1
|
Youssef O, Loukola A, Zidi-Mouaffak YHS, Tamlander M, Ruotsalainen S, Kilpeläinen E, Mars N, Ripatti S, Palotie A, Donner K, Carpén O. High-Resolution Genotyping of Formalin-Fixed Tissue Accurately Estimates Polygenic Risk Scores in Human Diseases. J Transl Med 2024; 104:100325. [PMID: 38220043 DOI: 10.1016/j.labinv.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, University of Helsinki, Helsinki, Finland; Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anu Loukola
- Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Yossra H S Zidi-Mouaffak
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
2
|
Kravitz A, Tyler R, Manohar BM, Ronald BSM, Collins MT, Sriranganathan N. Successful restoration of archived ovine formalin fixed paraffin-embedded tissue DNA and single nucleotide polymorphism analysis. Vet Res Commun 2023; 47:131-139. [PMID: 35618986 PMCID: PMC9873697 DOI: 10.1007/s11259-022-09937-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023]
Abstract
Archived formalin fixed paraffin-embedded (FFPE) tissues are powerful tools in medicine, capable of harboring diagnostic and genetic answers to challenging clinical questions. Successful utilization of DNA derived from FFPE samples is dependent upon repairing DNA damage generated from the fixation process. Methods to repair FFPE DNA have been successful in human medicine for a variety of research and clinical applications, yet remain underutilized in veterinary medicine. Despite the available technology, our study is the first to evaluate the repair of FFPE derived DNA from veterinary species for single-nucleotide polymorphism (SNP) analysis using the Illumina OvineSNP50 BeadChip and Illumina FFPE QC and DNA Restore kit. To accomplish this, 48 ovine FFPE samples were run using the Illumina OvineSNP50 BeadChip with and without restoration. Compared to pre-restore data, we found increased sample call rates, SNP call frequency, and assay metrics for all samples post-restoration. Further, we utilized four sheep with available parallel fresh DNA and FFPE DNA to compare assay metrics and genotype calls between the two starting sample types. Although fresh samples generated increased call rates, we found 99% concordance in allele calls between restored FFPE and fresh DNA for all four samples. Our results indicate successful restoration and genotyping of ovine FFPE samples using this technology, with potential for utilization in other veterinary species.
Collapse
Affiliation(s)
- Amanda Kravitz
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Ron Tyler
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - B. Murali Manohar
- Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, 600051 Tamil Nadu India
| | - B. Samuel Masilamoni Ronald
- Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, 600051 Tamil Nadu India
| | - Michael T. Collins
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI USA
| | - Nammalwar Sriranganathan
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
3
|
Youssef O, Almangush A, Zidi YHS, Loukola A, Carpén O. Nonmalignant Formalin-Fixed Paraffin-Embedded Tissues as a Source to Study Germline Variants and Cancer Predisposition: A Systematic Review. Biopreserv Biobank 2020; 18:337-345. [PMID: 32551987 DOI: 10.1089/bio.2020.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Archived formalin-fixed paraffin-embedded (FFPE) specimens from nonmalignant tissues derived from cancer patients are a vast and potentially valuable resource for high-quality genotyping analyses and could have a role in establishing inherited cancer risk. Methods: We systematically searched PubMed, Ovid MEDLINE, and Scopus databases for all articles that compared genotyping performance of DNA from nonmalignant FFPE tissue with blood DNA derived from cancer patients irrespective of tumor type. Two independent researchers screened the retrieved studies, removed duplicates, excluded irrelevant studies, and extracted genotyping data from the eligible studies. These studies included, but were not limited to, genotyping technique, reported call rate, and concordance. Results: Thirteen studies were reviewed, in which DNA from nonmalignant FFPE tissues derived from cancer patients was successfully purified and genotyped. All these studies used different approaches for genotyping of DNA from nonmalignant FFPE tissues to amplify single nucleotide polymorphisms (SNPs) and to estimate of loss of heterozygosity. The concordance between genotypes from nonmalignant FFPE tissues and blood derived from cancer patients was observed to be high, whereas the call rate of the tested SNPs was not reported in all included studies. Conclusion: This review illustrates that DNA from nonmalignant FFPE tissues derived from cancer patients can serve as an alternative and reliable source for assessment of germline DNA for various purposes, including assessment of cancer predisposition.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Yossra H S Zidi
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Loukola
