1
|
Ghantous L, Volman Y, Hefez R, Wald O, Stern E, Friehmann T, Chajut A, Bremer E, Elhalel MD, Rachmilewitz J. The DNA damage response pathway regulates the expression of the immune checkpoint CD47. Commun Biol 2023; 6:245. [PMID: 36882648 PMCID: PMC9992352 DOI: 10.1038/s42003-023-04615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
CD47 is a cell surface ligand expressed on all nucleated cells. It is a unique immune checkpoint protein acting as "don't eat me" signal to prevent phagocytosis and is constitutively overexpressed in many tumors. However, the underlying mechanism(s) for CD47 overexpression is not clear. Here, we show that irradiation (IR) as well as various other genotoxic agents induce elevated expression of CD47. This upregulation correlates with the extent of residual double-strand breaks (DSBs) as determined by γH2AX staining. Interestingly, cells lacking mre-11, a component of the MRE11-RAD50-NBS1 (MRN) complex that plays a central role in DSB repair, or cells treated with the mre-11 inhibitor, mirin, fail to elevate the expression of CD47 upon DNA damage. On the other hand, both p53 and NF-κB pathways or cell-cycle arrest do not play a role in CD47 upregualtion upon DNA damage. We further show that CD47 expression is upregulated in livers harvested from mice treated with the DNA-damage inducing agent Diethylnitrosamine (DEN) and in cisplatin-treated mesothelioma tumors. Hence, our results indicate that CD47 is upregulated following DNA damage in a mre-11-dependent manner. Chronic DNA damage response in cancer cells might contribute to constitutive elevated expression of CD47 and promote immune evasion.
Collapse
Affiliation(s)
- Lucy Ghantous
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Volman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Hefez
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Stern
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Friehmann
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michal Dranitzki Elhalel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Hunter JE, Campbell AE, Butterworth JA, Sellier H, Hannaway NL, Luli S, Floudas A, Kenneth NS, Moore AJ, Brownridge PJ, Thomas HD, Coxhead J, Taylor L, Leary P, Hasoon MS, Knight AM, Garrett MD, Collins I, Eyers CE, Perkins ND. Mutation of the RelA(p65) Thr505 phosphosite disrupts the DNA replication stress response leading to CHK1 inhibitor resistance. Biochem J 2022; 479:2087-2113. [PMID: 36240065 PMCID: PMC9704643 DOI: 10.1042/bcj20220089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Achilleas Floudas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Niall S. Kenneth
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Adam J. Moore
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Huw D. Thomas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Megan S.R. Hasoon
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Andrew M. Knight
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Michelle D. Garrett
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, U.K
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton SM2 5NG, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
3
|
Hunter JE, Campbell AE, Hannaway NL, Kerridge S, Luli S, Butterworth JA, Sellier H, Mukherjee R, Dhillon N, Sudhindar PD, Shukla R, Brownridge PJ, Bell HL, Coxhead J, Taylor L, Leary P, Hasoon MS, Collins I, Garrett MD, Eyers CE, Perkins ND. Regulation of CHK1 inhibitor resistance by a c-Rel and USP1 dependent pathway. Biochem J 2022; 479:2063-2086. [PMID: 36240066 PMCID: PMC9704646 DOI: 10.1042/bcj20220102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/19/2022]
Abstract
Previously, we discovered that deletion of c-Rel in the Eµ-Myc mouse model of lymphoma results in earlier onset of disease, a finding that contrasted with the expected function of this NF-κB subunit in B-cell malignancies. Here we report that Eµ-Myc/cRel-/- cells have an unexpected and major defect in the CHK1 pathway. Total and phospho proteomic analysis revealed that Eµ-Myc/cRel-/- lymphomas highly resemble wild-type (WT) Eµ-Myc lymphomas treated with an acute dose of the CHK1 inhibitor (CHK1i) CCT244747. Further analysis demonstrated that this is a consequence of Eµ-Myc/cRel-/- lymphomas having lost expression of CHK1 protein itself, an effect that also results in resistance to CCT244747 treatment in vivo. Similar down-regulation of CHK1 protein levels was also seen in CHK1i resistant U2OS osteosarcoma and Huh7 hepatocellular carcinoma cells. Further investigation revealed that the deubiquitinase USP1 regulates CHK1 proteolytic degradation and that its down-regulation in our model systems is responsible, at least in part, for these effects. We demonstrate that treating WT Eµ-Myc lymphoma cells with the USP1 inhibitor ML323 was highly effective at reducing tumour burden in vivo. Targeting USP1 activity may thus be an alternative therapeutic strategy in MYC-driven tumours.
Collapse
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Scott Kerridge
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging (PIVI), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Reshmi Mukherjee
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Nikita Dhillon
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Praveen D. Sudhindar
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Ruchi Shukla
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Hayden L. Bell
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Peter Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Megan S.R. Hasoon
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton SM2 5NG, U.K
| | - Michelle D. Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| |
Collapse
|
4
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Radiosensitizing Effect of Bromelain Using Tumor Mice Model via Ki-67 and PARP-1 Inhibition. Integr Cancer Ther 2021; 20:15347354211060369. [PMID: 34825602 PMCID: PMC8649096 DOI: 10.1177/15347354211060369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent reports have shown that bromelain (BL), a pineapple extract, acts as an adjuvant therapy in cancer treatment and prevention of carcinogenesis. The present study was designed to investigate the possible mechanisms by which BL could radiosensitize tumor cells in vitro and in a mouse tumor model. BL has shown a significant reduction in the viability of the radioresistant human breast carcinoma (MCF-7) cell line using cell proliferation assay. The in vivo study was designed using the Ehrlich model in female albino mice, treated with BL (6 mg/kg b. wt., intraperitoneal, once daily for 10 days) 1 hour before exposure to a fractionated dose of gamma radiation (5 Gy, 1 Gy for 5 subsequent days). The radiosensitizing effect of BL was evident in terms of a significant reduction in tumor volume, poly ADP ribose polymerase-1 (PARP-1), the proliferation marker Ki-67 and nuclear factor kappa activated B cells (NF-κB) with a significant elevation in the reactive oxygen species (ROS) content and lipid peroxidation (LPO) in tumor cells. The present findings offer a novel insight into the radiosensitizing effect of BL and its potential application in the radiotherapy course.
Collapse
Affiliation(s)
- Mai H Mekkawy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Campbell AE, Ferraz Franco C, Su LI, Corbin EK, Perkins S, Kalyuzhnyy A, Jones AR, Brownridge PJ, Perkins ND, Eyers CE. Temporal modulation of the NF-κB RelA network in response to different types of DNA damage. Biochem J 2021; 478:533-551. [PMID: 33438746 PMCID: PMC7886319 DOI: 10.1042/bcj20200627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022]
Abstract
Different types of DNA damage can initiate phosphorylation-mediated signalling cascades that result in stimulus specific pro- or anti-apoptotic cellular responses. Amongst its many roles, the NF-κB transcription factor RelA is central to these DNA damage response pathways. However, we still lack understanding of the co-ordinated signalling mechanisms that permit different DNA damaging agents to induce distinct cellular outcomes through RelA. Here, we use label-free quantitative phosphoproteomics to examine the temporal effects of exposure of U2OS cells to either etoposide (ETO) or hydroxyurea (HU) by monitoring the phosphorylation status of RelA and its protein binding partners. Although few stimulus-specific differences were identified in the constituents of phosphorylated RelA interactome after exposure to these DNA damaging agents, we observed subtle, but significant, changes in their phosphorylation states, as a function of both type and duration of treatment. The DNA double strand break (DSB)-inducing ETO invoked more rapid, sustained responses than HU, with regulated targets primarily involved in transcription, cell division and canonical DSB repair. Kinase substrate prediction of ETO-regulated phosphosites suggest abrogation of CDK and ERK1 signalling, in addition to the known induction of ATM/ATR. In contrast, HU-induced replicative stress mediated temporally dynamic regulation, with phosphorylated RelA binding partners having roles in rRNA/mRNA processing and translational initiation, many of which contained a 14-3-3ε binding motif, and were putative substrates of the dual specificity kinase CLK1. Our data thus point to differential regulation of key cellular processes and the involvement of distinct signalling pathways in modulating DNA damage-specific functions of RelA.
