1
|
Analysis of Asymmetric Cell Division Using Human Neuroblastoma Cell Lines as a Model System. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma is one of the most common childhood solid tumors and develops from neural stem cells that normally comprise the embryonic structure termed the neural crest. Human neuroblastoma cell lines have special properties as they exhibit cell growth and are induced to become mature neurons by drugs such as retinoid. Therefore, we examined asymmetric cell division (ACD) using human neuroblastoma cells as an ACD model, and confirmed that ACD in human cancer cells is evolutionally conserved. Furthermore, we demonstrated that MYCN is involved in cell division fate. We introduce the brief history of ACD study using neuroblastoma cell lines and discuss why human neuroblastoma cells are an ideal model system for clarifying the mechanism of ACD.
Collapse
|
2
|
Pujals M, Resar L, Villanueva J. HMGA1, Moonlighting Protein Function, and Cellular Real Estate: Location, Location, Location! Biomolecules 2021; 11:1334. [PMID: 34572547 PMCID: PMC8468999 DOI: 10.3390/biom11091334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the High Mobility Group A1 (HMGA1) chromatin remodeling protein is upregulated in diverse cancers where high levels portend adverse clinical outcomes. Until recently, HMGA1 was assumed to be a nuclear protein exerting its role in cancer by transcriptionally modulating gene expression and downstream signaling pathways. However, the discovery of an extracellular HMGA1-RAGE autocrine loop in invasive triple-negative breast cancer (TNBC) cell lines implicates HMGA1 as a "moonlighting protein" with different functions depending upon cellular location. Here, we review the role of HMGA1, not only as a chromatin regulator in cancer and stem cells, but also as a potential secreted factor that drives tumor progression. Prior work found that HMGA1 is secreted from TNBC cell lines where it signals through the receptor for advanced glycation end products (RAGE) to foster phenotypes involved in tumor invasion and metastatic progression. Studies in primary TNBC tumors also suggest that HMGA1 secretion associates with distant metastasis in TNBC. Given the therapeutic potential to target extracellular proteins, further work to confirm this role in other contexts is warranted. Indeed, crosstalk between nuclear and secreted HMGA1 could change our understanding of tumor development and reveal novel therapeutic opportunities relevant to diverse human cancers overexpressing HMGA1.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
| | - Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Medicine (Hematology), Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology, Cellular and Molecular Medicine and Human Genetics Graduate Programs, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
3
|
El-Soussi S, Hanna R, Semaan H, Khater AR, Abdallah J, Abou-Kheir W, Abou-Antoun T. A Novel Therapeutic Mechanism of Imipridones ONC201/ONC206 in MYCN-Amplified Neuroblastoma Cells via Differential Expression of Tumorigenic Proteins. Front Pediatr 2021; 9:693145. [PMID: 34422720 PMCID: PMC8373200 DOI: 10.3389/fped.2021.693145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 01/07/2023] Open
Abstract
Neuroblastoma is the most common extracranial nervous system tumor in children. It presents with a spectrum of clinical prognostic measures ranging from benign growths that regress spontaneously to highly malignant, treatment evasive tumors affiliated with increased mortality rates. MYCN amplification is commonly seen in high-risk neuroblastoma, rendering it highly malignant and recurrence prone. In our current study, we investigated the therapeutic potential of small molecule inducers of TRAIL, ONC201, and ONC206 in MYCN-amplified IMR-32 and non-MYCN-amplified SK-N-SH human neuroblastoma cell lines. Our results exhibit potent antitumor activity of ONC201 and ONC206 via a novel inhibition of EGF-induced L1CAM and PDGFRβ phosphorylation in both cell lines. Drug treatment significantly reduced cellular proliferation, viability, migration, invasion, tumorsphere formation potential, and increased apoptosis in both cell lines. The protein expression of tumorigenic NMYC, Sox-2, Oct-4, FABP5, and HMGA1 significantly decreased 48 h post-drug treatment, whereas cleaved PARP1/caspase-3 and γH2AX increased 72 h post-drug treatment, compared with vehicle-treated cells in the MYCN-amplified IMR-32 cell line. We are the first to report this novel differential protein expression after ONC201 or ONC206 treatment in human neuroblastoma cells, demonstrating an important multitarget effect which may yield added therapeutic benefits in treating this devastating childhood cancer.
Collapse
Affiliation(s)
- Sarra El-Soussi
- Shool of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Reine Hanna
- Shool of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Hanna Semaan
- Shool of Pharmacy, Lebanese American University, Byblos, Lebanon
- Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | | | - Jad Abdallah
- Shool of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
4
|
Raieli S, Di Renzo D, Lampis S, Amadesi C, Montemurro L, Pession A, Hrelia P, Fischer M, Tonelli R. MYCN Drives a Tumor Immunosuppressive Environment Which Impacts Survival in Neuroblastoma. Front Oncol 2021; 11:625207. [PMID: 33718189 PMCID: PMC7951059 DOI: 10.3389/fonc.2021.625207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
A wide range of malignancies presents MYCN amplification (MNA) or dysregulation. MYCN is associated with poor prognosis and its over-expression leads to several dysregulations including metabolic reprogramming, mitochondria alteration, and cancer stem cell phenotype. Some hints suggest that MYCN overexpression leads to cancer immune-escape. However, this relationship presents various open questions. Our work investigated in details the relationship of MYCN with the immune system, finding a correlated immune-suppressive phenotype in neuroblastoma (NB) and different cancers where MYCN is up-regulated. We found a downregulated Th1-lymphocytes/M1-Macrophages axis and upregulated Th2-lymphocytes/M2-macrophages in MNA NB patients. Moreover, we unveiled a complex immune network orchestrated by N-Myc and we identified 16 genes modules associated to MNA NB. We also identified a MYCN-associated immune signature that has a prognostic value in NB and recapitulates clinical features. Our signature also discriminates patients with poor survival in non-MNA NB patients where MYCN expression is not discriminative. Finally, we showed that targeted inhibition of MYCN by BGA002 (anti-MYCN antigene PNA) is able to restore NK sensibility in MYCN-expressing NB cells. Overall, our study unveils a MYCN-driven immune network in NB and shows a therapeutic option to restore sensibility to immune cells.