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Helsinki Biobank, HUS Helsinki University Hospital, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki Biobank, HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Kanagal-Shamanna R, Hodge JC, Tucker T, Shetty S, Yenamandra A, Dixon-McIver A, Bryke C, Huxley E, Lennon PA, Raca G, Xu X, Jeffries S, Quintero-Rivera F, Greipp PT, Slovak ML, Iqbal MA, Fang M. Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms. Cancer Genet 2018; 228-229:197-217. [PMID: 30377088 DOI: 10.1016/j.cancergen.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Multiple studies have demonstrated the utility of chromosomal microarray (CMA) testing to identify clinically significant copy number alterations (CNAs) and copy-neutral loss-of-heterozygosity (CN-LOH) in myeloid malignancies. However, guidelines for integrating CMA as a standard practice for diagnostic evaluation, assessment of prognosis and predicting treatment response are still lacking. CMA has not been recommended for clinical work-up of myeloid malignancies by the WHO 2016 or the NCCN 2017 guidelines but is a suggested test by the European LeukaemiaNet 2013 for the diagnosis of primary myelodysplastic syndrome (MDS). The Cancer Genomics Consortium (CGC) Working Group for Myeloid Neoplasms systematically reviewed peer-reviewed literature to determine the power of CMA in (1) improving diagnostic yield, (2) refining risk stratification, and (3) providing additional genomic information to guide therapy. In this manuscript, we summarize the evidence base for the clinical utility of array testing in the workup of MDS, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and myeloproliferative neoplasms (MPN). This review provides a list of recurrent CNAs and CN-LOH noted in this disease spectrum and describes the clinical significance of the aberrations and how they complement gene mutation findings by sequencing. Furthermore, for new or suspected diagnosis of MDS or MPN, we present suggestions for integrating genomic testing methods (CMA and mutation testing by next generation sequencing) into the current standard-of-care clinical laboratory testing (karyotype, FISH, morphology, and flow).
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston TX, USA.
| | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tracy Tucker
- Department of Pathology and Laboratory Medicine, Cancer Genetics Laboratory, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Shashi Shetty
- Department of Pathology, UHCMC, University Hospitals and Case Western Reserve University, Cleveland, OH, USA
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Christine Bryke
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emma Huxley
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Xinjie Xu
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Sally Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Marilyn L Slovak
- TriCore Reference Laboratories, University of New Mexico, Albuquerque, NM, USA
| | - M Anwar Iqbal
- University of Rochester Medical Center, Rochester, NY, USA
| | - Min Fang
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Quality and concordance of genotyping array data of 12,064 samples from 5840 cancer patients. Genomics 2018; 111:950-957. [PMID: 29902512 DOI: 10.1016/j.ygeno.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
Abstract
Genotyping arrays characterize genome-wide SNPs for a study cohort and were the primary technology behind genome wide association studies over the last decade. The Cancer Genome Atlas (TCGA) is one of the largest cancer consortium studies, and it collected genotyping data for all of its participants. Using TCGA SNP data genotyped using the Affymetrix 6.0 SNP array from 12,064 samples, we conducted a comprehensive comparisons across DNA sources (tumor tissue, normal tissue, and blood) and sample storage protocols (formalin-fixed paraffin-embedded (FFPE) vs. freshly frozen (FF)), examining genotypes, transition/transversion ratios, and mutation catalogues. During the analysis, we made important observations in relevance to the data quality issues. SNP concordance was excellent between blood and normal tissues, and slightly lower between blood and tumor tissue due to potential somatic mutations in the tumors. The observed poor SNP concordance between FFPE and FF samples suggested a batch effect. The transition/transversion ratio, a metric commonly used for quality control purpose in exome sequencing projects, appeared less applicable for genotyping array data due to the whole-genome coverage built into the array design. Moreover, there were substantially more loss of heterozygosity events than gain of heterozygosity when comparing tumors relative to normal tissues and blood. This might be a consequence of extensive copy number deletions in tumors. In summary, our thorough evaluation calls for more adequate quality control practices and provides guidelines for improved application of TCGA genotyping data.