Collapse
Affiliation(s)
- Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Catarina Ferraz Franco
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Ling-I Su
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Emma K. Corbin
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Simon Perkins
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Anton Kalyuzhnyy
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Andrew R. Jones
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | | |
Collapse
|
6
|
Li W, Li Y, Tian W, Han X, Zhao J, Xin Z, Hu H, Li J, Hang K, Xu R. 2-methylbenzoyl berbamine, a multi-targeted inhibitor, suppresses the growth of human osteosarcoma through disabling NF-κB, ERK and AKT signaling networks. Aging (Albany NY) 2020; 12:15037-15049. [PMID: 32713851 PMCID: PMC7425514 DOI: 10.18632/aging.103565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is the most common malignant bone tumor in children and young adults, and it has a survival rate of only 60% with current cytotoxic chemotherapy combined with aggressive surgery. The aim of this study was to evaluate the therapeutic efficacy of the berbamine derivative 2-methylbenzoyl berbamine (BBD24) for osteosarcoma in vitro and in vivo. We used human osteosarcoma cell lines, primary osteosarcoma cells and mouse models to evaluate the inhibitory effects of BBD24 on osteosarcoma and to determine the molecular mechanism. Our results showed that BBD24 inhibited the growth of the human osteosarcoma cell lines HOS and MG63 in a time- and dose-dependent manner. BBD24 also exhibited significant inhibitory effects on primary osteosarcoma cells. In contrast, BBD24 did not affect normal blood cells under the same conditions. Treatment with BBD24 induced apoptosis, necrosis and autophagy in osteosarcoma cells. Western blot analysis revealed that BBD24 activated the caspase-dependent pathway and downregulated the NF-kB, AKT, and ERK pathways. Finally, BBD24 treatment induced a significant inhibitory effect on the growth of osteosarcoma in nude mice. Our findings indicate that BBD24 is a multitarget inhibitor and may represent a new type of anticancer agent for osteosarcoma treatment.
Collapse
Affiliation(s)
- Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Yan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Wenjia Tian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Xiuguo Han
- Department of Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Jie Zhao
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zengfeng Xin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Hejia Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Kai Hang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Rongzhen Xu
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.,Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
7
|
Fei X, He Y, Chen J, Man W, Chen C, Sun K, Ding B, Wang C, Xu R. The role of Toll-like receptor 4 in apoptosis of brain tissue after induction of intracerebral hemorrhage. J Neuroinflammation 2019; 16:234. [PMID: 31771613 PMCID: PMC6880548 DOI: 10.1186/s12974-019-1634-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation and apoptosis caused by intracerebral hemorrhage (ICH) are two important factors that affect patient prognosis and survival. Toll-like receptor 4 (TLR4) triggers activation of the inflammatory pathway, causing synthesis and release of inflammatory factors. The inflammatory environment also causes neuronal apoptosis. However, no studies have reported the role of TLR4 in inflammation and apoptosis. Methods We performed survival curve analysis and behavioral scores on TLR4 knockout mice and wild-type mice after inducing ICH. We used TLR4 knockout mice and wild-type mice to make ICH models with type VII collagenase and explored the link between TLR4 in inflammation and apoptosis. We used Western blot to detect the expression of apoptosis-related proteins, inflammatory factors, and their receptors at different time points after ICH induction. The effects of TLR4 on apoptosis were observed by TUNEL, Hoechst, and HE staining techniques. The association with TLR4 in inflammation and apoptosis was explored using IL-1β and TNF-α antagonists. Data conforming to a normal distribution are expressed as mean ± standard deviation. Grade and quantitative data were compared with rank sum test and t test between two groups. P < 0.05 was considered statistically significant. Results TLR4 knockout significantly increased the survival rate of ICH mice. The scores of TLR4 knockout mice were significantly lower than those of wild-type mice. We found that TLR4 knockout mice significantly inhibited apoptosis and the expression of inflammatory factors after the induction of ICH. The apoptosis of ICH-induced mice was significantly improved after injecting IL-1β and TNF-α antagonists. Moreover, the anti-apoptotic effect of the antagonist in wild-type mice is more pronounced. A single injection of the antagonist failed to improve apoptosis in TLR4 knockout mice. Conclusions We conclude that TLR4-induced inflammation after ICH promotes neuronal apoptosis. IL-1β and TNF-α antagonists attenuate this apoptotic effect. Therefore, targeting TLR4 in patients with clinical ICH may attenuate inflammatory response, thereby attenuating apoptosis and improving prognosis.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.,Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China.,Dapartment of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Yeting He
- Department of Neurosurgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Jia Chen
- Affiliated BaYi Children's Hospital, Clinical Medical College in The Seventh Medical Center of PLA General Hospital, Southern Medical University, Beijing, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Chen Chen
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China
| | - Kai Sun
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China
| | - Boyun Ding
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China
| | - Chongwu Wang
- Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China. .,Affiliated Bayi Brain Hospital, General Army Hospital, Beijing, 10000, China.
| |
Collapse
|
8
|
Chen J, Stark LA. Insights into the Relationship between Nucleolar Stress and the NF-κB Pathway. Trends Genet 2019; 35:768-780. [PMID: 31434627 DOI: 10.1016/j.tig.2019.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The nuclear organelle the nucleolus and the transcription factor nuclear factor of κ-light-chain-enhancer of activated B cells (NF-κB) are both central to the control of cellular homeostasis, dysregulated in common diseases and implicated in the ageing process. Until recently, it was believed that they acted independently to regulate homeostasis in health and disease. However, there is an emerging body of evidence suggesting that nucleoli and NF-κB signalling converge at multiple levels. Here we will review current understanding of this crosstalk. We will discuss activation of the NF-κB pathway by nucleolar stress and induction of apoptosis by nucleolar sequestration of NF-κB/RelA. We will also discuss the role of TIF-IA, COMMD1, and nucleophosmin, which are key players in this crosstalk, and the therapeutic relevance, particularly with respect to the antitumour effects of aspirin.
Collapse
Affiliation(s)
- Jingyu Chen
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - Lesley A Stark
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|
9
|
Harrington BS, Annunziata CM. NF-κB Signaling in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081182. [PMID: 31443240 PMCID: PMC6721592 DOI: 10.3390/cancers11081182] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
The NF-κB signaling pathway is a master and commander in ovarian cancer (OC) that promotes chemoresistance, cancer stem cell maintenance, metastasis and immune evasion. Many signaling pathways are dysregulated in OC and can activate NF-κB signaling through canonical or non-canonical pathways which have both overlapping and distinct roles in tumor progression. The activation of canonical NF-κB signaling has been well established for anti-apoptotic and immunomodulatory functions in response to the tumor microenvironment and the non-canonical pathway in cancer stem cell maintenance and tumor re-initiation. NF-κB activity in OC cells helps to create an immune-evasive environment and to attract infiltrating immune cells with tumor-promoting phenotypes, which in turn, drive constitutive NF-κB activation in OC cells to promote cell survival and metastasis. For these reasons, NF-κB is an attractive target in OC, but current strategies are limited and broad inhibition of this major signaling pathway in normal physiological and immunological functions may produce unwanted side effects. There are some promising pre-clinical outcomes from developing research to target and inhibit NF-κB only in the tumor-reinitiating cancer cell population of OC and concurrently activate canonical NF-κB signaling in immune cells to promote anti-tumor immunity.
Collapse
|
10
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
11
|
Eng C, Messick C, Glynne-Jones R. The Management and Prevention of Anal Squamous Cell Carcinoma. Am Soc Clin Oncol Educ Book 2019; 39:216-225. [PMID: 31099616 DOI: 10.1200/edbk_237433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our aim is to discuss the current established management of care and associated prevention strategies of anal squamous cell carcinoma (SCCA). In general, the development of SCCA is commonly linked to a prior history of HPV. Unfortunately, HPV vaccination continues to be underutilized in the United States versus other countries. Increased acknowledgment of the importance of HPV vaccination as an anticancer vaccine should be encouraged. The present standard of care is primary chemoradiotherapy (CRT), which results in a high level of disease control for small, early-stage SCCA. More advanced cancers still fare poorly with this treatment, and the disease relapses locoregionally in the majority of cases (30%-50% of patients), resulting in an abdominoperineal resection. Current treatment recommendations are associated with substantial morbidity; alternative radiation doses and/or novel combinations of agents with CRT are needed to improve quality of life and oncologic outcomes. Cytotoxic chemotherapy remains the standard of care for treatment-naïve patients with metastatic disease, with a possible new treatment paradigm of carboplatin/weekly paclitaxel. In addition, immune checkpoint inhibition appears to have a promising role in the setting of patients with refractory disease. Several clinical trials with immunotherapeutic and vaccine approaches for locally advanced and metastatic anal cancer are ongoing, as are HPV-agnostic umbrella trials. Whenever possible, clinical trial enrollment is always encouraged for further therapeutic development in the setting of a rare cancer, given the potentially substantial global impact for other HPV-associated malignancies.