Collapse
Affiliation(s)
| | - Daniele Di Renzo
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | | | | | - Luca Montemurro
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, Medical Faculty, University Children's Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Izumi H, Kaneko Y, Nakagawara A. The Role of MYCN in Symmetric vs. Asymmetric Cell Division of Human Neuroblastoma Cells. Front Oncol 2020; 10:570815. [PMID: 33194665 PMCID: PMC7609879 DOI: 10.3389/fonc.2020.570815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Asymmetric cell division (ACD) is an important physiological event in the development of various organisms and maintenance of tissue homeostasis. ACD produces two different cells in a single cell division: a stem/progenitor cell and differentiated cell. Although the balance between self-renewal and differentiation is precisely controlled, disruptions to ACD and/or enhancements in the self-renewal division (symmetric cell division: SCD) of stem cells resulted in the formation of tumors in Drosophila neuroblasts. ACD is now regarded as one of the characteristics of human cancer stem cells, and is a driving force for cancer cell heterogeneity. We recently reported that MYCN controls the balance between SCD and ACD in human neuroblastoma cells. In this mini-review, we discuss the mechanisms underlying MYCN-mediated cell division fate.
Collapse
Affiliation(s)
- Hideki Izumi
- Laboratory of Molecular Medicine, Life Sciences Institute, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | | |
Collapse
|
6
|
MYC-regulated pseudogene HMGA1P6 promotes ovarian cancer malignancy via augmenting the oncogenic HMGA1/2. Cell Death Dis 2020; 11:167. [PMID: 32127525 PMCID: PMC7054391 DOI: 10.1038/s41419-020-2356-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Pseudogenes have long been considered as nonfunctional genomic sequences. Recent studies have shown that they can potentially regulate the expression of protein-coding genes and are dysregulated in diseases including cancer. However, the potential roles of pseudogenes in ovarian cancer have not been well studied. Here we characterized the pseudogene expression profile in HGSOC (high-grade serous ovarian carcinoma) by microarray. We identified 577 dysregulated pseudogenes and most of them were up-regulated (538 of 577). HMGA1P6 (High mobility group AT-hook 1 pseudogene 6) was one of the overexpressed pseudogenes and its expression was inversely correlated with patient survival. Mechanistically, HMGA1P6 promoted ovarian cancer cell malignancy by acting as a ceRNA (competitive endogenous RNA) that led to enhanced HMGA1 and HMGA2 expression. Importantly, HMGA1P6 was transcriptionally activated by oncogene MYC in ovarian cancer. Our findings reveal that MYC may contribute to oncogenesis through transcriptional regulation of pseudogene HMGA1P6 in ovarian cancer.
Collapse
|
7
|
High Mobility Group A (HMGA): Chromatin Nodes Controlled by a Knotty miRNA Network. Int J Mol Sci 2020; 21:ijms21030717. [PMID: 31979076 PMCID: PMC7038092 DOI: 10.3390/ijms21030717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group A (HMGA) proteins are oncofoetal chromatin architectural factors that are widely involved in regulating gene expression. These proteins are unique, because they are highly expressed in embryonic and cancer cells, where they play a relevant role in cell proliferation, stemness, and the acquisition of aggressive tumour traits, i.e., motility, invasiveness, and metastatic properties. The HMGA protein expression levels and activities are controlled by a connected set of events at the transcriptional, post-transcriptional, and post-translational levels. In fact, microRNA (miRNA)-mediated RNA stability is the most-studied mechanism of HMGA protein expression modulation. In this review, we contribute to a comprehensive overview of HMGA-targeting miRNAs; we provide detailed information regarding HMGA gene structural organization and a comprehensive evaluation and description of HMGA-targeting miRNAs, while focusing on those that are widely involved in HMGA regulation; and, we aim to offer insights into HMGA-miRNA mutual cross-talk from a functional and cancer-related perspective, highlighting possible clinical implications.
Collapse
|
8
|
Veselska R, Jezova M, Kyr M, Mazanek P, Chlapek P, Dobrotkova V, Sterba J. Comparative Analysis of Putative Prognostic and Predictive Markers in Neuroblastomas: High Expression of PBX1 Is Associated With a Poor Response to Induction Therapy. Front Oncol 2019; 9:1221. [PMID: 31803613 PMCID: PMC6872531 DOI: 10.3389/fonc.2019.01221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The survival rate for patients with high-risk neuroblastomas remains poor despite new improvements in available therapeutic modalities. A detailed understanding of the mechanisms underlying clinical responses to multimodal treatment is one of the important aspects that may provide precision in the prediction of a patient's clinical outcome. Our study was designed as a detailed comparative analysis of five selected proteins (DDX39A, HMGA1, HOXC9, NF1, and PBX1) in one cohort of patients using the same methodical approaches. These proteins were already reported separately as related to the resistance or sensitivity to retinoids and as useful prognostic markers of survival probability. In the cohort of 19 patients suffering from high-risk neuroblastomas, we analyzed initial immunohistochemistry samples obtained by diagnostic biopsy and post-induction samples taken after the end of induction therapy. The expression of DDX39A, HMGA1, HOXC9, and NF1 showed varied patterns with almost no differences between responders and non-responders. Nevertheless, we found very interesting results for PBX1: non-responders had significantly higher expression levels of this protein in the initial tumor samples when compared with responders; this expression pattern changed inversely in the post-induction samples, and this change was also statistically significant. Moreover, our results from survival analyses reveal the prognostic value of PBX1, NF1, and HOXC9 expression in neuroblastoma tissue. In addition to the prognostic importance of PBX1, NF1, and HOXC9 proteins, our results demonstrated that PBX1 could be used for the prediction of the clinical response to induction chemotherapy in patients suffering from high-risk neuroblastoma.
Collapse
Affiliation(s)
- Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Marta Jezova
- Department of Pathology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Michal Kyr
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Pavel Mazanek
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Viera Dobrotkova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jaroslav Sterba
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
9
|
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019; 23:2293-2302. [PMID: 30614613 PMCID: PMC6433663 DOI: 10.1111/jcmm.14082] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The high mobility group A1 (HMGA1) gene plays an important role in numerous malignant cancers. HMGA1 is an oncofoetal gene, and we have a certain understanding of the biological function of HMGA1 based on its activities in various neoplasms. As an architectural transcription factor, HMGA1 remodels the chromatin structure and promotes the interaction between transcriptional regulatory proteins and DNA in different cancers. Through analysis of the molecular mechanism of HMGA1 and clinical studies, emerging evidence indicates that HMGA1 promotes the occurrence and metastasis of cancer. Within a similar location or the same genetic background, the function and role of HMGA1 may have certain similarities. In this paper, to characterize HMGA1 comprehensively, research on various types of tumours is discussed to further understanding of the function and mechanism of HMGA1. The findings provide a more reliable basis for classifying HMGA1 function according to the tumour location. In this review, we summarize recent studies related to HMGA1, including its structure and oncogenic properties, its major functions in each cancer, its upstream and downstream regulation associated with the tumourigenesis and metastasis of cancer, and its potential as a biomarker for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yushuang Zheng
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
MRE11 inhibition highlights a replication stress-dependent vulnerability of MYCN-driven tumors. Cell Death Dis 2018; 9:895. [PMID: 30166519 PMCID: PMC6117286 DOI: 10.1038/s41419-018-0924-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors.
