CD40 may be relatively common in LGSC and that CD40 activation induces RIP1-dependent, necroptosis-like cell death in LGSC cells.
Collapse
|
25
|
Crane EK, Kwan SY, Izaguirre DI, Tsang YTM, Mullany LK, Zu Z, Richards JS, Gershenson DM, Wong KK. Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas. PLoS One 2015; 10:e0135101. [PMID: 26248031 PMCID: PMC4527847 DOI: 10.1371/journal.pone.0135101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/16/2015] [Indexed: 11/20/2022] Open
Abstract
Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a--a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis--as a therapeutic compound for TP53 wild-type ovarian carcinomas. Fifteen epithelial ovarian cancer cell lines of varying histologic subtypes were treated with Nutlin-3a with determination of IC50 values. Western Blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses quantified MDM2, p53, and p21 expression after Nutlin-3a treatment. DNA from 15 cell lines was then sequenced for TP53 mutations in exons 2-11 including intron-exon boundaries. Responses to Nutlin-3a were dependent upon TP53 mutation status. By qRT-PCR and WB, levels of MDM2 and p21 were upregulated in wild-type TP53 sensitive cell lines, and p21 induction was reduced or absent in mutant cell lines. Annexin V assays demonstrated apoptosis in sensitive cell lines treated with Nutlin-3a. Thus, Nutlin-3a could be a potential therapeutic agent for ovarian carcinomas expressing wild-type TP53 and warrants further investigation.
Collapse
Affiliation(s)
- Erin K. Crane
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Suet-Yan Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Cancer Biology Program, The University of Texas at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Daisy I. Izaguirre
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Cancer Biology Program, The University of Texas at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Yvonne T. M. Tsang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lisa K. Mullany
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhifei Zu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Cancer Biology Program, The University of Texas at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| |
Collapse
|
26
|
Aksenenko MB, Kirichenko AK, Ruksha TG. Russian study of morphological prognostic factors characterization in BRAF-mutant cutaneous melanoma. Pathol Res Pract 2015; 211:521-7. [PMID: 25888143 DOI: 10.1016/j.prp.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/21/2015] [Accepted: 03/25/2015] [Indexed: 01/16/2023]
Abstract
Melanoma is one of the aggressive cancer types causing the majority of deaths in skin cancer patients. Mutational screening of the tumor revealed a number of driver mutations in oncogenes which enabled melanoma classification into a few molecular subtypes. BRAF is a key component of mitogen-activated kinase pathway; its activating mutation leads to accelerated melanoma cells proliferation, invasion and survival. Somatic mutations in BRAF were reported in various malignancies, including thyroid cancer, colorectal cancer and melanoma. Specific features of BRAF-positive tumors could have clinical implications as mutational alterations may have an impact on the biological behavior of the tumor and prognosis of the disease. In the present study, the frequency of BRAF V600E mutation was evaluated in Russian patients with melanocytic lesions, of which 41.25% were primary melanoma and 60% were melanocytic nevi. Melanoma patients with trunk localization were of younger age in the BRAF-positive group as compared with BRAF-negative patients. Immunohistochemical evaluations of Ki-67 expression, as well as matrix metalloproteinase-2, -9, were found to be equal in BRAF-positive and BRAF-negative tumors. MMP-2/MMP-9 immunoreactivity was observed in stromal and/or melanocytic cells both in melanoma and nevi patients. Besides tumor cells, MMP-9 expression was observed in lymphocytes in 27.2% of BRAF-positive and in 19.1% of BRAF-negative patients. Histopathological prognostic markers (Breslow thickness, mitotic index, ulceration, tumor infiltrating lymphocytes pattern) did not show any differences depending on BRAF V600E mutational status. The frequency of BRAF-positive melanomas in Russian cohort is similar to other Caucasian population rates. BRAF V600E mutation harboring tumors are more often observed in younger patients without specific features of morphological prognostic factors.
Collapse
Affiliation(s)
- M B Aksenenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.
| | - A K Kirichenko
- Department of Pathological Anatomy, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - T G Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.
| |
Collapse
|
27
|
BRAF mutation is associated with a specific cell type with features suggestive of senescence in ovarian serous borderline (atypical proliferative) tumors. Am J Surg Pathol 2015; 38:1603-11. [PMID: 25188864 DOI: 10.1097/pas.0000000000000313] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Serous borderline tumor also known as atypical proliferative serous tumor (APST) is the precursor of ovarian low-grade serous carcinoma (LGSC). In this study, we correlated the morphologic and immunohistochemical phenotypes of 71 APSTs and 18 LGSCs with the mutational status of KRAS and BRAF, the most common molecular genetic changes in these neoplasms. A subset of cells characterized by abundant eosinophilic cytoplasm (EC), discrete cell borders, and bland nuclei was identified in all (100%) 25 BRAF-mutated APSTs but in only 5 (10%) of 46 APSTs without BRAF mutations (P<0.0001). Among the 18 LGSCs, EC cells were found in only 2, and both contained BRAF mutations. The EC cells were present admixed with cuboidal and columnar cells lining the papillae and appeared to be budding from the surface, resulting in individual cells and clusters of detached cells "floating" above the papillae. Immunohistochemistry showed that the EC cells always expressed p16, a senescence-associated marker, and had a significantly lower Ki-67 labeling index than adjacent cuboidal and columnar cells (P=0.02). In vitro studies supported the interpretation that these cells were undergoing senescence, as the same morphologic features could be reproduced in cultured epithelial cells by ectopic expression of BRAF(V600E). Senescence was further established by markers such as SA-β-gal staining, expression of p16 and p21, and reduction in DNA synthesis. In conclusion, this study sheds light on the pathogenesis of this unique group of ovarian tumors by showing that BRAF mutation is associated with cellular senescence and the presence of a specific cell type characterized by abundant EC. This "oncogene-induced senescence" phenotype may represent a mechanism that impedes progression of APSTs to LGSC.