Collapse
Affiliation(s)
- Cathy Eng
- 1 Gastrointestinal Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Craig Messick
- 2 Surgical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rob Glynne-Jones
- 3 East and North Hertfordshire NHS Trust, Lister Hospital, Stevenage, United Kingdom
| |
Collapse
|
12
|
Ma B, Zhu J, Zhao A, Zhang J, Wang Y, Zhang H, Zhang L, Zhang Q. Raddeanin A, a natural triterpenoid saponin compound, exerts anticancer effect on human osteosarcoma via the ROS/JNK and NF-κB signal pathway. Toxicol Appl Pharmacol 2018; 353:87-101. [DOI: 10.1016/j.taap.2018.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/12/2018] [Accepted: 05/21/2018] [Indexed: 01/04/2023]
|
13
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
14
|
Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, Tõnisson N, Kramer K, Götze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, Médard G, Jeremias I, Spiekermann K, Kuster B. The target landscape of clinical kinase drugs. Science 2018; 358:358/6367/eaan4368. [PMID: 29191878 DOI: 10.1126/science.aan4368] [Citation(s) in RCA: 542] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Collapse
Affiliation(s)
- Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Harald Polzer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany
| | | | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Ruprecht
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Svenja Petzoldt
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chen Meng
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Reiter
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Huichao Qiao
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Dominic Helm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Heiner Koch
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Schoof
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | | | - Elena Casale
- Oncology, Nerviano Medical Sciences Srl, Milan, Italy
| | | | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Zhixiang Wu
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Tobias Schmidt
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | | | | | | | - Anne-Kathrin Garz
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Bjoern-Oliver Gohlke
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Structural Bioinformatics Group, Charité-Universitätsmedizin, Berlin, Germany
| | - Daniel Paul Zolg
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Gian Kayser
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tonu Vooder
- Center of Thoracic Surgery, Krefeld, Germany.,Estonian Genome Center, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Robert Preissner
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Structural Bioinformatics Group, Charité-Universitätsmedizin, Berlin, Germany
| | - Hannes Hahne
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Neeme Tõnisson
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Tartu University Hospital, Tartu, Estonia
| | - Karl Kramer
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Katharina Götze
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Florian Bassermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | | | | | | | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philipp A Greif
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Sabine Schneider
- Department of Chemistry, TUM, Garching, Germany.,Center For Integrated Protein Science Munich (CIPSM), Munich, Germany
| | | | - Juergen Ruland
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institut für Klinische Chemie und Pathobiochemie, TUM, Munich, Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich, Germany.,Department of Pediatrics, Dr von Hauner Children's Hospital, LMU, Munich, Germany
| | - Karsten Spiekermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine III, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center For Integrated Protein Science Munich (CIPSM), Munich, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany
| |
Collapse
|
15
|
The NF-κB Family of Transcription Factors and Its Role in Thyroid Physiology. VITAMINS AND HORMONES 2017; 106:195-210. [PMID: 29407436 DOI: 10.1016/bs.vh.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nuclear factor (NF)-κB signaling pathway controls a variety of important biological functions, including immune and inflammatory responses, differentiation, cell growth, tumorigenesis, and apoptosis. Two distinct pathways of NF-κB activation are known. The classical, canonical pathway is found virtually in all mammalian cells and NF-κB activation is mediated by the IKK complex, consisting of the IKK1/IKKα and IKK2/IKKβ catalytic kinase subunits and the NF-κB essential modulator (NEMO)/IKKγ protein. The NF-κB-driven transcriptional responses to many different stimuli have been widely characterized in the pathophysiology of the mammalian immune system, mainly because this transcription factor regulates the expression of cytokines, growth factors, and effector enzymes in response to ligation of cellular receptors involved in immunity and inflammation. However, an impressive literature produced in the last two decades shows that NF-κB signaling plays an important role also outside of the immune system, performing different roles and functions depending on the type of tissue and organ. In thyroid, NF-κB signaling is crucial for thyrocytes survival and expression of critical thyroid markers, including Nis, Ttf1, Pax8, Tpo, and thyroglobulin, making this transcription factor essential for maintenance of normal thyroid function.
Collapse
|
16
|
Wang W, Mani AM, Wu ZH. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. JOURNAL OF CANCER METASTASIS AND TREATMENT 2017; 3:45-59. [PMID: 28626800 PMCID: PMC5472228 DOI: 10.20517/2394-4722.2017.03] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage is a vital challenge to cell homeostasis. Cellular responses to DNA damage (DDR) play essential roles in maintaining genomic stability and survival, whose failure could lead to detrimental consequences such as cancer development and aging. Nuclear factor-kappa B (NF-κB) is a family of transcription factors that plays critical roles in cellular stress response. Along with p53, NF-κB modulates transactivation of a large number of genes which participate in various cellular processes involved in DDR. Here the authors summarize the recent progress in understanding DNA damage response and NF-κB signaling pathways. This study particularly focuses on DNA damage-induced NF-κB signaling cascade and its physiological and pathological significance in B cell development and cancer therapeutic resistance. The authors also discuss promising strategies for selectively targeting this genotoxic NF-κB signaling aiming to antagonize acquired resistance and resensitize refractory cancer cells to cytotoxic treatments.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M. Mani
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
17
|
Moles A, Butterworth JA, Sanchez A, Hunter JE, Leslie J, Sellier H, Tiniakos D, Cockell SJ, Mann DA, Oakley F, Perkins ND. A RelA(p65) Thr505 phospho-site mutation reveals an important mechanism regulating NF-κB-dependent liver regeneration and cancer. Oncogene 2016; 35:4623-32. [PMID: 26853469 PMCID: PMC4862573 DOI: 10.1038/onc.2015.526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/08/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023]
Abstract
Post-translational modifications of nuclear factor (NF)-κB subunits provide a mechanism to differentially regulate their activity in response to the many stimuli that induce this pathway. However, the physiological significance of these modifications is largely unknown, and it remains unclear if these have a critical role in the normal and pathological functions of NF-κB in vivo. Among these, phosphorylation of the RelA(p65) Thr505 residue has been described as an important regulator of NF-κB activity in cell lines, but its physiological significance was not known. Therefore, to learn more about the role of this pathway in vivo, we generated a knockin mouse with a RelA T505A mutation. Unlike RelA knockout mice, the RelA T505A mice develop normally but exhibit aberrant hepatocyte proliferation following liver partial hepatectomy or damage resulting from carbon tetrachloride (CCl4) treatment. Consistent with these effects, RelA T505A mice exhibit earlier onset of cancer in the N-nitrosodiethylamine model of hepatocellular carcinoma. These data reveal a critical pathway controlling NF-κB function in the liver that acts to suppress the tumour-promoting activities of RelA.
Collapse
Affiliation(s)
- A Moles
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - J A Butterworth
- Institute for Cell and Molecular Biosciences (ICaMB), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - A Sanchez
- Institute for Cell and Molecular Biosciences (ICaMB), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - J E Hunter
- Institute for Cell and Molecular Biosciences (ICaMB), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - J Leslie
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - H Sellier
- Institute for Cell and Molecular Biosciences (ICaMB), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - D Tiniakos
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - D A Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - F Oakley
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - N D Perkins
- Institute for Cell and Molecular Biosciences (ICaMB), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
18
|
Vinayan A, Glynne-Jones R. Anal cancer - What is the optimum chemoradiotherapy? Best Pract Res Clin Gastroenterol 2016; 30:641-53. [PMID: 27644911 DOI: 10.1016/j.bpg.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/31/2023]
Abstract
Radical concurrent chemoradiotherapy with 5FU and Mitomycin C is the standard-of-care for squamous-cell carcinoma of the anus (SCCA). Phase III trials combined radiation doses of 50-60 Gy with concurrent Fluoropyrimidines, Mitomycin C and Cisplatin in various doses and schedules. CRT is highly successful for early T1/T2 cancers, but results in appreciable late morbidities and still fails to control larger and node-positive tumours. Compliance to chemotherapy is important for local control. Modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT), rotational IMRT, image-guided radiotherapy (IGRT) have enabled smaller margins and highly conformal plans, resulting in decreased radiation doses to the organs at risk and ensuring a shorter overall treatment time. These advances offer the potential for integrating higher doses of radiation, escalation of the currently used drugs and the safe use of other more novel agents with acceptable toxicity. In this chapter potential novel approaches are discussed in the context of SCCA.