Collapse
|
11
|
Resar L, Chia L, Xian L. Lessons from the Crypt: HMGA1-Amping up Wnt for Stem Cells and Tumor Progression. Cancer Res 2018; 78:1890-1897. [PMID: 29618461 DOI: 10.1158/0008-5472.can-17-3045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
High mobility group A1 (HMGA1) chromatin remodeling proteins are enriched in aggressive cancers and stem cells, although their common function in these settings has remained elusive until now. Recent work in murine intestinal stem cells (ISC) revealed a novel role for Hmga1 in enhancing self-renewal by amplifying Wnt signaling, both by inducing genes expressing Wnt agonist receptors and Wnt effectors. Surprisingly, Hmga1 also "builds" a stem cell niche by upregulating Sox9, a factor required for differentiation to Paneth cells; these cells constitute an epithelial niche by secreting Wnt and other factors to support ISCs. HMGA1 is also highly upregulated in colon cancer compared with nonmalignant epithelium and SOX9 becomes overexpressed during colon carcinogenesis. Intriguingly, HMGA1 is overexpressed in diverse cancers with poor outcomes, where it regulates developmental genes. Similarly, HMGA1 induces genes responsible for pluripotency and self-renewal in embryonic stem cells. These findings demonstrate that HMGA1 maintains Wnt and other developmental transcriptional networks and suggest that HMGA1 overexpression fosters carcinogenesis and tumor progression through dysregulation of these pathways. Studies are now needed to determine more precisely how HMGA1 modulates chromatin structure to amplify developmental genes and how to disrupt this process in cancer therapy. Cancer Res; 78(8); 1890-7. ©2018 AACR.
Collapse
Affiliation(s)
- Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Departments of Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lionel Chia
- Pathobiology Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lingling Xian
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Zaatiti H, Abdallah J, Nasr Z, Khazen G, Sandler A, Abou-Antoun TJ. Tumorigenic proteins upregulated in the MYCN-amplified IMR-32 human neuroblastoma cells promote proliferation and migration. Int J Oncol 2018; 52:787-803. [PMID: 29328367 PMCID: PMC5807036 DOI: 10.3892/ijo.2018.4236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Childhood neuroblastoma is one of the most common types of extra-cranial cancer affecting children with a clinical spectrum ranging from spontaneous regression to malignant and fatal progression. In order to improve the clinical outcomes of children with high-risk neuroblastoma, it is crucial to understand the tumorigenic mechanisms that govern its malignant behaviors. MYCN proto-oncogene, bHLH transcription factor (MYCN) amplification has been implicated in the malignant, treatment-evasive nature of aggressive, high-risk neuroblastoma. In this study, we used a SILAC approach to compare the proteomic signatures of MYCN-amplified IMR-32 and non-MYCN-amplified SK-N-SH human neuroblastoma cells. Tumorigenic proteins, including fatty-acid binding protein 5 (FABP5), L1-cell adhesion molecule (L1-CAM), baculoviral IAP repeat containing 5 [BIRC5 (survivin)] and high mobility group protein A1 (HMGA1) were found to be significantly upregulated in the IMR-32 compared to the SK-N-SH cells and mapped to highly tumorigenic pathways including, MYC, MYCN, microtubule associated protein Tau (MAPT), E2F transcription factor 1 (E2F1), sterol regulatory element binding transcription factor 1 or 2 (SREBF1/2), hypoxia-inducible factor 1α (HIF-1α), Sp1 transcription factor (SP1) and amyloid precursor protein (APP). The transcriptional knockdown (KD) of MYCN, HMGA1, FABP5 and L1-CAM significantly abrogated the proliferation of the IMR-32 cells at 48 h post transfection. The early apoptotic rates were significantly higher in the IMR-32 cells in which FABP5 and MYCN were knocked down, whereas cellular migration was significantly abrogated with FABP5 and HMGA1 KD compared to the controls. Of note, L1-CAM, HMGA1 and FABP5 KD concomitantly downregulated MYCN protein expression and MYCN KD concomitantly downregulated L1-CAM, HMGA1 and FABP5 protein expression, while survivin protein expression was significantly downregulated by MYCN, HMGA1 and FABP5 KD. In addition, combined L1-CAM and FABP5 KD led to the concomitant downregulation of HMGA1 protein expression. On the whole, our data indicate that this inter-play between MYCN and the highly tumorigenic proteins which are upregulated in the malignant IMR-32 cells may be fueling their aggressive behavior, thereby signifying the importance of combination, multi-modality targeted therapy to eradicate this deadly childhood cancer.
Collapse
Affiliation(s)
- Hayat Zaatiti
- Department of Biology, Faculty of Sciences, University of Balamand, El-Koura, Lebanon
| | - Jad Abdallah
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Sciences, University of Balamand, El-Koura, Lebanon
| | - George Khazen
- School of Arts and Sciences, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Anthony Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, DC 20010, USA
| | - Tamara J Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos 1102-2801, Lebanon
| |
Collapse
|
13
|
Sumter TF, Xian L, Huso T, Koo M, Chang YT, Almasri TN, Chia L, Inglis C, Reid D, Resar LMS. The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development. Curr Mol Med 2016; 16:353-93. [PMID: 26980699 DOI: 10.2174/1566524016666160316152147] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/15/2016] [Accepted: 03/10/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND & OBJECTIVES Chromatin structure is the single most important feature that distinguishes a cancer cell from a normal cell histologically. Chromatin remodeling proteins regulate chromatin structure and high mobility group A (HMGA1) proteins are among the most abundant, nonhistone chromatin remodeling proteins found in cancer cells. These proteins include HMGA1a/HMGA1b isoforms, which result from alternatively spliced mRNA. The HMGA1 gene is overexpressed in cancer and high levels portend a poor prognosis in diverse tumors. HMGA1 is also highly expressed during embryogenesis and postnatally in adult stem cells. Overexpression of HMGA1 drives neoplastic transformation in cultured cells, while inhibiting HMGA1 blocks oncogenic and cancer stem cell properties. Hmga1 transgenic mice succumb to aggressive tumors, demonstrating that dysregulated expression of HMGA1 causes cancer in vivo. HMGA1 is also required for reprogramming somatic cells into induced pluripotent stem cells. HMGA1 proteins function as ancillary transcription factors that bend chromatin and recruit other transcription factors to DNA. They induce oncogenic transformation by activating or repressing specific genes involved in this process and an HMGA1 "transcriptome" is emerging. Although prior studies reveal potent oncogenic properties of HMGA1, we are only beginning to understand the molecular mechanisms through which HMGA1 functions. In this review, we summarize the list of putative downstream transcriptional targets regulated by HMGA1. We also briefly discuss studies linking HMGA1 to Alzheimer's disease and type-2 diabetes. CONCLUSION Further elucidation of HMGA1 function should lead to novel therapeutic strategies for cancer and possibly for other diseases associated with aberrant HMGA1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - L M S Resar
- Department of Medicine, Faculty of the Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 1025, Baltimore, MD 21205-2109, USA.