Collapse
|
28
|
Tone AA, McConechy MK, Yang W, Ding J, Yip S, Kong E, Wong KK, Gershenson DM, Mackay H, Shah S, Gilks B, Tinker AV, Clarke B, McAlpine JN, Huntsman D. Intratumoral heterogeneity in a minority of ovarian low-grade serous carcinomas. BMC Cancer 2014; 14:982. [PMID: 25523272 PMCID: PMC4320586 DOI: 10.1186/1471-2407-14-982] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022] Open
Abstract
Background Ovarian low-grade serous carcinoma (LGSC) has fewer mutations than ovarian high-grade serous carcinoma (HGSC) and a less aggressive clinical course. However, an overwhelming majority of LGSC patients do not respond to conventional chemotherapy resulting in a poor long-term prognosis comparable to women diagnosed with HGSC. KRAS and BRAF mutations are common in LGSC, leading to clinical trials targeting the MAPK pathway. We assessed the stability of targetable somatic mutations over space and/or time in LGSC, with a view to inform stratified treatment strategies and clinical trial design. Methods Eleven LGSC cases with primary and recurrent paired samples were identified (stage IIB-IV). Tumor DNA was isolated from 1–4 formalin-fixed paraffin-embedded tumor blocks from both the primary and recurrence (n = 37 tumor and n = 7 normal samples). Mutational analysis was performed using the Ion Torrent AmpliSeqTM Cancer Panel, with targeted validation using Fluidigm-MiSeq, Sanger sequencing and/or Raindance Raindrop digital PCR. Results KRAS (3/11), BRAF (2/11) and/or NRAS (1/11) mutations were identified in five unique cases. A novel, non-synonymous mutation in SMAD4 was observed in one case. No somatic mutations were detected in the remaining six cases. In two cases with a single matched primary and recurrent sample, two KRAS hotspot mutations (G12V, G12R) were both stable over time. In three cases with multiple samplings from both the primary and recurrent surgery some mutations (NRAS Q61R, BRAF V600E, SMAD4 R361G) were stable across all samples, while others (KRAS G12V, BRAF G469V) were unstable. Conclusions Overall, the majority of cases with detectable somatic mutations showed mutational stability over space and time while one of five cases showed both temporal and spatial mutational instability in presumed drivers of disease. Investigation of additional cases is required to confirm whether mutational heterogeneity in a minority of LGSC is a general phenomenon that should be factored into the design of clinical trials and stratified treatment for this patient population. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-982) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
HAYASHI YUKO, SASAKI HIDEFUMI, TAKESHITA SHO, NISHIKAWA RYUTARO, NISHIKAWA HIROSHI, ARAKAWA ATSUSHI, YAMASHITA YORIKO, TAKAHASHI SATORU, SUGIURA-OGASAWARA MAYUMI. Usefulness of immunohistochemistry for the detection of the BRAF V600E mutation in ovarian serous borderline tumors. Oncol Rep 2014; 32:1815-9. [DOI: 10.3892/or.2014.3442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 11/06/2022] Open
|
30
|
Wu YY, Ma TL, Ge ZJ, Lin J, Ding WL, Feng JK, Zhou SJ, Chen GC, Tan YF, Cui GX. JWA gene regulates PANC-1 pancreatic cancer cell behaviors through MEK-ERK1/2 of the MAPK signaling pathway. Oncol Lett 2014; 8:1859-1863. [PMID: 25202426 PMCID: PMC4156185 DOI: 10.3892/ol.2014.2329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the role of JWA gene in the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells and the effect on the MAPK signaling pathway. Human PANC-1 pancreatic cancer cells were cultured in vitro, and small interfering RNA (siRNA) was designed for the JWA gene. The siRNA was transfected into PANC-1 cells. Subsequently, the cell proliferation was measured by MTT assay; cell apoptosis was detected by analyzing BAX and Bcl-2 protein expression; cell migration and invasion were measured using Transwell® chambers; and the protein expression of JWA and ERK1/2, JNK and p38 and their phosphorylated forms were measured by western blotting. By utilizing the MTT assay, the results showed that when JWA protein expression was inhibited, the proliferation of PANC-1 cells was enhanced. In addition, the expression of apoptosis-associated protein (AAP) BAX was substantially decreased, while the expression of the apoptosis inhibitor gene, Bcl-2, was significantly enhanced. Using Transwell chambers, it was found that the number of penetrating PANC-1 cells was significantly increased after transfection with JWA siRNA, suggesting that the migration and invasion of the cells was substantially increased. By studying the association between JWA and the MAPK pathway in PANC-1 cells, it was found that the expression of p-ERK1/2 of the MAPK pathway was significantly downregulated following JWA siRNA transfection. However, the expression levels of ERK1/2, JNK, p38, p-JNK and p-p38 showed no significant differences. In conclusion, it was shown that JWA affects the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells which could be attributed to effects on the expression of ERK1/2 in the MAPK pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Tie-Liang Ma
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Zhi-Jun Ge
- Department of Critical Care Medicine, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jie Lin
- Department of Cardiac and Thoracic Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Wei-Liang Ding
- Central Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jia-Ke Feng
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Su-Jun Zhou
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Guo-Chang Chen
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Yong-Fei Tan
- Department of Cardiac and Thoracic Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Guo-Xing Cui
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
31
|
Zannoni GF, Improta G, Chiarello G, Pettinato A, Petrillo M, Scollo P, Scambia G, Fraggetta F. Mutational status of KRAS, NRAS, and BRAF in primary clear cell ovarian carcinoma. Virchows Arch 2014; 465:193-8. [PMID: 24889043 DOI: 10.1007/s00428-014-1599-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) is a subtype of epithelial ovarian cancer with characteristic biological features and aggressive clinical behavior. OCCCs show a pattern of gene mutations different from other type I ovarian malignancies, notably a higher frequency of PIK3CA mutations. In low grade serous ovarian cancer, KRAS and BRAF mutations are frequent, but little data are available on the mutational status of these genes in OCCCs. To clarify this issue, we designed a clinicopathological study with the aim to establish the incidence of KRAS, NRAS, and BRAF hot spot mutations in OCCC. Between December 2006 and June 2012, 22 patients with a proven diagnosis of OCCC were admitted to our Institutions. In all cases, final diagnosis was established according to FIGO and WHO criteria. All women received complete surgical staging. The PyroMark Q24 system (Qiagen GmbH, Hilden, Germany) was used for pyrosequencing analysis of KRAS, NRAS, and BRAF hot spot regions on 2.5-μm sections of formalin-fixed paraffin-embedded tissue from primary OCCC. Pyrosequencing analysis of KRAS, NRAS, and BRAF hot spot regions revealed the presence of mutations only at codon 12 in exon 2 of KRAS in 3 of 22 (14 %) cases. We found no mutations in the hot spot regions of NRAF (exons 2, 3, 4) or BRAF (exon 15). The median age of women with a KRAS mutated OCCC was 74 years. These OCCC were unilateral FIGO stage IA lesions in two cases associated with foci of endometriosis. We conclude that in 14 % of OCCCs, a KRAS mutation occurs in codon 2 exon 2. NRAS and BRAF mutations were not found.