Collapse
Affiliation(s)
- A Vinayan
- Mount Vernon Centre for Cancer Treatment, Northwood, Middlesex HA6 2RN, UK.
| | - R Glynne-Jones
- Mount Vernon Centre for Cancer Treatment, Northwood, Middlesex HA6 2RN, UK.
| |
Collapse
|
19
|
Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells 2016; 5:cells5010012. [PMID: 26999213 PMCID: PMC4810097 DOI: 10.3390/cells5010012] [Citation(s) in RCA: 531] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.
Collapse
Affiliation(s)
- Frank Christian
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Emma L Smith
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
20
|
Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015; 3:e35. [PMID: 32309561 PMCID: PMC7159829 DOI: 10.15190/d.2015.27] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays significant role in immunity, cellular survival and inhibition of apoptosis, through the induction of genetic networks. Depending on the stimulus and the cell type, the members of NF-κB related family (RelA, c-Rel, RelB, p50, and p52), forms different combinations of homo and hetero-dimers. The activated complexes (Es) translocate into the nucleus and bind to the 10bp κB site of promoter region of target genes in stimulus specific manner. In response to radiation, NF-κB is known to reduce cell death by promoting the expression of anti-apoptotic proteins and activation of cellular antioxidant defense system. Constitutive activation of NF-κB associated genes in tumour cells are known to enhance radiation resistance, whereas deletion in mice results in hypersensitivity to IR-induced GI damage. NF-κB is also known to regulate the production of a wide variety of cytokines and chemokines, which contribute in enhancing cell proliferation and tissue regeneration in various organs, such as the GI crypts stem cells, bone marrow etc., following exposure to IR. Several other cytokines are also known to exert potent pro-inflammatory effects that may contribute to the increase of tissue damage following exposure to ionizing radiation. Till date there are a series of molecules or group of compounds that have been evaluated for their radio-protective potential, and very few have reached clinical trials. The failure or less success of identified agents in humans could be due to their reduced radiation protection efficacy.
In this review we have considered activation of NF-κB as a potential marker in screening of radiation countermeasure agents (RCAs) and cellular radiation responses. Moreover, we have also focused on associated mechanisms of activation of NF-κB signaling and their specified family member activation with respect to stimuli. Furthermore, we have categorized their regulated gene expressions and their function in radiation response or modulation. In addition, we have discussed some recently developed radiation countermeasures in relation to NF-κB activation
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
21
|
Bandarra D, Biddlestone J, Mudie S, Müller HAJ, Rocha S. HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals. Dis Model Mech 2014; 8:169-81. [PMID: 25510503 PMCID: PMC4314782 DOI: 10.1242/dmm.017285] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia and inflammation are intimately linked. It is known that nuclear factor κB (NF-κB) regulates the hypoxia-inducible factor (HIF) system, but little is known about how HIF regulates NF-κB. Here, we show that HIF-1α represses NF-κB-dependent gene expression. HIF-1α depletion results in increased NF-κB transcriptional activity both in mammalian cells and in the model organism Drosophila melanogaster. HIF-1α depletion enhances the NF-κB response, and this required not only the TAK-IKK complex, but also CDK6. Loss of HIF-1α results in an increased angiogenic response in mammalian cancer cells and increased mortality in Drosophila following infection. These results indicate that HIF-1α is required to restrain the NF-κB response, and thus prevents excessive and damaging pro-inflammatory responses.
Collapse
Affiliation(s)
- Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - John Biddlestone
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - H-Arno J Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, UK.
| |
Collapse
|
22
|
Liu M, Wang W, Li X, Shi D, Mei H, Jin X, Zhu J. Wedelia chinensis inhibits nasopharyngeal carcinoma CNE-1 cell growth by inducing G2/M arrest in a Chk1-dependent pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 41:1153-68. [PMID: 24117075 DOI: 10.1142/s0192415x1350078x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although Wedelia chinensis, an herb in traditional Chinese medicine, has been widely used for the treatment of inflammation, the effects of W. chinensis on cancer cell growth and the related molecular mechanisms behind these effects have largely remained unexplored to date. In the present study, W. chinensis plant extracts were obtained using either ethanol (E), petroleum ether (PE), ethyl acetate (EA) or butyl alcohol (BA). Then, extracts were examined for bioactivity in vitro via MTT assay in five human cancer cell lines. Our results showed that one subfraction of the EA extract (EA6) was cytotoxic to nasopharyngeal carcinoma (NPC) CNE-1 cells, among all cell lines evaluated. Treatment of CNE-1 cells with EA6 resulted in significant G2/M cell cycle arrest and modest apoptosis. EA6 induced Chk1 activation and inhibition of Chk1 in CNE-1 cells by RNA interference (RNAi) markedly abrogated EA6-mediated G2/M arrest and abolished EA6-induced cytotoxicity. EA6 treatment resulted in notable reduction of c-myc expression in CNE-1 cells, whereas silencing Chk1 inhibited such effects of EA6. Our results indicate that Chk1 is a novel molecular target of EA6 in NPC cells and also suggest an intervention strategy for NPC by EA6 exploring its molecular mechanisms of action.
Collapse
Affiliation(s)
- Manyu Liu
- Institute of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, P. R. China , Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, P. R. China , School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, P. R. China , School of Pharmaceutical Science, Southern Medical University, Guangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
23
|
Yamada K, Ono M, Bensaddek D, Lamond AI, Rocha S. FMN2 is a novel regulator of the cyclin-dependent kinase inhibitor p21. Cell Cycle 2013; 12:2348-54. [PMID: 23839046 PMCID: PMC3841313 DOI: 10.4161/cc.25511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have identified the human FMN2 gene as a novel target regulated by induction of p14ARF and by multiple other stress responses, including DNA damage and hypoxia, which have in common activation of cell cycle arrest. We showed that increased expression of the FMN2 gene following p14ARF induction is caused, at the transcriptional level, by relief of repression by RelA and E2F1, which, under non-induced conditions, bind the FMN2 promoter. Increased FMN2 protein levels promote cell cycle arrest by inhibiting the degradation of p21, and our data show that control of p21 stability is a key part of the mechanism that regulates p21 induction. Consistent with this model, we have shown that transient expression of exogenous FMN2 protein alone is sufficient to increase p21 protein levels in cells, without altering p21 mRNA levels. Here, we provide additional evidence for the role of the N terminus of FMN2 as being the important domain required for p21 stability. In addition, we also investigate the role of RelA's threonine 505 residue in the control of FMN2. Our results identify FMN2 as a crucial protein involved in the control of p21.
Collapse
Affiliation(s)
- Kayo Yamada
- Centre for Gene Regulation and Expression; College of Life Sciences; University of Dundee; Dundee, Scotland, UK
| | | | | | | | | |
Collapse
|
24
|
miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene 2012; 32:4284-93. [DOI: 10.1038/onc.2012.433] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/05/2012] [Accepted: 08/06/2012] [Indexed: 01/01/2023]
|
25
|
Iwahori K, Serada S, Fujimoto M, Ripley B, Nomura S, Mizuguchi H, Shimada K, Takahashi T, Kawase I, Kishimoto T, Naka T. SOCS-1gene delivery cooperates with cisplatin plus pemetrexed to exhibit preclinical antitumor activity against malignant pleural mesothelioma. Int J Cancer 2012; 132:459-71. [DOI: 10.1002/ijc.27611] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/16/2012] [Indexed: 01/29/2023]
|
26
|
Schmitt AM, Crawley CD, Kang S, Raleigh DR, Yu X, Wahlstrom JS, Voce DJ, Darga TE, Weichselbaum RR, Yamini B. p50 (NF-κB1) is an effector protein in the cytotoxic response to DNA methylation damage. Mol Cell 2012; 44:785-96. [PMID: 22152481 DOI: 10.1016/j.molcel.2011.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/05/2011] [Accepted: 09/20/2011] [Indexed: 12/24/2022]
Abstract
The functional significance of the signaling pathway induced by O(6)-methylguanine (O(6)-MeG) lesions is poorly understood. Here, we identify the p50 subunit of NF-κB as a central target in the response to O(6)-MeG and demonstrate that p50 is required for S(N)1-methylator-induced cytotoxicity. In response to S(N)1-methylation, p50 facilitates the inhibition of NF-κB-regulated antiapoptotic gene expression. Inhibition of NF-κB activity is noted to be an S phase-specific phenomenon that requires the formation of O(6)-MeG:T mismatches. Chk1 associates with p50 following S(N)1-methylation, and phosphorylation of p50 by Chk1 results in the inhibition of NF-κB DNA binding. Expression of an unphosphorylatable p50 mutant blocks inhibition of NF-κB-regulated antiapoptotic gene expression and attenuates S(N)1-methylator-induced cytotoxicity. While O(6)-MeG:T-induced, p50-dependent signaling is not sufficient to induce cell death, this pathway sensitizes cells to the cytotoxic effects of DNA breaks.