Collapse
|
6
|
Abstract
Purifying DNA is the key to successful cloning. The cleaner the final preparation of DNA, the more efficient will be the enzymatic reactions that use the DNA as a template or a substrate. In the 1930s and 1940s, the scientific literature began to accumulate methods to release DNA from cells and to remove cellular constituents that inhibit or act as competitors on enzymatically catalyzed reactions. Since then, thousands of protocols for purification of DNA from a wide variety of organisms, tissues, and bodily fluids have been published. This introduction provides an overview of methods for isolation and quantification of DNA.
Collapse
|
7
|
The Utilization of Formalin Fixed-Paraffin-Embedded Specimens in High Throughput Genomic Studies. Int J Genomics 2017; 2017:1926304. [PMID: 28246590 PMCID: PMC5299160 DOI: 10.1155/2017/1926304] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/09/2017] [Indexed: 01/09/2023] Open
Abstract
High throughput genomic assays empower us to study the entire human genome in short time with reasonable cost. Formalin fixed-paraffin-embedded (FFPE) tissue processing remains the most economical approach for longitudinal tissue specimen storage. Therefore, the ability to apply high throughput genomic applications to FFPE specimens can expand clinical assays and discovery. Many studies have measured the accuracy and repeatability of data generated from FFPE specimens using high throughput genomic assays. Together, these studies demonstrate feasibility and provide crucial guidance for future studies using FFPE specimens. Here, we summarize the findings of these studies and discuss the limitations of high throughput data generated from FFPE specimens across several platforms that include microarray, high throughput sequencing, and NanoString.
Collapse
|
8
|
Pigolkin YI, Dolzhanskiy OV, Korostylev SA, Pal'tseva EM, Fedorov DN. [On the possibility to determine genetic identity of the tissues with malignant tumours imbedded in paraffin blocks]. Sud Med Ekspert 2016; 59:16-19. [PMID: 27239766 DOI: 10.17116/sudmed201659316-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The results of analysis of the literature data were used to develop the forensic medical criteria for the assessment of the suitability of paraffin blocks containing the imbedded malignant tumours for the genetic identification of the tissues. The forensic medical criteria and the algorithm for the preliminary characteristic of the material of interest were proposed to avoid the potential errors. It is not recommended to use gastrointestinal carcinomas, breast tumours, and poorly differentiated ovarian tumours. Also unsuitable is the material formerly exposed to radio- and chemotherapeutic agents or paraffin blocks stored during more than 5-7 years. In the doubtful cases, immunohistochemical studies must be carried out to confirm microsatellite instability. Moreover, the tumour genotype and DNA composition from the patients' blood should be confirmed.
Collapse
Affiliation(s)
- Yu I Pigolkin
- I.M. Sechenov First Moscow State Medical University, Russian Ministry of Health, Moscow, Russia, 119991
| | - O V Dolzhanskiy
- B.V. Petrovsky Russian Research Centre of Surgery,Moscow, Russia, 119991
| | | | - E M Pal'tseva
- B.V. Petrovsky Russian Research Centre of Surgery,Moscow, Russia, 119991
| | - D N Fedorov
- B.V. Petrovsky Russian Research Centre of Surgery,Moscow, Russia, 119991
| |
Collapse
|
9
|
Woehrer A, Hainfellner JA. Molecular diagnostics: techniques and recommendations for 1p/19q assessment. CNS Oncol 2015; 4:295-306. [PMID: 26545171 DOI: 10.2217/cns.15.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several morphology- and polymerase chain reaction (PCR)-based methods for chromosome 1p 19q deletion status assessment are available. Important prerequisites for all molecular techniques concern tissue quality and selection of regions of interest. The most common methods for diagnostic 1p 19q assessment are fluorescence in situ hybridization and PCR-based microsatellite analysis. While the latter requires the use of autologous blood samples, more advanced techniques such as array comparative genomic hybridization, multiplex ligation-dependent probe amplification or real-time PCR are independent from autologous DNA samples. However, due to high technical demand and experience required their applicability as diagnostic tests remains to be shown. On the other hand, chromogenic in situ hybridization evolves as attractive alternative to FISH. Herein, the available test methods are reviewed and outlined, their advantages and drawbacks being discussed in detail.