Collapse
Affiliation(s)
- Gian Franco Zannoni
- Department of Pathology, Catholic University of the Sacred Heart, Largo A. Gemelli, 8, Rome, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol 2014; 133:128-37. [DOI: 10.1016/j.ygyno.2014.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
|
33
|
McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M, O'Donovan N, Stordal B. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies. Front Oncol 2014; 4:40. [PMID: 24639951 PMCID: PMC3944788 DOI: 10.3389/fonc.2014.00040] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/17/2014] [Indexed: 12/18/2022] Open
Abstract
The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance.
Collapse
Affiliation(s)
- Martina McDermott
- National Institute for Cellular Biotechnology, Dublin City University , Dublin , Ireland ; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC , USA
| | - Alex J Eustace
- National Institute for Cellular Biotechnology, Dublin City University , Dublin , Ireland ; Department of Medical Oncology, Beaumont Hospital, Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Steven Busschots
- Department of Histopathology, St James' Hospital, Trinity College Dublin , Dublin , Ireland
| | - Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University , Dublin , Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University , Dublin , Ireland ; Department of Medical Oncology, St Vincent's University Hospital , Dublin , Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University , Dublin , Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University , Dublin , Ireland
| | - Britta Stordal
- National Institute for Cellular Biotechnology, Dublin City University , Dublin , Ireland ; Department of Histopathology, St James' Hospital, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
34
|
Ricci F, Broggini M, Damia G. Revisiting ovarian cancer preclinical models: Implications for a better management of the disease. Cancer Treat Rev 2013; 39:561-8. [DOI: 10.1016/j.ctrv.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/20/2023]
|
35
|
Abstract
BACKGROUND Genetic analyses have identified BRAF V600E mutations in a subset of ovarian carcinomas. The aim of this study was to investigate the expression of BRAF V600E aberrant protein using a novel mutation-specific antibody in epithelial ovarian tumors. METHODS We immunohistochemically analyzed expression of V600E-mutant BRAF protein in archival formalin-fixed, paraffin-embedded tissue specimens of 142 epithelial ovarian tumors [98 invasive carcinomas and 44 tumors of low malignant potential (LMP)] using monoclonal antibody VE1. BRAF mutation status was validated in all immunopositive cases and in 6 immunonegative control cases by gene sequencing. RESULTS We found anti-BRAF V600E immunolabeling in 4 serous carcinomas and 5 serous LMP. Presence of a BRAF V600E mutation was confirmed by sequencing analysis in 6 of the 9 cases (3 LMP tumors, 3 low-grade carcinomas). In 2 partially VE1-positive tumors deriving from 1 patient (1 LMP and 1 contralateral invasive high-grade serous carcinoma), genetic analysis repeatedly resulted in BRAF wild-type, arguing for false-positive immunostaining results. One immunopositive case was repeatedly inconclusive in genetic analysis. In all 6 genetically confirmed cases, BRAF V600E mutant protein expression was homogenous throughout the tumor tissue. CONCLUSIONS We found BRAF V600E mutations in 13% (4/31) of serous LMP and 5% (3/62) of invasive serous carcinomas. No BRAF V600E mutations were detected in nonserous epithelial ovarian tumors. For reliable assessment of the BRAF V600E status in ovarian epithelial tumor samples, an integrated approach using immunohistochemistry and genetic analysis seems advisable, as both methods lead to incorrect results in some cases.