Collapse
Affiliation(s)
- Adam M Schmitt
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, Park SK, Lee SY, Han MK, Kim DH, Kim W. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun 2012; 419:206-10. [PMID: 22330808 DOI: 10.1016/j.bbrc.2012.01.148] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 01/30/2012] [Indexed: 12/22/2022]
Abstract
As the increased acetylation of p65 is linked to nuclear factor-κB (NF-κB) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-κB p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-κB during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-κB p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-κB through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.
Collapse
Affiliation(s)
- Yu Jin Jung
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
It is only recently that the full importance of nuclear factor-κB (NF-κB) signalling to cancer development has been understood. Although much attention has focused on the upstream pathways leading to NF-κB activation, it is now becoming clear that the inhibitor of NF-κB kinases (IKKs), which regulate NF-κB activation, have many independent functions in tissue homeostasis and normal immune function that could compromise the clinical utility of IKK inhibitors. Therefore, if the NF-κB pathway is to be properly exploited as a target for both anticancer and anti-inflammatory drugs, it is appropriate to reconsider the complex roles of the individual NF-κB subunits.
Collapse
Affiliation(s)
- Neil D Perkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
29
|
Deckmann K, Rörsch F, Geisslinger G, Grösch S. Dimethylcelecoxib induces an inhibitory complex consisting of HDAC1/NF-κB(p65)RelA leading to transcriptional downregulation of mPGES-1 and EGR1. Cell Signal 2011; 24:460-467. [PMID: 21983014 DOI: 10.1016/j.cellsig.2011.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/24/2011] [Indexed: 11/27/2022]
Abstract
Dimethylcelecoxib, a non-COX-2 inhibiting derivative of celecoxib, inhibits PGE(2) synthesis by transcriptional inhibition of mPGES-1. Previously we demonstrated that DMC downregulates EGR1 expression and increases nuclear NF-κB in human cervical cancer cells (HeLa). Both transcription factors are important regulators of mPGES-1 expression. Here we show that treatment of HeLa cells with DMC inhibits EGR1 promoter activity by influencing the transactivation activity of NF-κB. Mutation of the NF-κB motif as well as downregulation of NF-κB(p65)RelA using siRNA repealed the inhibitory effect of DMC on the EGR1 promoter. The transactivation activity of NF-κB is regulated by various co-activators or co-repressors. One of these co-repressors is HDAC1. DMC did not influence HDAC1 expression, but the HDAC activity was enhanced under DMC influence. After DMC treatment NF-κB co-immunoprecipitated with HDAC1. Electromobility shift assays depicted an increased interaction between NF-κB-HDAC1 and DNA containing NF-κB binding motives. Performing CHIP-assays we finally demonstrated the interaction of NF-κB and HDAC1 at the EGR1 promoter that was in part reversed by the HDAC1 inhibitor trichostatin A. Using siRNA against HDAC1 we could repeal the inhibitory effect of DMC on the EGR1 promoter. In conclusion we demonstrated that treatment of HeLa cells with DMC leads to an enhanced formation of a complex consisting of NF-κB and HDAC1 that binds to the EGR1 promoter resulting in downregulation of EGR1 expression which plays a major role for transcriptional inhibition of mGPES-1 expression. How these effects of DMC may contribute to a potential therapeutical benefit of various diseases is discussed.
Collapse
Affiliation(s)
- Klaus Deckmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt/Main, Germany
| | - Florian Rörsch
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt/Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt/Main, Germany
| | - Sabine Grösch
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
30
|
Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem Pharmacol 2011; 82:1371-83. [PMID: 21872579 DOI: 10.1016/j.bcp.2011.07.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 01/11/2023]
Abstract
Alteration of the genome integrity leads to the activation of a vast network of cellular responses named "DNA damage response". Three kinases from the phosphoinositide 3-kinase-like protein kinase family regulate this network; ATM and DNA-PK both activated by DNA double-strand breaks and ATR activated by replication blocks. "DNA damage response" pathway coordinates cell cycle arrest, DNA repair, and the activation of transcription factors such as p53 and NF-κB. It controls senescence/apoptosis/survival of the damaged cells. Cell death or survival result from a tightly regulated balance between antagonist pro- and anti-apoptotic signals. NF-κB is a key transcription factor involved in immunity, inflammation and cell transformation. When activated by DNA double-strand breaks, NF-κB has most often a pro-survival effect and thereof interferes with chemotherapy treatments that often rely on DNA damage to induce tumor cell death (i.e. topoisomerase inhibitors and ionizing radiation). NF-κB is thus an important pharmaceutical target. Agents leading to replication stress induce a pro-apoptotic NF-κB. The molecular mechanisms initiated by DNA lesions leading to NF-κB nuclear translocation have been extensively studied these last years. In this review, we will focus on ATM, ATR and DNA-PK functions both in the IKKα/IKKβ/NEMO-dependent or -independent signaling pathways and on the regulation they can exercise at the promoter level of NF-κB regulated genes.
Collapse
|
31
|
Johnson RF, Witzel II, Perkins ND. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Cancer Res 2011; 71:5588-97. [PMID: 21742773 DOI: 10.1158/0008-5472.can-10-4252] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activity of the nuclear factor kappaB (NF-κB) transcription factor family, which regulates cellular responses to stress and infection, is associated with many human cancers. In this study, we define a function of NF-κB in regulation of cellular respiration that is dependent upon the tumor suppressor p53. Translocation of the NF-κB family member RelA to mitochondria was inhibited by p53 by blocking an essential interaction with the HSP Mortalin. However, in the absence of p53, RelA was transported into the mitochondria and recruited to the mitochondrial genome where it repressed mitochondrial gene expression, oxygen consumption, and cellular ATP levels. We found mitochondrial RelA function to be dependent on its conserved C-terminal transactivation domain and independent of its sequence-specific DNA-binding ability, suggesting that its function in this setting was mediated by direct interaction with mitochondrial transcription factors. Taken together, our findings uncover a new mechanism through which RelA can regulate mitochondrial function, with important implications for how NF-κB activity and loss of p53 can contribute to changes in tumor cell metabolism and energy production.
Collapse
Affiliation(s)
- Renée F Johnson
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle Upon Tyne, United Kingdom
| | | | | |
Collapse
|
32
|
Msaki A, Sánchez AM, Koh LF, Barré B, Rocha S, Perkins ND, Johnson RF. The role of RelA (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration. Mol Biol Cell 2011; 22:3032-40. [PMID: 21737676 PMCID: PMC3164452 DOI: 10.1091/mbc.e11-04-0280] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RelA (p65) phosphorylation at threonine 505 acts as a negative regulator of NF-κB function. In addition to its role in regulation of cell death, a role is demonstrated for T505 phosphorylation in regulating autophagy, proliferation, and migration. NOXA is also identified as a downstream, T505-dependent effector of RelA in cell death. The NF-κB family of transcription factors is a well-established regulator of the immune and inflammatory responses and also plays a key role in other cellular processes, including cell death, proliferation, and migration. Conserved residues in the trans-activation domain of RelA, which can be posttranslationally modified, regulate divergent NF-κB functions in response to different cellular stimuli. Using rela−/− mouse embryonic fibroblasts reconstituted with RelA, we find that mutation of the threonine 505 (T505) phospho site to alanine has wide-ranging effects on NF-κB function. These include previously described effects on chemotherapeutic drug-induced apoptosis, as well as new roles for this modification in autophagy, cell proliferation, and migration. This last effect was associated with alterations in the actin cytoskeleton and expression of cellular migration–associated genes such as WAVE3 and α-actinin 4. We also define a new component of cisplatin-induced, RelA T505–dependent apoptosis, involving induction of NOXA gene expression, an effect explained at least in part through induction of the p53 homologue, p73. Therefore, in contrast to other RelA phosphorylation events, which positively regulate NF-κB function, we identified RelA T505 phosphorylation as a negative regulator of its ability to induce diverse cellular processes such as apoptosis, autophagy, proliferation, and migration.