| |
Collapse
|
14
|
Toyozumi T, Hoshino I, Takahashi M, Usui A, Akutsu Y, Hanari N, Murakami K, Kano M, Akanuma N, Suitoh H, Matsumoto Y, Sekino N, Komatsu A, Matsubara H. Fra-1 Regulates the Expression of HMGA1, Which is Associated with a Poor Prognosis in Human Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2016; 24:3446-3455. [PMID: 27882471 DOI: 10.1245/s10434-016-5666-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND The expression of Fos-related antigen 1 (Fra-1) affects tumor progression, migration, and invasion. In this study, we identified the genes regulated by Fra-1 in esophageal squamous cell carcinoma (ESCC). METHODS We constructed Fra-1 knockdown models via the transfection of small interfering RNA (siRNA) into ESCC cell lines (TE10, TE11). The expression levels of the genes in the knockdown models were analyzed using a microarray and a Biobase Upstream Analysis, while the expression levels of the candidate genes in the primary tumors of surgical specimens obtained from ESCC patients were determined using real-time polymerase chain reaction (PCR) and immunohistochemical staining. The clinicopathological features were then analyzed. RESULTS The Biobase Upstream Analysis showed the high-mobility-group protein-1 (HMGA1) to be a significant gene regulated by Fra-1. Actual binding of Fra-1 to the promotor region of HMGA1 was revealed in subsequent chromatin immunoprecipitation PCR experiments. Patients with a positive HMGA1 expression had a poor prognosis, and a multivariate analysis demonstrated a positive HMGA1 expression to be a significant independent prognostic factor. CONCLUSION HMGA1 is regulated by Fra-1 in ESCC, and the HMGA1 expression is significantly associated with a poor prognosis in ESCC patients. Downregulation of the HMGA1 expression may become a practical treatment strategy against ESCC in the future.
Collapse
Affiliation(s)
- Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiro Usui
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoyuki Hanari
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Akanuma
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Suitoh
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Komatsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Petroni M, Sardina F, Heil C, Sahún-Roncero M, Colicchia V, Veschi V, Albini S, Fruci D, Ricci B, Soriani A, Di Marcotullio L, Screpanti I, Gulino A, Giannini G. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ 2016; 23:197-206. [PMID: 26068589 PMCID: PMC4716299 DOI: 10.1038/cdd.2015.81] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/12/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022] Open
Abstract
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.
Collapse
Affiliation(s)
- M Petroni
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - F Sardina
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - C Heil
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - M Sahún-Roncero
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - V Colicchia
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - V Veschi
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - S Albini
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - D Fruci
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - B Ricci
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - A Soriani
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - L Di Marcotullio
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - I Screpanti
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - A Gulino
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - G Giannini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Deptartment of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| |
Collapse
|
16
|
Abstract
The high mobility group protein A1 (HMGA1) is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.
Collapse
|
17
|
Stafman LL, Beierle EA. Cell Proliferation in Neuroblastoma. Cancers (Basel) 2016; 8:E13. [PMID: 26771642 PMCID: PMC4728460 DOI: 10.3390/cancers8010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
18
|
Huso TH, Resar LMS. The high mobility group A1 molecular switch: turning on cancer - can we turn it off? Expert Opin Ther Targets 2014; 18:541-53. [PMID: 24684280 DOI: 10.1517/14728222.2014.900045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Emerging evidence demonstrates that the high mobility group A1 (HMGA1) chromatin remodeling protein is a key molecular switch required by cancer cells for tumor progression and a poorly differentiated, stem-like state. Because the HMGA1 gene and proteins are expressed at high levels in all aggressive tumors studied to date, research is needed to determine how to 'turn off' this master regulatory switch in cancer. AREAS COVERED In this review, we describe prior studies that underscore the central role of HMGA1 in refractory cancers and we discuss approaches to target HMGA1 in cancer therapy. EXPERT OPINION Given the widespread overexpression of HMGA1 in diverse, aggressive tumors, further research to develop technology to target HMGA1 holds immense promise as potent anticancer therapy. Previous work in preclinical models indicates that delivery of short hairpin RNA or interfering RNA molecules to 'switch off' HMGA1 expression dramatically impairs cancer cell growth and tumor progression. The advent of nanoparticle technology to systemically deliver DNA or RNA molecules to tumors brings this approach even closer to clinical applications, although further efforts are needed to translate these advances into therapies for cancer patients.
Collapse
Affiliation(s)
- Tait H Huso
- The Johns Hopkins University School of Medicine, Hematology Division , Ross Research Building, Room 1015, 720 Rutland Avenue, Baltimore MD 21205 , USA
| | | |
Collapse
|
19
|
Veschi V, Petroni M, Bartolazzi A, Altavista P, Dominici C, Capalbo C, Boldrini R, Castellano A, McDowell HP, Pizer B, Frati L, Screpanti I, Gulino A, Giannini G. Galectin-3 is a marker of favorable prognosis and a biologically relevant molecule in neuroblastic tumors. Cell Death Dis 2014; 5:e1100. [PMID: 24603328 PMCID: PMC3973198 DOI: 10.1038/cddis.2014.68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Childhood neuroblastic tumors are characterized by heterogeneous clinical courses, ranging from benign ganglioneuroma (GN) to highly lethal neuroblastoma (NB). Although a refined prognostic evaluation and risk stratification of each tumor patient is becoming increasingly essential to personalize treatment options, currently only few biomolecular markers (essentially MYCN amplification, chromosome 11q status and DNA ploidy) are validated for this purpose in neuroblastic tumors. Here we report that Galectin-3 (Gal-3), a β-galactoside-binding lectin involved in multiple biological functions that has already acquired diagnostic relevance in specific clinical settings, is variably expressed in most differentiated and less aggressive neuroblastic tumors, such as GN and ganglioneuroblastoma, as well as in a subset of NB cases. Gal-3 expression is associated with the INPC histopathological categorization (P<0.001) and Shimada favorable phenotype (P=0.001), but not with other prognostically relevant features. Importantly, Gal-3 expression was associated with a better 5-year overall survival (P=0.003), and with improved cumulative survival in patient subsets at worse prognosis, such as older age at diagnosis, advanced stages or NB histopathological classification. In vitro, Gal-3 expression and nuclear accumulation accompanied retinoic acid-induced cell differentiation in NB cell lines. Forced Gal-3 overexpression increased phenotypic differentiation and substrate adherence, while inhibiting proliferation. Altogether, these findings suggest that Gal-3 is a biologically relevant player for neuroblastic tumors, whose determination by conventional immunohistochemistry might be used for outcome assessment and patient's risk stratification in the clinical setting.