Collapse
|
36
|
Boyd J, Luo B, Peri S, Wirchansky B, Hughes L, Forsythe C, Wu H. Whole exome sequence analysis of serous borderline tumors of the ovary. Gynecol Oncol 2013; 130:560-4. [PMID: 23774303 DOI: 10.1016/j.ygyno.2013.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Serous borderline tumor (SBT) is a unique histopathologic entity of the ovary, believed to be intermediate between benign cystadenoma and invasive low-grade serous carcinoma. While somatic mutations in the KRAS or BRAF, and rarely ERBB2, genes have been well characterized in SBTs, other genetic alterations have not been described. Toward a more comprehensive understanding of the molecular genetic architecture of SBTs, we undertook whole exome sequencing of this tumor type. METHODS Following pathologic review and laser capture microdissection to enrich for tumor cells, whole exomes were prepared from DNA of two independent SBTs and subjected to massively parallel DNA sequencing. RESULTS Both tumors contained an activating mutation of the BRAF gene. A total of 15 additional somatic mutations were identified, nine in one tumor and six in the other. Eleven were missense mutations and four were nonsense or deletion mutations. Fourteen of the 16 genes found to be mutated in this study have been reported to be mutated in other cancers. Furthermore, 12 of these genes are mutated in ovarian cancers. The FBXW7 and KIAA1462 genes are noteworthy candidates for a pathogenic role in serous borderline tumorigenesis. CONCLUSIONS These findings suggest that a very small number of somatic genetic mutations are characteristic of SBTs of the ovary, thus supporting their classification as a relatively genetically stable tumor type. The mutant genes described herein represent novel candidates for the pathogenesis of ovarian SBT.
Collapse
Affiliation(s)
- Jeff Boyd
- Cancer Genome Institute, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chung EJ, Urick ME, Kurshan N, Shield W, Asano H, Smith PD, Scroggins BS, Burkeen J, Citrin DE. MEK1/2 inhibition enhances the radiosensitivity of cancer cells by downregulating survival and growth signals mediated by EGFR ligands. Int J Oncol 2013; 42:2028-36. [PMID: 23588995 PMCID: PMC3699614 DOI: 10.3892/ijo.2013.1890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
The inhibition of the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway through the suppression of mutated Ras or MAPK/extracellular signal-regulated kinase 1/2 (MEK1/2) has been shown to sensitize tumor cells to ionizing radiation (IR). The molecular mechanisms of this sensitization however, are not yet fully understood. In this study, we investigated the role of transforming growth factor-α (TGF-α) in the radiosensitizing effects of selumetinib, a selective inhibitor of MEK1/2. The expression of epidermal growth factor receptor (EGFR) ligands was assessed by ELISA in both Ras wild-type and Ras mutant cells that were exposed to radiation with or without selumetinib. The effects of selumetinib on the TGF-α/EGFR signaling cascade in response to radiation were examined by western blot analysis, clonogenic assay and by determing the yield of mitotic catastrophe. The treatment of cells with selumetinib reduced the basal and IR-induced secretion of TGF-α in both Ras wild-type and Ras mutant cell lines in vitro and in vivo. The reduction of TGF-α secretion was accompanied with a reduction in phosphorylated tumor necrosis factor-α converting enzyme (TACE) in the cells treated with selumetinib with or without IR. The treatment of cells with selumetinib with or without IR inhibited the phosphorylation of EGFR and check-point kinase 2 (Chk2), and reduced the expression of survivin. Supplementation with exogenous TGF-α partially rescued the selumetinib-treated cells from IR-induced cell death, restored EGFR and Chk2 phosphorylation and increased survivin expression. These data suggest that the inhibition of MEK1/2 with selumetinib may provide a mechanism to sensitize tumor cells to IR in a fashion that prevents the activation of the TGF-α autocrine loop following IR.
Collapse
Affiliation(s)
- Eun Joo Chung
- Section of Translational Radiation Oncology, Radiation Oncology Branch, National Institutes of Health, Bethesda 20892, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sundov D, Caric A, Mrklic I, Gugic D, Capkun V, Hofman ID, Mise BP, Tomic S. P53, MAPK, topoisomerase II alpha and Ki67 immunohistochemical expression and KRAS/BRAF mutation in ovarian serous carcinomas. Diagn Pathol 2013; 8:21. [PMID: 23388101 PMCID: PMC3570323 DOI: 10.1186/1746-1596-8-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/30/2013] [Indexed: 12/12/2022] Open
Abstract
Background We investigated the immunohistochemical expression of p53, MAPK, topoisomerase II alpha (topoII alpha) and Ki67 in ovarian serous carcinomas (OSCs) along with mutational analysis for KRAS and BRAF. Methods Eighty one cases of OSCs were reviewed and examined immunohistochemically using antibodies against p53, MAPK, topoII alpha and Ki67. Staining was evaluated as a percentage of immunopositive cells with cut-off levels at 10% for p53 and topoII alpha, and 5% for MAPK. The Ki67 immunoexpression was assessed by means of Olympus Image Analysis System as a percentage of immunopositive cells in 1000 tumor cells. KRAS and BRAF mutational analysis was performed on 73 available microdissected samples. Results Of 81 cases of OSCs 13.6% were of low-grade and 86.4% were of high-grade morphology. In the high-grade group there was a significantly higher immunoexpression of p53 (P < 0.001) and topoII alpha (P = 0.001), with Ki67 median 56.5 vs. 19 in low-grade group (P < 0.001). The difference in immunoexpression of active MAPK between low- and high-grade group was also significant (P = 0.003). MAPK positive immunostaining was detected in 63.6% of low-grade vs. 17.1% of high-grade OSCs. The frequency of KRAS mutation was significantly higher in low-grade as compared to high-grade group (P = 0.006). None of the samples had BRAF mutation. In addition, we detected positive MAPK immunoexpression in 13/59 samples with wild-type KRAS, suggesting that activation of MAPK pathway is not ultimately related either to KRAS or BRAF mutation. Seven morphologically high-grade samples (11.7%) showed both KRAS mutation and p53 immunopositivity. Conclusions Although this study is limited by its humble number of low-grade samples, our data fit the proposed dualistic pathway of ovarian carcinogenesis. Mutational analysis for KRAS and BRAF discloses some possible interactions between different tumorigenic pathways of low- and high-grade carcinomas. Immunohistochemical staining for MAPK was not sufficiently sensitive, nor specific, to precisely predict the KRAS mutation. However, it appears to be quite reliable in ruling out a KRAS mutation if the staining is negative. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9283563368804632 Zusammenfassung Hintergrund Wir untersuchten die Immunohistochemische Expression der p53, MAPK, topoisomerase II alpha (topoII alpha) und Ki67 in Ovarialkarzinomen (OSCs) anbei mit Mutationsanalyse für KRAS und BRAF. Methode 81 OSCs Fälle wurden analysiert und Immunohistochemisch untersucht mit Antikörper gegen p53, MAPK, topoII alpha und Ki67. Die Färbung war ausgewertet als der Prozent von immunopositiven Zellen mit den “cut-of” Niveau an 10% für p53 und topoII alpha und 5% für MAPK. Die Ki67 Expression war bewertet mittels Olympus Image Analysis System als der Prozent von immunopositiven Zellen in 1000 Tumorzellen. KRAS and BRAF Mutationsanalyse wurde in 73 verfügbaren microdissections Stichproben aufgeführt. Ergebnisse Von 81 OSCs Fälle 13.6% zeigte “low-grade” und 86.4% “high-grade” Morphologie. In der “high-grade” Gruppe war eine statistisch bedeutende höhere Expression von p53 (P < 0.001) und topoII alpha (P = 0.001) mit Ki67 median von 56.5 im Gegensatz zu 19 in der “low-grade” Gruppe (P < 0.001). Die Differenz in Immunoexpression von aktiver MAPK zwischen der “low-grade” und “high-grade” Gruppe war statistisch bedeutend (P = 0.003). MAPK positive Expression war in 63.6% der “low-grade” im Gegensatz von 17.1% der “high-grade” Karzinoms bemerkt. Die Häufigkeit der KRAS Mutation war bedeutend höher in “low-grade” im Verglich zu der “high-grade” Gruppe (P = 0.006). Keiner der Stichproben hate BRAF Mutation. Wir haben auch eine positive MAPK Expression in 13/59 der Stichproben mit “wild-type” KRAS bemerkt, was sugeriert das die Aktivation des MAPK Pfads ist nicht letztmalig mit KRAS oder BRAF verbunden. Sieben der “high-grade” Stichproben (11.7%) waren KRAS Mutation und p53 Expression positive. Schlussworte Obwohl diese Studie mit bescheiden Nummer von “low-grade” Stichproben limitiert ist, unsere Daten passen in das dualistische Modell von Ovarial Karzinogenesis. Mutationsanalyse für KRAS und BRAF enthüllen einige mögliche Interaktionen zwischen verschieden tumorigenen Wege von “low”- and “high-grade” Karcinomen. Die Immunohistochemische Expression für MAPK war nicht empfindlich oder spezifisch genüg um den KRAS mutations Status des Tumor genau vorauszusagen. Es scheint das die MAPK Expression ziemlich verlässlich ist in ausschließen der KRAS Mutation, wenn die Expression negative ist.
Collapse
Affiliation(s)
- Dinka Sundov
- Department of Pathology, Forensic Medicine and Cytology, Clinical Hospital Center Split, School of Medicine, University of Split, Split, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Stordal B, Timms K, Farrelly A, Gallagher D, Busschots S, Renaud M, Thery J, Williams D, Potter J, Tran T, Korpanty G, Cremona M, Carey M, Li J, Li Y, Aslan O, O'Leary JJ, Mills GB, Hennessy BT. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol Oncol 2013; 7:567-79. [PMID: 23415752 DOI: 10.1016/j.molonc.2012.12.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022] Open
Abstract
Mutations in BRCA1/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1/2 deleterious mutations 1/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective pressure against BRCA1/2 in cell culture similar to the selective pressure seen in the clinic after treatment with chemotherapy. PARP inhibitors may be useful in patients with BRCA1 deleterious mutations or gene methylation.
Collapse
Affiliation(s)
- Britta Stordal
- Department of Histopathology, St James' Hospital and Trinity College Dublin, Dublin 8, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rose HM, Stuiver M, Thongwichian R, Theillet FX, Feller SM, Selenko P. Quantitative NMR analysis of Erk activity and inhibition by U0126 in a panel of patient-derived colorectal cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1396-401. [PMID: 23360766 DOI: 10.1016/j.bbapap.2013.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/01/2023]
Abstract
We comparatively analyzed the basal activity of extra-cellular signal-regulated kinase (Erk1/2) in lysates of 10 human colorectal cancer cell lines by semi-quantitative Western blotting and time-resolved NMR spectroscopy. Both methods revealed heterogeneous levels of endogenous Erk1/2 activities in a highly consistent manner. Upon treatment with U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK) acting upstream of Erk1/2, Western-blotting and NMR congruently reported specific modulations of cellular phospho-Erk levels that translated into reduced kinase activities. Results obtained in this study highlight the complementary nature of antibody- and NMR-based phospho-detection techniques. They further exemplify the usefulness of time-resolved NMR measurements in providing fast and quantitative readouts of kinase activities and kinase inhibitor efficacies in native cellular environments. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Honor May Rose
- In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology FMP Berlin, Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Bösmüller H, Fischer A, Pham DL, Fehm T, Capper D, von Deimling A, Bonzheim I, Staebler A, Fend F. Detection of the BRAF V600E mutation in serous ovarian tumors: a comparative analysis of immunohistochemistry with a mutation-specific monoclonal antibody and allele-specific PCR. Hum Pathol 2012; 44:329-35. [PMID: 23089489 DOI: 10.1016/j.humpath.2012.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 10/27/2022]
Abstract
Mutations of components of the mitogen-activated protein kinase pathway, mainly BRAF, are common in serous ovarian borderline tumors, whereas high-grade serous ovarian carcinomas rarely show this feature. With the advent of specific kinase inhibitors active against BRAF-mutated cancers, rapid and sensitive detection of the BRAF V600E, by far the most common mutation of this gene, is of great practical relevance. Currently, BRAF mutations are detected by DNA-based techniques. Recently, a monoclonal antibody (VE1) specific for the BRAF V600E protein suitable for archival tissues has been described. In this study, we compared detection of the V600E mutation in serous ovarian tumors by VE1 immunostaining and by allele-specific polymerase chain reaction. All 141 cases of high-grade serous ovarian cancer showed negative or rarely weak, diffuse background VE1 immunostaining, and BRAF wild type was confirmed by molecular analysis in all tested cases. In contrast, 1 (14%) of 7 low-grade serous carcinomas and 22 (71%) of 31 serous borderline tumors revealed moderate to strong VE1 positivity. Immunostaining was clearly evaluable in all cases with sufficient tumor cells, and only rare cases with narrow cytoplasm were difficult to interpret. The V600E mutation was confirmed by allele-specific polymerase chain reaction and sequencing in all VE1-positive cases. Two VE1-positive cases with low epithelial cell content required repeat microdissection to confirm the presence of the mutation. Immunohistochemistry with the VE1 antibody is a specific and sensitive tool for detection of the BRAF V600E mutation in serous ovarian tumors and may provide a practical screening test, especially in tumor samples with low epithelial content.