Collapse
Affiliation(s)
- Aichi Msaki
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Feng G, Abdalla M, Li Y, Bai Y. NF-κB mediates the induction of Fas receptor and Fas ligand by microcystin-LR in HepG2 cells. Mol Cell Biochem 2011; 352:209-19. [PMID: 21359529 DOI: 10.1007/s11010-011-0756-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 02/17/2011] [Indexed: 01/27/2023]
Abstract
Microcystin-LR (MC-LR) is the most frequent and most toxic microcystin identified. This natural toxin has multiple features, including inhibitor of protein phosphatases 1 and 2A, inducer of oxidative stress, as well as, tumor initiator and promoter. One unique character of MC-LR is this chemical can accumulate into liver after contacting and lead to severe damage to hepatocytes, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling system initiating apoptosis. In current study, we explored whether MC-LR could induce Fas and FasL expression in HepG2 cells, a well used in vitro model for the study of human hepatocytes. The data showed MC-LR induced Fas and FasL expression, at both mRNA and protein levels. We also found MC-LR induced apoptosis at the same incubation condition at which it induced Fas and FasL expression. The data also revealed MC-LR promoted nuclear translocation and activation of p65 subunit of NF-κB. By applying siRNA to knock down p65 in HepG2 cells, we successfully impaired the activation of NF-κB by MC-LR. In these p65 knockdown cells, we also observed significant reduction of MC-LR-induced Fas expression, FasL expression, and apoptosis. These findings demonstrate that the NF-κB mediates the induction of Fas and FasL as well as cellular apoptosis by MC-LR in HepG2 cells. The results bring important information for understanding how MC-LR induces apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Gong Feng
- Department of Pathology, Northwestern University, Chicago, IL 60613, USA.
| | | | | | | |
Collapse
|
34
|
Ho JQ, Asagiri M, Hoffmann A, Ghosh G. NF-κB potentiates caspase independent hydrogen peroxide induced cell death. PLoS One 2011; 6:e16815. [PMID: 21347231 PMCID: PMC3039651 DOI: 10.1371/journal.pone.0016815] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/11/2011] [Indexed: 12/15/2022] Open
Abstract
Background The pro-survival activity of NF-κB in response to a variety of stimuli has been extensively characterized. Although there have been a few reports addressing the pro-cell death role of NF-κB, the precise mechanism of NF-κB's pro-cell death function still remains elusive. Methodology/Principal Findings In the present study, we investigated the role of NF-κB in cell death induced by chronic insult with hydrogen peroxide (H2O2). Here, we show that NF-κB promotes H2O2 induced caspase independent but PARP dependent fibroblast cell death. The pro-death activity of NF-κB is due to the DNA binding activity of RelA, which is induced through IKK- mediated IκBα degradation. NF-κB dependent pro-survival genes, Bcl-2 and XIAP, were significantly repressed, while NF-κB dependent pro-death genes, TNFα and Fas Ligand, were induced in response to H2O2. Conclusions/Significance We discovered an unexpected function of NF-κB, in that it potentiates chronic H2O2 exposure induced cell death, and suggest that NF-κB mediates cell death through the repression of pro-survival genes and induction of pro-death genes. Since unremitting exposure of tissues to H2O2 and other reactive oxygen species can lead to several degenerative disorders and diseases, our results have important implications for the use of NF-κB inhibitors in therapeutic drug design.
Collapse
Affiliation(s)
- Jessica Q. Ho
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Masataka Asagiri
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rauch DA, Hurchla MA, Harding JC, Deng H, Shea LK, Eagleton MC, Niewiesk S, Lairmore MD, Piwnica-Worms D, Rosol TJ, Weber JD, Ratner L, Weilbaecher KN. The ARF tumor suppressor regulates bone remodeling and osteosarcoma development in mice. PLoS One 2010; 5:e15755. [PMID: 21209895 PMCID: PMC3012707 DOI: 10.1371/journal.pone.0015755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/22/2010] [Indexed: 12/30/2022] Open
Abstract
The ARF tumor suppressor regulates p53 as well as basic developmental processes independent of p53, including osteoclast activation, by controlling ribosomal biogenesis. Here we provide evidence that ARF is a master regulator of bone remodeling and osteosarcoma (OS) development in mice. Arf-/- mice displayed increased osteoblast (OB) and osteoclast (OC) activity with a significant net increase in trabecular bone volume. The long bones of Arf-/- mice had increased expression of OB genes while Arf-/- OB showed enhanced differentiation in vitro. Mice transgenic for the Tax oncogene develop lymphocytic tumors with associated osteolytic lesions, while Tax+Arf-/- mice uniformly developed spontaneous OS by 7 months of age. Tax+Arf-/- tumors were well differentiated OS characterized by an abundance of new bone with OC recruitment, expressed OB markers and displayed intact levels of p53 mRNA and reduced Rb transcript levels. Cell lines established from OS recapitulated characteristics of the primary tumor, including the expression of mature OB markers and ability to form mineralized tumors when transplanted. Loss of heterozygosity in OS tumors arising in Tax+Arf+/- mice emphasized the necessity of ARF-loss in OS development. Hypothesizing that inhibition of ARF-regulated bone remodeling would repress development of OS, we demonstrated that treatment of Tax+Arf-/- mice with zoledronic acid, a bisphosphonate inhibitor of OC activity and repressor of bone turnover, prevented or delayed the onset of OS. These data describe a novel role for ARF as a regulator of bone remodeling through effects on both OB and OC. Finally, these data underscore the potential of targeting bone remodeling as adjuvant therapy or in patients with genetic predispositions to prevent the development of OS.
Collapse
Affiliation(s)
- Daniel A. Rauch
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle A. Hurchla
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John C. Harding
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hongju Deng
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lauren K. Shea
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mark C. Eagleton
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefan Niewiesk
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael D. Lairmore
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas J. Rosol
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jason D. Weber
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katherine N. Weilbaecher
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
36
|
Courapied S, Sellier H, de Carné Trécesson S, Vigneron A, Bernard AC, Gamelin E, Barré B, Coqueret O. The cdk5 kinase regulates the STAT3 transcription factor to prevent DNA damage upon topoisomerase I inhibition. J Biol Chem 2010; 285:26765-26778. [PMID: 20516069 DOI: 10.1074/jbc.m109.092304] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The STAT3 transcription factors are cytoplasmic proteins that induce gene activation in response to growth factor stimulation. Following tyrosine phosphorylation, STAT3 proteins dimerize, translocate to the nucleus, and activate specific target genes involved in cell-cycle progression. Despite its importance in cancer cells, the molecular mechanisms by which this protein is regulated in response to DNA damage remain to be characterized. In this study, we show that STAT3 is activated in response to topoisomerase I inhibition. Following treatment, STAT3 is phosphorylated on its C-terminal serine 727 residue but not on its tyrosine 705 site. We also show that topoisomerase I inhibition induced the up-regulation of the cdk5 kinase, a protein initially described in neuronal stress responses. In co-immunoprecipitations, cdk5 was found to associate with STAT3, and pulldown experiments indicated that it associates with the C-terminal activation domain of STAT3 upon DNA damage. Importantly, the cdk5-STAT3 pathway reduced DNA damage in response to topoisomerase I inhibition through the up-regulation of Eme1, an endonuclease involved in DNA repair. ChIP experiments indicated that STAT3 can be found associated with the Eme1 promoter when phosphorylated only on its serine 727 residue and not on tyrosine 705. We therefore propose that the cdk5-STAT3 oncogenic pathway plays an important role in the expression of DNA repair genes and that these proteins could be used as predictive markers of tumors that will fail to respond to chemotherapy.
Collapse
Affiliation(s)
- Sandy Courapied
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | - Hélène Sellier
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | | | - Arnaud Vigneron
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | | | - Erick Gamelin
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | - Benjamin Barré
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | - Olivier Coqueret
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France.
| |
Collapse
|
37
|
Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:775-87. [PMID: 20493977 DOI: 10.1016/j.bbagrm.2010.05.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/08/2010] [Indexed: 12/21/2022]
Abstract
Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitination, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50-p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitination, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Because of the critical role of NF-κB in cancer and various chronic diseases, numerous inhibitors of NF-κB have been identified. In this review, however, we describe only small molecules that suppress NF-κB activation, and the mechanism by which they block this pathway.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
38
|
IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth. Proc Natl Acad Sci U S A 2010; 107:7497-502. [PMID: 20368414 DOI: 10.1073/pnas.0907696107] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BAG3, a member of the BAG family of heat shock protein (HSP) 70 cochaperones, is expressed in response to stressful stimuli in a number of normal cell types and constitutively in a variety of tumors, including pancreas carcinomas, lymphocytic and myeloblastic leukemias, and thyroid carcinomas. Down-regulation of BAG3 results in cell death, but the underlying molecular mechanisms are still elusive. Here, we investigated the molecular mechanism of BAG3-dependent survival in human osteosarcoma (SAOS-2) and melanoma (M14) cells. We show that bag3 overexpression in tumors promotes survival through the NF-kappaB pathway. Indeed, we demonstrate that BAG3 alters the interaction between HSP70 and IKKgamma, increasing availability of IKKgamma and protecting it from proteasome-dependent degradation; this, in turn, results in increased NF-kappaB activity and survival. These results identify bag3 as a potential target for anticancer therapies in those tumors in which this gene is constitutively expressed. As a proof of principle, we show that treatment of a mouse xenograft tumor model with bag3siRNA-adenovirus that down-regulates bag3 results in reduced tumor growth and increased animal survival.