Collapse
Affiliation(s)
- V Veschi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - M Petroni
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - A Bartolazzi
- 1] Department of Pathology, St. Andrea Hospital, Rome, Italy [2] Pathology Research Laboratory, Cancer Center Karolinska (CCK), Karolinska Hospital, Stockholm, Sweden
| | - P Altavista
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Research Center Casaccia, Rome, Italy
| | - C Dominici
- 1] Department of Pediatrics and Infantile Neuropsychiatry, University La Sapienza, Rome, Italy [2] School of Reproductive and Developmental Medicine, Liverpool University, Liverpool, UK
| | - C Capalbo
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - R Boldrini
- Division of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Castellano
- Division of Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - H P McDowell
- 1] Department of Pediatrics and Infantile Neuropsychiatry, University La Sapienza, Rome, Italy [2] School of Reproductive and Developmental Medicine, Liverpool University, Liverpool, UK
| | - B Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - L Frati
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - A Gulino
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - G Giannini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| |
Collapse
|
20
|
Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL, Bray I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int 2013; 29:101-19. [PMID: 23274701 PMCID: PMC3557462 DOI: 10.1007/s00383-012-3239-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miRNA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis.
Collapse
Affiliation(s)
- Raquel Domingo-Fernandez
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Karen Watters
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Olga Piskareva
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Raymond L. Stallings
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Isabella Bray
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, Dublin, Ireland,Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
21
|
Veschi V, Petroni M, Cardinali B, Dominici C, Screpanti I, Frati L, Bartolazzi A, Gulino A, Giannini G. Galectin-3 impairment of MYCN-dependent apoptosis-sensitive phenotype is antagonized by nutlin-3 in neuroblastoma cells. PLoS One 2012; 7:e49139. [PMID: 23152863 PMCID: PMC3494673 DOI: 10.1371/journal.pone.0049139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
MYCN amplification occurs in about 20–25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage and impairment of metastasis in xenograft models. Here we report that Galectin-3 impairs MYCN-primed and HIPK2-p53-dependent apoptosis in neuroblastoma cells. Galectin-3 is broadly expressed in human neuroblastoma cell lines and tumors and is repressed by MYCN to induce the apoptosis-sensitive phenotype. Despite its reduced levels, Galectin-3 can still exert residual antiapoptotic effects in MYCN amplified neuroblastoma cells, possibly due to its specific subcellular localization. Importantly, Nutlin-3 represses Galectin-3 expression, and this is required for its potent cell killing effect on MYCN amplified cell lines. Our data further characterize the apoptosis-sensitive phenotype induced by MYCN, expand our understanding of the activity of MDM2-p53 antagonists and highlight Galectin-3 as a potential biomarker for the tailored p53 reactivation therapy in patients with high-risk neuroblastomas.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Beatrice Cardinali
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo Scalo, Italy
| | - Carlo Dominici
- Department of Pediatrics, Sapienza University, Rome, Italy
- School of Reproductive and Developmental Medicine, Liverpool University, Liverpool, United Kingdom
| | | | - Luigi Frati
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Armando Bartolazzi
- Experimental Pathology Laboratory, S. Andrea Hospital, Rome, Italy
- Cancer Center Karolinska (CCK) R8∶04, Karolinska Hospital, Stockholm, Sweden
| | - Alberto Gulino
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
22
|
Petroni M, Veschi V, Gulino A, Giannini G. Molecular mechanisms of MYCN-dependent apoptosis and the MDM2-p53 pathway: an Achille's heel to be exploited for the therapy of MYCN-amplified neuroblastoma. Front Oncol 2012; 2:141. [PMID: 23091802 PMCID: PMC3470040 DOI: 10.3389/fonc.2012.00141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/26/2012] [Indexed: 12/14/2022] Open
Abstract
The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14( ARF), significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment. In addition to its role in tumorigenesis, MYCN sensitizes untransformed and cancer cells to apoptosis. This is associated to a fine modulation of the MDM2-p53 pathway. Indeed MYCN induces p53 and MDM2 transcription, and, by evoking a DNA damage response (DDR), it stabilizes p53 and its proapoptotic kinase Homeodomain Interacting Protein Kinase 2 (HIPK2). Through the regulation of the HIPK2-p53 inhibitor High Mobility Group protein A1 (HMGA1) and the homeobox proteins BMI-1 and TWIST-1, MYCN establishes a delicate balance between pro- and antiapoptotic molecules that might be easily perturbed by a variety of insults, leading to cell death. MDM2-p53 antagonists, such as Nutlin-3, are strikingly prone to inducing death in MYCN-amplified neuroblastoma, by further pushing on HIPK2 accumulation. Here we discuss implications and caveats of exploiting this pathway and its connections to MYCN-induced DDR for a tailored therapy of MYCN-amplified neuroblastoma.
Collapse
|
23
|
Massimi I, Guerrieri F, Petroni M, Veschi V, Truffa S, Screpanti I, Frati L, Levrero M, Gulino A, Giannini G. The HMGA1 protoncogene frequently deregulated in cancer is a transcriptional target of E2F1. Mol Carcinog 2012; 52:526-34. [PMID: 22389255 DOI: 10.1002/mc.21887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/05/2011] [Accepted: 01/25/2012] [Indexed: 01/28/2023]
Abstract
Reactivation of the HMGA1 protoncogene is very frequent in human cancer, but still very little is known on the molecular mechanisms leading to this event. Prompted by the finding of putative E2F binding sites in the human HMGA1 promoter and by the frequent deregulation of the RB/E2F1 pathway in human carcinogenesis, we investigated whether E2F1 might contribute to the regulation of HMGA1 gene expression. Here we report that E2F1 induces HMGA1 by interacting with a 193 bp region of the HMGA1 promoter containing an E2F binding site surrounded by three putative Sp1 binding sites. Both gain and loss of function experiments indicate that Sp1 functionally interacts with E2F1 to promote HMGA1 expression. However, while Sp1 constitutively binds HMGA1 promoter, it is the balance between different E2F family members that tunes the levels of HMGA1 expression between quiescence and proliferation. Finally, we found increased HMGA1 expression in pituitary and thyroid tumors developed in Rb(+/-) mice, supporting the hypothesis that E2F1 is a novel important regulator of HMGA1 expression and that deregulation of the RB/E2F1 path might significantly contribute to HMGA1 deregulation in cancer.