Collapse
Affiliation(s)
- Hans Bösmüller
- Department of Pathology, Krankenhaus Barmherzige Schwestern Linz, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang YI, Lee KT, Park HJ, Kim TJ, Choi YS, Shih IM, Choi JH. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway. Carcinogenesis 2012; 33:2488-98. [PMID: 23027625 DOI: 10.1093/carcin/bgs302] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Paclitaxel (Taxol) is currently used as the front-line chemotherapeutic agent for several cancers including ovarian carcinoma; however, the drug frequently induces drug resistance through multiple mechanisms. The new strategy of using natural compounds in combination therapies is highly attractive because those compounds may enhance the efficacy of chemotherapy. In this study, we found that tectorigenin, an isoflavonoid isolated from flower of Pueraria thunbergiana, enhanced the growth-inhibitory effect of paclitaxel in paclitaxel-resistant ovarian cancer cells (MPSC1(TR), A2780(TR) and SKOV3(TR)) as well as their naive counterparts. The combination of tectorigenin with paclitaxel resulted in a synergistic apoptosis compared with either agent alone through activation of caspases-3, -8 and -9. Treatment with tectorigenin inhibited the nuclear translocation of NFκB and the expression of NFκB-dependent genes such as FLIP, XIAP, Bcl-2, Bcl-xL and COX-2, which are known to be associated with chemoresistance. In addition, the tectorigenin-paclitaxel combination inhibited the phosphorylation of IκB and IKK and the activation of Akt in paclitaxel-resistant cancer cells. Moreover, tectorigenin-paclitaxel-induced cell growth inhibition was enhanced by pretreatment with the Akt inhibitor LY294002 or overexpression of the dominant negative Akt (Akt-DN), but reduced by overexpression of constitutively activated Akt (Akt-Myr). Furthermore, we found that Akt-Myr, at least in part, reversed tectorigenin-paclitaxel-induced nuclear translocation of NFκB and the phosphorylation of IκB and IKK. These data suggest that tectorigenin could sensitize paclitaxel-resistant human ovarian cancer cells through inactivation of the Akt/IKK/IκB/NFκB signaling pathway, and promise a new intervention to chemosensitize paclitaxel-induced cytotoxicity in ovarian cancer.
Collapse
Affiliation(s)
- Yeong-In Yang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Ovarian Cancer: Advances in First-Line Treatment Strategies with a Particular Focus on Anti-Angiogenic Agents. Curr Oncol Rep 2012; 14:509-18. [DOI: 10.1007/s11912-012-0274-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Cheng JC, Auersperg N, Leung PCK. TGF-beta induces serous borderline ovarian tumor cell invasion by activating EMT but triggers apoptosis in low-grade serous ovarian carcinoma cells. PLoS One 2012; 7:e42436. [PMID: 22905131 PMCID: PMC3419689 DOI: 10.1371/journal.pone.0042436] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/09/2012] [Indexed: 12/02/2022] Open
Abstract
Apoptosis in ovarian surface epithelial (OSE) cells is induced by transforming growth factor-beta (TGF-β). However, high-grade serous ovarian carcinomas (HGC) are refractory to the inhibitory functions of TGF-β; their invasiveness is up-regulated by TGF-β through epithelial-mesenchymal transition (EMT) activation. Serous borderline ovarian tumors (SBOT) have been recognized as distinct entities that give rise to invasive low-grade serous carcinomas (LGC), which have a relatively poor prognosis and are unrelated to HGC. While it is not fully understood how TGF-β plays disparate roles in OSE cells and its malignant derivative HGC, its role in SBOT and LGC remains unknown. Here we demonstrate the effects of TGF-β on cultured SBOT3.1 and LGC-derived MPSC1 cells, which express TGF-β type I and type II receptors. TGF-β treatment induced the invasiveness of SBOT3.1 cells but reduced the invasiveness of MPSC1 cells. The analysis of apoptosis, which was assessed by cleaved caspase-3 and trypan blue exclusion assay, revealed TGF-β-induced apoptosis in MPSC1, but not SBOT3.1 cells. The pro-apoptotic effect of TGF-β on LGC cells was confirmed in another immortalized LGC cell line ILGC. TGF-β treatment led to the activation of Smad3 but not Smad2. The specific TβRI inhibitor SB431542 and TβRI siRNA abolished the SBOT3.1 invasion induced by TGF-β, and it prevented TGF-β-induced apoptosis in MPSC1 cells. In SBOT3.1 cells, TGF-β down-regulated E-cadherin and concurrently up-regulated N-cadherin. TGF-β up-regulated the expression of the transcriptional repressors of E-cadherin, Snail, Slug, Twist and ZEB1. In contrast, co-treatment with SB431542 and TβRI depletion by siRNA abolished the effects of TGF-β on the relative cadherin expression levels and that of Snail, Slug, Twist and ZEB1 as well. This study demonstrates dual TGF-β functions: the induction of SBOT cell invasion by EMT activation and apoptosis promotion in LGC cells.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nelly Auersperg
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C. K. Leung
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
45
|
Diaz-Padilla I, Malpica AL, Minig L, Chiva LM, Gershenson DM, Gonzalez-Martin A. Ovarian low-grade serous carcinoma: A comprehensive update. Gynecol Oncol 2012; 126:279-85. [DOI: 10.1016/j.ygyno.2012.04.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 12/28/2022]
|
46
|
Abstract