Collapse
|
39
|
Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal 2010; 22:1282-90. [PMID: 20363318 DOI: 10.1016/j.cellsig.2010.03.017] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 03/25/2010] [Indexed: 01/13/2023]
Abstract
The eukaryotic transcription factor NF-kappaB regulates a wide range of host genes that control the inflammatory and immune responses, programmed cell death, cell proliferation and differentiation. The activation of NF-kappaB is tightly controlled both in the cytoplasm and in the nucleus. While the upstream cytoplasmic regulatory events for the activation of NF-kappaB are well studied, much less is known about the nuclear regulation of NF-kappaB. Emerging evidence suggests that NF-kappaB undergoes a variety of posttranslational modifications, and that these modifications play a key role in determining the duration and strength of NF-kappaB nuclear activity as well as its transcriptional output. Here we summarize the recent advances in our understanding of the posttranslational modifications of NF-kappaB, the interplay between the various modifications, and the physiological relevance of these modifications.
Collapse
|
40
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
It has previously been shown that ubiquitin-specific protease 2a (USP2a) is a regulator of the Mdm2/p53 pathway. USP2a binds to Mdm2 and can deubiquitinate Mdm2 without reversing Mdm2-mediated p53 ubiquitination. Overexpression of USP2a causes accumulation of Mdm2 and promotes p53 degradation. We now show that MdmX is also a substrate for USP2a. MdmX associates with USP2a independently of Mdm2. Ectopic expression of wild-type USP2a but not a catalytic mutant prevents Mdm2-mediated degradation of MdmX. This correlates with the ability of wild-type USP2a to deubiquitinate MdmX. siRNA-mediated knockdown of USP2a in NTERA-2 testicular embryonal carcinoma cells and MCF7 breast cancer cells causes destabilization of MdmX and results in a decrease in MdmX protein levels, showing that endogenous USP2a participates in the regulation of MdmX stability. The therapeutic drug, cisplatin decreases MdmX protein expression. USP2a mRNA and protein levels were also reduced after cisplatin exposure. The magnitude and time course of USP2a downregulation suggests that the reduction in USP2a levels could contribute to the decrease in MdmX expression following treatment with cisplatin. Knockdown of USP2a increases the sensitivity of NTERA-2 cells to cisplatin, raising the possibility that suppression of USP2a in combination with cisplatin may be an approach for cancer therapy.
Collapse
|
42
|
Lomonaco SL, Xu XS, Wang G. The role of Bcl-x(L) protein in nucleotide excision repair-facilitated cell protection against cisplatin-induced apoptosis. DNA Cell Biol 2009; 28:285-94. [PMID: 19317621 PMCID: PMC2903458 DOI: 10.1089/dna.2008.0815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/21/2008] [Accepted: 12/22/2008] [Indexed: 11/13/2022] Open
Abstract
Many anticancer drugs target the genomic DNA of cancer cells by generating DNA damage and inducing apoptosis. DNA repair protects cells against DNA damage-induced apoptosis. Although the mechanisms of DNA repair and apoptosis have been extensively studied, the mechanism by which DNA repair prevents DNA damage-induced apoptosis is not fully understood. We studied the role of the antiapoptotic Bcl-x(L) protein in nucleotide excision repair (NER)-facilitated cell protection against cisplatin-induced apoptosis. Using both normal human fibroblasts (NF) and NER-defective xeroderma pigmentosum group A (XPA) and group G (XPG) fibroblasts, we demonstrated that a functional NER is required for cisplatin-induced transcription of the bcl-x(l) gene. The results obtained from our Western blots revealed that the cisplatin treatment led to an increase in the level of Bcl-x(L) protein in NF cells, but a decrease in the level of Bcl-x(L) protein in both XPA and XPG cells. The results of our immunofluorescence staining indicated that a functional NER pathway was required for cisplatin-induced translocation of NF-kappaB p65 from cytoplasm into nucleus, indicative of NF-kappaB activation. Given the important function of NF-kappaB in regulating transcription of the bcl-x(l) gene and the Bcl-x(L) protein in preventing apoptosis, these results suggest that NER may protect cells against cisplatin-induced apoptosis by activating NF-kappaB, which further induces transcription of the bcl-x(l) gene, resulting in an accumulation of Bcl-x(L) protein and activation of the cell survival pathway that leads to increased cell survival under cisplatin treatment.
Collapse
Affiliation(s)
- Stephanie L Lomonaco
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
43
|
Ammann JU, Haag C, Kasperczyk H, Debatin KM, Fulda S. Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-kappaB inhibition. Int J Cancer 2009; 124:1301-11. [PMID: 19065652 DOI: 10.1002/ijc.24068] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) plays a central role in stress-induced transcriptional activation and has been implicated in chemoresistance of cancers. In the present study, we investigated the role of NF-kappaB in inducible chemoresistance of neuroblastoma. Doxorubicin, VP16 and the cytotoxic ligand TRAIL trigger NF-kappaB activation, whereas cisplatin and taxol have no impact on NF-kappaB activity. Specific inhibition of NF-kappaB activation by overexpression of dominant-negative mutant IkappaBalpha-super-repressor does not alter cell death upon doxorubicin or VP16 treatment, although it prevents doxorubicin- or VP16-mediated NF-kappaB activation. By comparison, inhibition of TRAIL-stimulated NF-kappaB activation by IkappaBalpha-superrepressor or the small molecule NF-kappaB inhibitor BMS-345541 significantly enhances TRAIL-induced apoptosis, pointing to an antiapoptotic function of NF-kappaB in TRAIL-mediated apoptosis. Analysis of signaling pathways reveals that NF-kappaB inhibition prevents TRAIL-triggered up-regulation of Mcl-1, promoting TRAIL-induced cytochrome c release and activation of caspases. Accordingly, knockdown of Mcl-1 by RNA interference significantly enhances TRAIL-induced apoptosis and also increases sensitivity of neuroblastoma cells to CD95- or chemotherapy-induced apoptosis. In conclusion, NF-kappaB regulates apoptosis in a stimulus-specific manner in neuroblastoma cells and confers protection against TRAIL-induced apoptosis. By demonstrating that NF-kappaB inhibition sensitizes neuroblastoma cells for TRAIL-induced apoptosis, our findings have important implications. Thus, NF-kappaB inhibitors may open new perspectives to potentiate the efficacy of TRAIL-based protocols in the treatment of neuroblastoma.
Collapse
|
44
|
Dey A, Tergaonkar V, Lane DP. Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat Rev Drug Discov 2008; 7:1031-40. [PMID: 19043452 DOI: 10.1038/nrd2759] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p53 and nuclear factor-kappaB (NF-kappaB) pathways play crucial roles in human cancer, in which inactivation of p53 and hyperactivation of NF-kappaB is a common occurrence. Activation of p53 and inhibition of NF-kappaB promotes apoptosis. Although drugs are being designed to selectively activate p53 or inhibit NF-kappaB, there is no concerted effort yet to deliberately make drugs that can simultaneously do both. Recent results suggest that a surprising selection of small molecules have this desirable dual activity. In this Review we describe the principles behind such dual activities, describe the current candidate molecules and suggest mechanisms and approaches to their further development.
Collapse
Affiliation(s)
- Anwesha Dey
- Laboratory of Cell Cycle Control, Institute of Molecular and Cell Biology, Proteos, 138673 Singapore
| | | | | |
Collapse
|
45
|
Abstract
The RelA (p65) NF-kappaB (nuclear factor kappaB) subunit contains an extremely active C-terminal transcriptional activation domain, required for its cellular function. In the present article, we review our knowledge of this domain, its modifications and its known interacting proteins. Moreover, we discuss how analysis of its evolutionary conservation reveals distinct subdomains and conserved residues that might give insights into its regulation and function.