Collapse
Affiliation(s)
- Isabella Massimi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chesler L, Weiss WA. Genetically engineered murine models--contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Semin Cancer Biol 2011; 21:245-55. [PMID: 21958944 PMCID: PMC3504935 DOI: 10.1016/j.semcancer.2011.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023]
Abstract
Genetically engineered mouse models (GEMM) have made major contributions to a molecular understanding of several adult cancers and these results are increasingly being translated into the pre-clinical setting where GEMM will very likely make a major impact on the development of targeted therapeutics in the near future. The relationship of pediatric cancers to altered developmental programs, and their genetic simplicity relative to adult cancers provides unique opportunities for the application of new advances in GEMM technology. In neuroblastoma the well-characterized TH-MYCN GEMM is increasingly used for a variety of molecular-genetic, developmental and pre-clinical therapeutics applications. We discuss: the present and historical application of GEMM to neuroblastoma research, future opportunities, and relevant targets suitable for new GEMM strategies in neuroblastoma. We review the potential of these models to contribute both to an understanding of the developmental nature of neuroblastoma and to improved therapy for this disease.
Collapse
Affiliation(s)
- Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research & The Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, United Kingdom.
| | | |
Collapse
|
25
|
Huang R, Cheung NKV, Vider J, Cheung IY, Gerald WL, Tickoo SK, Holland EC, Blasberg RG. MYCN and MYC regulate tumor proliferation and tumorigenesis directly through BMI1 in human neuroblastomas. FASEB J 2011; 25:4138-49. [PMID: 21856782 DOI: 10.1096/fj.11-185033] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The BMI1 gene is overexpressed in ≈ 90% of human neuroblastomas. However, little is known about the regulation of BMI1 expression. Using microarray and immunohistochemical analysis, we show that BMI1 expression correlated with MYCN levels in MYCN-amplified human neuroblastomas, and with MYC levels in the MYCN-nonamplified group. We further demonstrated that BMI1 is a direct target gene of MYCN/MYC in 3 neuroblastoma cell lines: BE (2)-C, LAN1, and SH-SY5Y. Overexpression of MYCN or MYC transactivated the BMI1 promoter and up-regulated BMI1 gene expression. shRNA-mediated knockdown of MYCN or MYC decreased BMI1 gene expression. Chromatin immunoprecipitation and point-mutation assays revealed that both MYCN and MYC bind to the E-box within the BMI1 promoter. Overexpression of BMI1, MYCN, and MYC independently increased both cell proliferation and tumor growth. Conversely, specific inhibition of BMI1, MYCN, and MYC decreased tumor cell proliferation and tumor growth. Interestingly, BMI1 suppression in MYCN/MYC-overexpressing cells resulted in significantly greater inhibition compared to that in mock-transduced and parental cells. Our results indicate that MYCN and MYC regulate BMI1 gene expression at the transcriptional level and that dysregulation of the BMI1 gene mediated by MYCN or MYC overexpression, confers increased cell proliferation during neuroblastoma genesis and tumor progression.
Collapse
Affiliation(s)
- Ruimin Huang
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yuan S, Pan Q, Fu C, Bi Z. Silencing of HMGA1 expression by RNA interference suppresses growth of osteogenic sarcoma. Mol Cell Biochem 2011; 355:281-7. [PMID: 21573994 DOI: 10.1007/s11010-011-0865-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/28/2011] [Indexed: 11/27/2022]
Abstract
The expression of high mobility group protein A1 (HMGA1) protein has been closely related to various malignant and prognostic degrees of tumor. To investigate the influence of down-regulating HMGA1 on the tumor and the mechanism underlying antitumor of HMGA1, we transfected the HMGA1 shRNA vector into the osteogenic sarcoma MG-63 cell and observed the changes of cell proliferation, invasion abilities, and the tumor growth. HMGA1 gene expression could be efficiently inhibited, and cell proliferation, migration, invasion, and matrix metalloprotease level were also decreased. BALB/C nude mice injected with the MG-63 cells transfected HMGA1 shRNA showed the significant lower tumor weight, tumor volume, and longer tumor-forming time compared with the control group. Our results suggest that knockdown of HMGA1 could inhibit growth and metastasis potentials of MG-63 cells, which may be a therapeutic target protein for osteogenic sarcoma and may be of biological importance.
Collapse
Affiliation(s)
- Shaohui Yuan
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Beierle EA. MYCN, neuroblastoma and focal adhesion kinase (FAK). Front Biosci (Elite Ed) 2011; 3:421-33. [PMID: 21196322 DOI: 10.2741/e257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood. This tumor is characterized by poor survival, especially when it features amplification of the MYCN oncogene. The ability for human cancers to propagate is marked by their ability to invade and metastasize to distant sites. Focal adhesion kinase (FAK) is a key tyrosine kinase involved in the survival and metastasis of a number of human tumor types. We have shown that FAK is present in human neuroblastoma and that its expression in neuroblastoma is related to the MYCN oncogene. We have also demonstrated that inhibition of FAK in neuroblastoma leads to decreased tumor cell survival. The current review addresses the relationship between the MYCN oncogene, focal adhesion kinase and neuroblastoma.
Collapse
|
28
|
Akhter MZ, Sharma A, Rajeswari MR. Interaction of adriamycin with a promoter region of hmga1 and its inhibitory effect on HMGA1 expression in A431 human squamous carcinoma cell line. MOLECULAR BIOSYSTEMS 2011; 7:1336-46. [DOI: 10.1039/c0mb00247j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Petroni M, Veschi V, Prodosmo A, Rinaldo C, Massimi I, Carbonari M, Dominici C, McDowell HP, Rinaldi C, Screpanti I, Frati L, Bartolazzi A, Gulino A, Soddu S, Giannini G. MYCN sensitizes human neuroblastoma to apoptosis by HIPK2 activation through a DNA damage response. Mol Cancer Res 2010; 9:67-77. [PMID: 21173028 DOI: 10.1158/1541-7786.mcr-10-0227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MYCN amplification occurs in approximately 20% of human neuroblastomas and is associated with early tumor progression and poor outcome, despite intensive multimodal treatment. However, MYCN overexpression also sensitizes neuroblastoma cells to apoptosis. Thus, uncovering the molecular mechanisms linking MYCN to apoptosis might contribute to designing more efficient therapies for MYCN-amplified tumors. Here we show that MYCN-dependent sensitization to apoptosis requires activation of p53 and its phosphorylation at serine 46. The p53(S46) kinase HIPK2 accumulates on MYCN expression, and its depletion by RNA interference impairs p53(S46) phosphorylation and apoptosis. Remarkably, MYCN induces a DNA damage response that accounts for the inhibition of HIPK2 degradation through an ATM- and NBS1-dependent pathway. Prompted by the rare occurrence of p53 mutations and by the broad expression of HIPK2 in our human neuroblastoma series, we evaluated the effects of the p53-reactivating compound Nutlin-3 on this pathway. At variance from other tumor histotypes, in MYCN-amplified neuroblastoma, Nutlin-3 further induced HIPK2 accumulation, p53(S46) phosphorylation, and apoptosis, and in combination with clastogenic agents purged virtually the entire cell population. Altogether, our data uncover a novel mechanism linking MYCN to apoptosis that can be triggered by the p53-reactivating compound Nutlin-3, supporting its use in the most difficult-to-treat subset of neuroblastoma.