Advanced-stage epithelial ovarian cancer remains a highly lethal malignancy, despite effective cytoreductive surgery and primary chemotherapy. Phase III studies have evaluated multidrug combinations, dose-dense weekly scheduling, intraperitoneal delivery, neoadjuvant chemotherapy, maintenance therapy, and targeting of angiogenesis. Incremental gains in median progression-free or overall survival have been achieved, but without an impact on overall mortality. Data support intraperitoneal cisplatin, dose-dense weekly paclitaxel, or neoadjuvant chemotherapy with interval cytoreduction in appropriate patients. Encouraging data have emerged using antiangiogenic agents, but with questions regarding optimal timing and patient selection. The use of 3-drug combinations or maintenance chemotherapy is not supported.
Collapse
|
47
|
Zhou NN, Tang J, Chen WD, Feng GK, Xie BF, Liu ZC, Yang D, Zhu XF. Houttuyninum, an active constituent of Chinese herbal medicine, inhibits phosphorylation of HER2/neu receptor tyrosine kinase and the tumor growth of HER2/neu-overexpressing cancer cells. Life Sci 2012; 90:770-5. [PMID: 22525372 DOI: 10.1016/j.lfs.2012.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/15/2012] [Accepted: 03/28/2012] [Indexed: 02/03/2023]
Abstract
AIMS The overexpression of HER2/neu receptor plays a key role in tumorigenesis and tumor progression. Small molecules targeting HER2/neu have therapeutic value in cancers that overexpress HER2. In this present study, the effect of houttuyninum, a component in the Chinese herbal medicine Houttuynia cordata Thunb, on HER2/neu tyrosine phosphorylation and its in vivo antitumour activity was investigated. MAIN METHODS The phosphorylation and expression of proteins were determined by Western blot analysis. The MTT assay was employed to examine the inhibition of cell proliferation in vitro. Xenografts were established in nude mice for evaluating the antitumour activity of houttuyninum in vivo. KEY FINDINGS Houttuyninum inhibited phosphorylation of HER2 in a dose-dependent manner with an IC50 of 5.52 μg/ml without reducing HER2/neu protein expression in MDA-MB-453 cells. Houttuyninum also inhibited the activation of ERK1/2 and AKT, downstream molecules in the HER2/neu-mediated signal transduction pathway. In contrast, tyrosine phosphorylation of EGFR was unaffected when the concentration of houttuyninum was increased to 40 μg/ml in both A431 cells and MDA-MB-468 cells. Additionally, houttuyninum preferentially inhibited the growth of MDA-MB-453 cells that overexpressed HER2/neu; the MDA-MB-468 cells that overexpress EGFR remained unaffected. Administration of houttuyninum in vivo resulted in a significant reduction of phosphorylated HER2 levels and in tumor volumes of the BT474 and N87 xenografts, which both overexpress HER2/neu. SIGNIFICANCE Our findings showed that houttuyninum can inhibit the HER2/neu signalling pathway and the tumor growth of cancer cells that overexpress HER2/neu. This drug may provide therapeutic value in the treatment of cancers that involve overexpression of HER2/neu.
Collapse
Affiliation(s)
- Ning-Ning Zhou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Heinrich EL, Lee W, Lu J, Lowy AM, Kim J. Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J Transl Med 2012; 10:68. [PMID: 22472349 PMCID: PMC3342892 DOI: 10.1186/1479-5876-10-68] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/02/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previously assumed to be a select ligand for chemokine receptor CXCR4, chemokine CXCL12 is now known to activate both CXCR4 and CXCR7. However, very little is known about the co-expression of these receptors in cancer cells. METHODS We used immunohistochemistry to determine the extent of co-expression in pancreatic cancer tissue samples and immunoblotting to verify expression in pancreatic cancer cell lines. In cell culture studies, siRNA was used to knock down expression of CXCR4, CXCR7, K-Ras and β-arrestin -2 prior to stimulating the cells with CXCL12. Activation of the mitogen-activated protein kinase pathway (MAPK) was assessed using both a Raf-pull down assay and western blotting. The involvement of the receptors in CXCL12-mediated increases in cell proliferation was examined via an ATP-based proliferation assay. RESULTS First, we discovered frequent CXCR4/CXCR7 co-expression in human pancreatic cancer tissues and cell lines. Next, we observed consistent increases in ERK1/2 phosphorylation after exposure to CXCL12 or CXCL11, a CXCR7 agonist, in pancreatic cancer cell lines co-expressing CXCR4/CXCR7. To better characterize the receptor-mediated pathway(s), we knocked down CXCR4 or CXCR7, exposed the cells to CXCL12 and examined subsequent effects on ERK1/2. We observed that CXCR7 mediates the CXCL12-driven increase in ERK1/2 phosphorylation. Knockdown of CXCR4 expression however, decreased levels of K-Ras activity. Conversely, KRAS knockdown greatly reduced CXCL12-mediated increases in ERK1/2 phosphorylation. We then evaluated the role of β-arrestin-2, a protein directly recruited by chemokine receptors. We observed that β-arrestin-2 knockdown also inhibited increases in ERK1/2 phosphorylation mediated by both CXCR4 and CXCR7. Finally, we investigated the mechanism for CXCL12-enhanced cell proliferation and found that either receptor can modulate cell proliferation. CONCLUSIONS In summary, our data demonstrate that CXCR4 and CXCR7 are frequently co-expressed in human pancreatic cancer tissues and cell lines. We show that β-arrestin-2 and K-Ras dependent pathways coordinate the transduction of CXCL12 signals. Our results suggest that the development of therapies based on inhibiting CXCL12 signaling to halt the growth of pancreatic cancer should be focused at the ligand level in order to account for the contributions of both receptors to this signaling pathway.