Collapse
Affiliation(s)
- Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
10
|
Abstract
CONTEXT Genomic medicine requires the identification of biomarkers and therapeutic targets, which in turn, requires high-quality biospecimens. Achieving high-quality biospecimens requires implementing standard operating procedures to control the variations of preanalytic variables in biobanking. Currently, most biobanks do not control the variations of preanalytic variables when collecting, processing, and storing their biospecimens. However, those variations have been shown to affect the quality of biospecimens and gene expression profiling. OBJECTIVE To identify evidence-based preanalytic parameters that can be applied and those parameters that need further study. DATA SOURCES We searched the Biospecimen Research and PubMed databases using defined key words. We retrieved and reviewed 212 articles obtained through those searches. We included 58 articles (27%) according to our inclusion and exclusion criteria for this review. CONCLUSION -Preanalytic variables in biobanking can degrade the quality of biospecimens and alter gene expression profiling. Variables that require further study include the effect of surgical manipulation; the effect of warm ischemia; the allowable duration of delayed specimen processing; the optimal type, duration, and temperature of preservation and fixation; and the optimal storage duration of formalin-fixed, paraffin embedded specimens in a fit-for-purpose approach.
Collapse
Affiliation(s)
- Jane H Zhou
- From the Departments of Pathology (Drs Zhou and Sahin) and Head and Neck Surgery (Dr Myers), University of Texas MD Anderson Cancer Center, Houston. Dr Zhou is now with Human Genome Sequencing Center, Baylor College of Medicine, Houston
| | | | | |
Collapse
|
11
|
Greytak SR, Engel KB, Bass BP, Moore HM. Accuracy of Molecular Data Generated with FFPE Biospecimens: Lessons from the Literature. Cancer Res 2015; 75:1541-7. [PMID: 25836717 DOI: 10.1158/0008-5472.can-14-2378] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue biospecimens are a valuable resource for molecular cancer research. Although much can be gained from their use, it remains unclear whether the genomic and expression profiles obtained from FFPE biospecimens accurately reflect the physiologic condition of the patient from which they were procured, or if such profiles are confounded by biologic effects from formalin fixation and processing. To assess the physiologic accuracy of genomic and expression data generated with FFPE specimens, we surveyed the literature for articles investigating genomic and expression endpoints in case-matched FFPE and fresh or frozen human biospecimens using the National Cancer Institute's Biospecimen Research Database (http://biospecimens.cancer.gov/brd). Results of the survey revealed that the level of concordance between differentially preserved biospecimens varied among analytical parameters and platforms but also among reports, genes/transcripts of interest, and tumor status. The identified analytical techniques and parameters that resulted in strong correlations between FFPE and frozen biospecimens may provide guidance when optimizing molecular protocols for FFPE use; however, discrepancies reported for similar assays also illustrate the importance of validating protocols optimized for use with FFPE specimens with a case-matched fresh or frozen cohort for each platform, gene or transcript, and FFPE processing regime. On the basis of evidence published to date, validation of analytical parameters with a properly handled frozen cohort is necessary to ensure a high degree of concordance and confidence in the results obtained with FFPE biospecimens.
Collapse
Affiliation(s)
| | | | | | - Helen M Moore
- Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
12
|
Abstract
Three and a half million single nucleotide polymorphisms are now publicly available through the International HapMap project, enabling genetic and pharmacogenetic studies involving whole genome or comprehensive candidate gene association approaches. The cost/genotype for these studies has been driven down to levels unimagined only a few years ago albeit under particular conditions. Here, eight commonly used commercially available genotyping assays (TaqMan, SNPstream, SNPlex, hME/iPLEX, MIP, GenChip, Goldengate, Infinium I and II) are briefly presented and their particular strengths and weaknesses as well as their suitability for particular types of studies and the related costs are also discussed.:
Collapse
Affiliation(s)
- Jiannis Ragoussis
- Genomics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK OX3 7BN.