Collapse
Affiliation(s)
- Marialaura Petroni
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena, 324, 00161, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sharma A, Ray R, Rajeswari MR. High-Mobility Group A1 (HMGA1) Protein Expression Correlates With Cisplatin-Induced Cell Death in Squamous Cell Carcinoma of Skin. Cancer Invest 2010. [DOI: 10.1080/07357900903286933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett 2010; 293:144-57. [PMID: 20153925 DOI: 10.1016/j.canlet.2010.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/11/2010] [Accepted: 01/16/2010] [Indexed: 12/16/2022]
Abstract
The MYCN oncogene encodes a transcription factor which is amplified in up to 40% of high risk neuroblastomas. MYCN amplification is a well-established poor prognostic marker in neuroblastoma, however the role of MYCN expression and the mechanisms by which it acts to promote an aggressive phenotype remain largely unknown. This review discusses the current evidence identifying the direct and indirect downstream transcriptional targets of MYCN from recent studies, with particular reference to how MYCN affects the cell cycle, DNA damage response, differentiation and apoptosis in neuroblastoma.
Collapse
Affiliation(s)
- Emma Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Forloni M, Albini S, Limongi MZ, Cifaldi L, Boldrini R, Nicotra MR, Giannini G, Natali PG, Giacomini P, Fruci D. NF-kappaB, and not MYCN, regulates MHC class I and endoplasmic reticulum aminopeptidases in human neuroblastoma cells. Cancer Res 2010; 70:916-24. [PMID: 20103633 DOI: 10.1158/0008-5472.can-09-2582] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma (NB) is the most common solid extracranial cancer of childhood. Amplification and overexpression of the MYCN oncogene characterize the most aggressive forms and are believed to severely downregulate MHC class I molecules by transcriptional inhibition of the p50 NF-kappaB subunit. In this study, we found that in human NB cell lines, high MYCN expression is not responsible for low MHC class I expression because neither transfection-mediated overexpression nor small interfering RNA suppression of MYCN affects MHC class I and p50 levels. Furthermore, we identified NF-kappaB as the immediate upstream regulator of MHC class I because the p65 NF-kappaB subunit binds MHC class I promoter in chromatin immunoprecipitation experiments, and MHC class I expression is enhanced by p65 transfection and reduced by (a) the chemical NF-kappaB inhibitor sulfasalazine, (b) a dominant-negative IKBalpha gene, and (c) p65 silencing. Moreover, we showed that the endoplasmic reticulum aminopeptidases ERAP1 and ERAP2, which generate MHC class I binding peptides, are regulated by NF-kappaB, contain functional NF-kappaB-binding elements in their promoters, and mimic MHC class I molecules in the expression pattern. Consistent with these findings, nuclear p65 was detected in NB cells that express MHC class I molecules in human NB specimens. Thus, the coordinated downregulation of MHC class I, ERAP1, and ERAP2 in aggressive NB cells is attributable to a low transcriptional availability of NF-kappaB, possibly due to an unknown suppressor other than MYCN.
Collapse
|
33
|
Akaboshi SI, Watanabe S, Hino Y, Sekita Y, Xi Y, Araki K, Yamamura KI, Oshima M, Ito T, Baba H, Nakao M. HMGA1 is induced by Wnt/beta-catenin pathway and maintains cell proliferation in gastric cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1675-85. [PMID: 19729480 PMCID: PMC2751563 DOI: 10.2353/ajpath.2009.090069] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2009] [Indexed: 01/12/2023]
Abstract
The development of stomach cancer is closely associated with chronic inflammation, and the Wnt/beta-catenin signaling pathway is activated in most cases of this cancer. High-mobility group A (HMGA) proteins are oncogenic chromatin factors that are primarily expressed not only in undifferentiated tissues but also in various tumors. Here we report that HMGA1 is induced by the Wnt/beta-catenin pathway and maintains proliferation of gastric cancer cells. Specific knockdown of HMGA1 resulted in marked reduction of cell growth. The loss of beta-catenin or its downstream c-myc decreased HMGA1 expression, whereas Wnt3a treatment increased HMGA1 and c-myc transcripts. Furthermore, Wnt3a-induced expression of HMGA1 was inhibited by c-myc knockdown, suggesting that HMGA1 is a downstream target of the Wnt/beta-catenin pathway. Enhanced expression of HMGA1 coexisted with the nuclear accumulation of beta-catenin in about 30% of gastric cancer tissues. To visualize the expression of HMGA1 in vivo, transgenic mice expressing endogenous HMGA1 fused to enhanced green fluorescent protein were generated and then crossed with K19-Wnt1/C2mE mice, which develop gastric tumors through activation of both the Wnt and prostaglandin E2 pathways. Expression of HMGA1-enhanced green fluorescent protein was normally detected in the forestomach, along the upper border of the glandular stomach, but its expression was also up-regulated in cancerous glandular stomach. These data suggest that HMGA1 is involved in proliferation and gastric tumor formation via the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Shin-ichi Akaboshi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Human papilloma virus-dependent HMGA1 expression is a relevant step in cervical carcinogenesis. Neoplasia 2008; 10:773-81. [PMID: 18670638 DOI: 10.1593/neo.08462] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/18/2022] Open
Abstract
HMGA1 is a member of a small family of architectural transcription factors involved in the coordinate assembly of multiprotein complexes referred to as enhanceosomes. In addition to their role in cell proliferation, differentiation, and development, high-mobility group proteins of the A type (HMGA) family members behave as transforming protoncogenes either in vitro or in animal models. Recent reports indicated that HMGA1 might counteract p53 pathway and provided an interesting hint on the mechanisms determining HMGA's transforming potential. HMGA1 expression is deregulated in a very large array of human tumors, including cervical cancer, but very limited information is available on the molecular mechanisms leading to HMGA1 deregulation in cancer cells. Here, we report that HMGA1 expression is sustained by human papilloma virus (HPV) E6/E7 proteins in cervical cancer, as demonstrated by either E6/E7 overexpression or by repression through RNA interference. Knocking down HMGA1 expression by means of RNA interference, we also showed that it is involved in cell proliferation and contributes to p53 inactivation in this type of neoplasia. Finally, we show that HMGA1 is necessary for the full expression of HPV18 E6 and E7 oncoproteins thus establishing a positive autoregulatory loop between HPV E6/E7 and HMGA1 expression.