Collapse
Affiliation(s)
- Eileen L Heinrich
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
49
|
EGF-induced EMT and invasiveness in serous borderline ovarian tumor cells: a possible step in the transition to low-grade serous carcinoma cells? PLoS One 2012; 7:e34071. [PMID: 22479527 PMCID: PMC3316602 DOI: 10.1371/journal.pone.0034071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/21/2012] [Indexed: 01/08/2023] Open
Abstract
In high-grade ovarian cancer cultures, it has been shown that epidermal growth factor (EGF) induces cell invasion by activating an epithelial-mesenchymal transition (EMT). However, the effect of EGF on serous borderline ovarian tumors (SBOT) and low-grade serous carcinomas (LGC) cell invasion remains unknown. Here, we show that EGF receptor (EGFR) was expressed, that EGF treatment increased cell migration and invasion in two cultured SBOT cell lines, SBOT3.1 and SV40 large T antigen-infected SBOT cells (SBOT4-LT), and in two cultured LGC cell lines, MPSC1 and SV40 LT/ST-immortalized LGC cells (ILGC). However, EGF induced down-regulation of E-cadherin and concurrent up-regulation of N-cadherin in SBOT cells but not in LGC cells. In SBOT cells, the expression of the transcriptional repressors of E-cadherin, Snail, Slug and ZEB1 were increased by EGF treatment. Treatment with EGF led to the activation of the downstream ERK1/2 and PI3K/Akt. The MEK1 inhibitor PD98059 diminished the EGF-induced cadherin switch and the up-regulation of Snail, Slug and ZEB1 and the EGF-mediated increase in SBOT cell migration and invasion. The PI3K inhibitor LY294002 had similar effects, but it could not block the EGF-induced up-regulation of N-cadherin and ZEB1. This study demonstrates that EGF induces SBOT cell migration and invasion by activating EMT, which involves the activation of the ERK1/2 and PI3K/Akt pathways and, subsequently, Snail, Slug and ZEB1 expression. Moreover, our results suggest that there are EMT-independent mechanisms that mediate the EGF-induced LGC cell migration and invasion.
Collapse
|
50
|
Sheu JJC, Guan B, Tsai FJ, Hsiao EYT, Chen CM, Seruca R, Wang TL, Shih IM. Mutant BRAF induces DNA strand breaks, activates DNA damage response pathway, and up-regulates glucose transporter-1 in nontransformed epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1179-1188. [PMID: 22227015 PMCID: PMC4429179 DOI: 10.1016/j.ajpath.2011.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/17/2011] [Accepted: 11/14/2011] [Indexed: 02/03/2023]
Abstract
Although the oncogenic functions of activating BRAF mutations have been clearly demonstrated in human cancer, their roles in nontransformed epithelial cells remain largely unclear. Investigating the cellular response to the expression of mutant BRAF in nontransformed epithelial cells is fundamental to the understanding of the roles of BRAF in cancer pathogenesis. In this study, we used two nontransformed cyst108 and RK3E epithelial cell lines as models in which to compare the phenotypes of cells expressing BRAF(WT) and BRAF(V600E). We found that transfection of the BRAF(V600E), but not the BRAF(WT), expression vector suppressed cellular proliferation and induced apoptosis in both cell types. BRAF(V600E) generated reactive oxygen species, induced DNA double-strand breaks, and caused subsequent DNA damage response as evidenced by an increased number of pCHK2 and γH2AX nuclear foci as well as the up-regulation of pCHK2, p53, and p21. Because BRAF and KRAS (alias Ki-ras) mutations have been correlated with GLUT1 up-regulation, which encodes glucose transporter-1, we demonstrated here that expression of BRAF(V600E), but not BRAF(WT), was sufficient to up-regulate GLUT1. Taken together, our findings provide new insights into mutant BRAF-induced oncogenic stress that is manifested by DNA damage and growth arrest by activating the pCHK2-p53-p21 pathway in nontransformed cells, while it also confers tumor-promoting phenotypes such as the up-regulation of GLUT1 that contributes to enhanced glucose metabolism that characterizes tumor cells.
Collapse
Affiliation(s)
- Jim Jinn-Chyuan Sheu
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Bin Guan
- Departments of Pathology, Oncology, Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Erin Yi-Ting Hsiao
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Raquel Seruca
- Institute of Molecular Pathology and Immunology, The University of Porto, Porto, Portugal
| | - Tian-Li Wang
- Departments of Pathology, Oncology, Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ie-Ming Shih
- Departments of Pathology, Oncology, Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| |
Collapse
|