Collapse
|
46
|
Bednarski BK, Ding X, Coombe K, Baldwin AS, Kim HJ. Active roles for inhibitory kappaB kinases alpha and beta in nuclear factor-kappaB-mediated chemoresistance to doxorubicin. Mol Cancer Ther 2008; 7:1827-35. [PMID: 18644995 DOI: 10.1158/1535-7163.mct-08-0321] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapy agents have been shown to induce the transcription factor nuclear factor-kappaB (NF-kappaB) and subsequent chemoresistance in fibrosarcomas and other cancers. The mechanism of NF-kappaB-mediated chemoresistance remains unclear, with a previous report suggesting that doxorubicin induces this response independent of the inhibitory kappaB kinases (IKK). Other studies have indicated that IKKbeta, but not IKKalpha, is required. Mouse embryo fibroblasts devoid of IKKalpha, IKKbeta, or both subunits (double knockout) were treated with doxorubicin. The absence of either IKKalpha or IKKbeta or both kinases resulted in impaired induction of NF-kappaB DNA-binding activity in response to doxorubicin. To provide a valid clinical correlate, HT1080 human fibrosarcoma cells were transfected with small interference RNA specific for IKKalpha or IKKbeta and then subsequently treated with doxorubicin. Knockdown of IKKalpha severely impaired the ability of doxorubicin to initiate NF-kappaB DNA-binding activity. However, a decrease in either IKKalpha or IKKbeta resulted in decreased phosphorylation of p65 in response to doxorubicin. The inhibition of doxorubicin-induced NF-kappaB activation by the knockdown of either catalytic subunit resulted in increased cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase and increased apoptosis when compared with doxorubicin alone. The results of this study validate current approaches aimed at NF-kappaB inhibition to improve clinical therapies. Moreover, we show that IKKalpha plays a critical role in NF-kappaB-mediated chemoresistance in response to doxorubicin and may serve as a potential target in combinational strategies to improve chemotherapeutic response.
Collapse
Affiliation(s)
- Brian K Bednarski
- Lineberger Comprehensive Cancer Center and Department of Surgery, University of North Carolina at Chapel Hill, 3010 Old Clinic Building, CB 7213, Chapel Hill, NC 27599-7213, USA
| | | | | | | | | |
Collapse
|
47
|
Induction of a pro-apoptotic ATM-NF-kappaB pathway and its repression by ATR in response to replication stress. EMBO J 2008; 27:1963-73. [PMID: 18583959 DOI: 10.1038/emboj.2008.127] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 06/02/2008] [Indexed: 11/08/2022] Open
Abstract
The transcription factor NF-kappaB has critical functions in biologic responses to genotoxic stimuli. Activation of NF-kappaB in response to DNA double strand break (DSB) inducers can be mediated by ATM (ataxia telangiectasia mutated)-dependent phosphorylation of NEMO (NF-kappaB essential modulator). Here, we show that the replication stress inducers hydroxyurea (HU) and aphidicolin also activate this ATM-dependent signalling pathway. We further show that ATR (ATM- and Rad3-related) interacts with NEMO but surprisingly does not cause NEMO phosphorylation. Consequently, ATR represses NF-kappaB activation induced by replication stress. Reduction or increase of ATR expression by RNA interference or overexpression increased or reduced ATM-NEMO association and NF-kappaB activation induced by HU. Apoptosis gene expression and chromatin immunoprecipitation analyses indicated that HU and the DSB inducer etoposide caused complex patterns of NF-kappaB-dependent pro- and antiapoptotic gene expression with the overall outcome for the former being pro-apoptotic, whereas the latter antiapoptotic. Thus, replication stress and DSB inducers activate NF-kappaB through a conserved pathway with opposite biologic outcomes, and ATR antagonizes ATM function at least in part by competing for NEMO association.
Collapse
|
48
|
Cvek B, Dvorak Z. The value of proteasome inhibition in cancer. Can the old drug, disulfiram, have a bright new future as a novel proteasome inhibitor? Drug Discov Today 2008; 13:716-22. [PMID: 18579431 DOI: 10.1016/j.drudis.2008.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 12/22/2022]
Abstract
The major approach to the development of anticancer drugs involves searching for new compounds, efficient against malignancies, which are not, as yet, used clinically. This strategy is time-consuming and expensive. Recent studies have disclosed a surprising, but mechanistically consistent, anticancer activity of disulfiram (antabuse), a drug used for about 50 years in the treatment of alcoholism. Disulfiram has been successfully used to suppress hepatic metastases originating from ocular melanoma. The pharmacokinetics of disulfiram and its pharmacological profile in cancer cell lines and in cancer cells obtained from patients is well known. Disulfiram is a readily available and inexpensive substance whose adverse effects are negligible, compared to classical cancerostatics. In addition, the inhibitory potency of disulfiram against the proteasome conforms to current anticancer strategies and represents a new, promising approach to proteasome inhibition.
Collapse
Affiliation(s)
- Boris Cvek
- Department of Medical Chemistry and Biochemistry at Palacky University, Hnevotinska 3, Olomouc 77515, Czech Republic.
| | | |
Collapse
|
49
|
Fan Y, Dutta J, Gupta N, Fan G, Gélinas C. Regulation of programmed cell death by NF-kappaB and its role in tumorigenesis and therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:223-50. [PMID: 18437897 DOI: 10.1007/978-1-4020-6554-5_11] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Rel/NF-kappaB transcription factors are key regulators of programmed cell death (PCD). Their activity has significant physiological relevance for normal development and homeostasis in various tissues and important pathological consequences are associated with aberrant NF-kappaB activity, including hepatocyte apoptosis, neurodegeneration, and cancer. While NF-kappaB is best characterized for its protective activity in response to proapoptotic stimuli, its role in suppressing programmed necrosis has come to light more recently. NF-kappaB most commonly antagonizes PCD by activating the expression of antiapoptotic proteins and antioxidant molecules, but it can also promote PCD under certain conditions and in certain cell types. It is therefore important to understand the pathways that control NF-kappaB activation in different settings and the mechanisms that regulate its anti- vs pro-death activities. Here, we review the role of NF-kappaB in apoptotic and necrotic PCD, the mechanisms involved, and how its activity in the cell death response impacts cancer development, progression, and therapy. Given the role that NF-kappaB plays both in tumor cells and in the tumor microenvironment, recent findings underscore the NF-kappaB signaling pathway as a promising target for cancer prevention and treatment.
Collapse
Affiliation(s)
- Yongjun Fan
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854-5638, USA
| | | | | | | | | |
Collapse
|
50
|
Gupta N, Delrow J, Drawid A, Sengupta AM, Fan G, Gélinas C. Repression of B-cell linker (BLNK) and B-cell adaptor for phosphoinositide 3-kinase (BCAP) is important for lymphocyte transformation by rel proteins. Cancer Res 2008; 68:808-14. [PMID: 18245482 DOI: 10.1158/0008-5472.can-07-3169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Persistent Rel/nuclear factor-kappaB (NF-kappaB) activity is a hallmark of many human cancers, and the Rel proteins are implicated in leukemia/lymphomagenesis but the mechanism is not fully understood. Microarray analysis to identify transformation-impacting genes regulated by NF-kappaB's oncogenic v-Rel and c-Rel proteins uncovered that Rel protein expression leads to transcriptional repression of key B-cell receptor (BCR) components and signaling molecules like B-cell linker (BLNK), the B-cell adaptor for phosphoinositide 3-kinase (BCAP) and immunoglobulin lambda light chain (Ig lambda), and is accompanied by a block in BCR-mediated activation of extracellular signal-regulated kinase, Akt, and c-Jun-NH(2)-kinase in response to anti-IgM. The BLNK and BCAP proteins were also down-regulated in lymphoid cells expressing a transformation-competent chimeric RelA/v-Rel protein, suggesting a correlation with the capacity of Rel proteins to transform lymphocytes. DNA-binding studies identified functional NF-kappaB-binding sites, and chromatin immunoprecipitation (ChIP) data showed binding of Rel to the endogenous blnk and bcap promoters in vivo. Importantly, restoration of either BLNK or BCAP expression strongly inhibited transformation of primary chicken lymphocytes by the potent NF-kappaB oncoprotein v-Rel. These findings are interesting because blnk and other BCR components and signaling molecules are down-regulated in primary mediastinal large B-cell lymphomas and Hodgkin's lymphomas, which depend on c-Rel for survival, and are consistent with the tumor suppressor function of BLNK. Overall, our results indicate that down-regulation of BLNK and BCAP is an important contributing factor to the malignant transformation of lymphocytes by Rel and suggest that gene repression may be as important as transcriptional activation for Rel's transforming activity.
Collapse
Affiliation(s)
- Nupur Gupta
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|