Collapse
|
35
|
Identification of candidate cancer genes involved in human retinoblastoma by data mining. Childs Nerv Syst 2008; 24:893-900. [PMID: 18350306 DOI: 10.1007/s00381-008-0595-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The objective of this study was to discover potential cancer-related genes involved in retinoblastoma (RB) tumorigenesis. MATERIALS AND METHODS Using a data-mining tool called cDNA Digital Gene Expression Displayer (DGED) and serial analysis of gene expression DGED from the Cancer Genome Anatomy Project (CGAP) database, eight cDNA libraries and five serial analysis of gene expression libraries from retinoblastoma (RB) solid tumors and normal retina tissues were analyzed. The deregulated genes were classified into major families using information from Gene Ontology. Several candidate cancer-related genes were analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on tissue microarrays (TMA) of RB and human normal retina samples. RESULTS A total of 260 genes with deregulated expression emerged when examined by DGED from the CGAP database. Functional classification of these genes not only provided an interesting insight into RB tumorigenesis but also facilitated target identification for RB therapeutics. Several candidate genes were confirmed by real-time RT-PCR and IHC analysis on TMA and were found to be associated with RB genesis through text-mining in Information Hyperlinked over Proteins. The results also implicated MCM7 and WIF1 as promising therapeutic targets for RB, but further validation is needed.
Collapse
|
36
|
Cleynen I, Huysmans C, Sasazuki T, Shirasawa S, Van de Ven W, Peeters K. Transcriptional Control of the HumanHigh Mobility Group A1Gene: Basal and Oncogenic Ras-Regulated Expression. Cancer Res 2007; 67:4620-9. [PMID: 17510387 DOI: 10.1158/0008-5472.can-06-4325] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have already shown that the high mobility group A1 (HMGA1) gene is up-regulated in most common types of cancer and immortalized tissue culture cell lines. HMGA1 expression is also much higher during embryonic development than in adult life. The elevated expression of HMGA1 in cancer thus likely occurs through oncofetal transcriptional mechanisms, which to date have not been well characterized. In the present study, we have cloned and functionally analyzed the TATA-less 5'-flanking regulatory region of human HMGA1. We identified two proximal regulatory regions that are important for basal transcription and in which specificity protein 1 (SP1) and activator protein 1 (AP1) transcription factors seem to be the regulating elements. In addition, we showed that the HMGA1 promoter is strongly inducible by oncogenic Ras, via a distal regulatory region. An AP1 site and three SP1-like sites are responsible for this inducible activity. An even more convincing finding for a role of oncogenic Ras in the regulation of HMGA1 in cancers is the discovery that HMGA1 up-regulation in the HCT116 colon cancer cell line is abolished when the mutated Ras allele is removed from these cells. Our data constitute the first extensive study of the regulation of basal and Ras-induced human HMGA1 gene expression and suggest that the elevated expression of HMGA1 in cancer cells requires, among others, a complex cooperation between SP1 family members and AP1 factors by the activation of Ras GTPase signaling.
Collapse
Affiliation(s)
- Isabelle Cleynen
- Laboratory of Molecular Oncology, Department of Human Genetics, University of Leuven, Flanders Interuniversity Institute for Biotechnology, Herestraat, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Beierle EA, Trujillo A, Nagaram A, Kurenova EV, Finch R, Ma X, Vella J, Cance WG, Golubovskaya VM. N-MYC regulates focal adhesion kinase expression in human neuroblastoma. J Biol Chem 2007; 282:12503-16. [PMID: 17327229 DOI: 10.1074/jbc.m701450200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
N-MYC is a transcription factor that plays an important role in cellular survival in neuroblastoma, and amplification of the N-MYC oncogene is the primary adverse prognostic indicator for neuroblastoma. Focal adhesion kinase (FAK) is a survival factor that has been shown to be overexpressed in many types of human cancers. In this study, we investigated the role of N-MYC regulation of FAK expression in neuroblastoma. We first found a correlation between N-MYC and FAK expression in neuroblastoma. Real time quantitative PCR demonstrated an increase in FAK mRNA abundance in the N-MYC-amplified IMR-32 compared with the nonamplified SK-N-AS neuroblastoma cell lines. FAK protein expression also correlated positively with N-MYC expression in the N-MYC-amplified IMR-32 versus nonamplified SK-N-AS neuroblastoma cell lines. The same results were seen with the isogenic N-MYC(+) (Tet(-)) and N-MYC(-) (Tet(+)) neuroblastoma cell lines. Promoter-reporter assays showed that activity of the FAK promoter was increased in the N-MYC-amplified IMR-32 cell line, in the N-MYC-transfected SK-N-AS nonamplified cell line, and in the isogenic N-MYC(+) (Tet(-)) neuroblastoma cell lines compared with the nonamplified and N-MYC-nonexpressing cell lines. We also identified two N-MYC binding sites in the FAK promoter sequence and showed binding of N-MYC transcription factor to the FAK promoter through electrophoretic mobility shift, chromatin immunoprecipitation, and dual luciferase assays. Finally down-regulation of FAK expression in N-MYC-inducible neuroblastoma cell lines with FAK small interfering RNA or a dominant-negative FAK inhibitor (AdFAK-CD) significantly decreased viability and increased apoptosis in the N-MYC(+) (Tet(-)) cells compared with the isogenic N-MYC(-) (Tet(+)) cells, demonstrating the biological significance of FAK overexpression in the N-MYC-expressing cell lines. This is the first report linking N-MYC and FAK in neuroblastoma, and it clearly demonstrates that N-MYC induces FAK expression. The results indicate that N-MYC regulation of FAK expression can control cellular functions in isogenic N-MYC(-/+) (Tet(+/-)) neuroblastoma cell lines.
Collapse
Affiliation(s)
- Elizabeth A Beierle
- Department of Surgery, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|