| |
Collapse
|
13
|
Gustafson HL, Yao S, Goldman BH, Lee K, Spier CM, LeBlanc ML, Rimsza LM, Cerhan JR, Habermann TM, Link BK, Maurer MJ, Slager SL, Persky DO, Miller TP, Fisher RI, Ambrosone CB, Briehl MM. Genetic polymorphisms in oxidative stress-related genes are associated with outcomes following treatment for aggressive B-cell non-Hodgkin lymphoma. Am J Hematol 2014; 89:639-45. [PMID: 24633940 DOI: 10.1002/ajh.23709] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 11/10/2022]
Abstract
Variable survival outcomes are seen following treatment for aggressive non-Hodgkin lymphoma (NHL). This study examined whether outcomes for aggressive B-cell NHL are associated with single nucleotide polymorphisms (SNPs) in oxidative stress-related genes, which can alter drug metabolism and immune responses. Genotypes for 53 SNPs in 29 genes were determined for 337 patients given anthracycline-based therapies. Their associations with progression-free survival (PFS) and overall survival (OS) were estimated by Cox proportional hazard regression; associations with hematologic toxicity were estimated by logistic regression. To validate the findings, the top three SNPs were tested in an independent cohort of 572 DLBCL patients. The top SNPs associated with PFS in the discovery cohort were the rare homozygotes for MPO rs2243828 (hazard ratio [HR] = 1.87, 95% confidence interval [CI] = 1.14-3.06, P = 0.013), AKR1C3 rs10508293 (HR = 2.09, 95% CI = 1.28-3.41, P = 0.0032) and NCF4 rs1883112 (HR = 0.66, 95% CI = 0.43-1.02, P = 0.06). The association of the NCF4 SNP with PFS was replicated in the validation dataset (HR = 0.66, 95% CI = 0.44-1.01, P = 0.05) and the meta-analysis was significant (HR = 0.66, 95% CI = 0.49-0.89, P < 0.01). The association of the MPO SNP was attenuated in the validation dataset, while the meta-analysis remained significant (HR = 1.64, 95% CI = 1.12-2.41). These two SNPs showed similar trends with OS in the meta-analysis (for NCF4, HR = 0.72, 95% CI = 0.51-1.02, P = 0.07 and for MPO, HR = 2.06, 95% CI = 1.36-3.12, P < 0.01). In addition, patients with the rare homozygote of the NCF4 SNP had an increased risk of hematologic toxicity. We concluded that genetic variations in NCF4 may contribute to treatment outcomes for patients with aggressive NHL.
Collapse
Affiliation(s)
- Heather L. Gustafson
- Cancer Biology Graduate Interdisciplinary Program; University of Arizona; Tucson Arizona
| | - Song Yao
- Department of Cancer Prevention and Control; Roswell Park Cancer Institute; Buffalo New York
| | - Bryan H. Goldman
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Center; Seattle Washington
| | - Kristy Lee
- Cancer Biology Graduate Interdisciplinary Program; University of Arizona; Tucson Arizona
| | | | - Michael L. LeBlanc
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Center; Seattle Washington
| | - Lisa M. Rimsza
- Department of Pathology; University of Arizona; Tucson Arizona
| | - James R. Cerhan
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | | | - Brian K. Link
- Department of Internal Medicine; University of Iowa Hospitals and Clinics; Iowa City Iowa
| | - Matthew J. Maurer
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | - Susan L. Slager
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | | | | | | | - Christine B. Ambrosone
- Department of Cancer Prevention and Control; Roswell Park Cancer Institute; Buffalo New York
| | | |
Collapse
|
14
|
High fidelity copy number analysis of formalin-fixed and paraffin-embedded tissues using Affymetrix Cytoscan HD chip. PLoS One 2014; 9:e92820. [PMID: 24699316 PMCID: PMC3974686 DOI: 10.1371/journal.pone.0092820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/26/2014] [Indexed: 11/19/2022] Open
Abstract
Detection of human genome copy number variation (CNV) is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE) tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples.
Collapse
|
15
|
Dumenil TD, Wockner LF, Bettington M, McKeone DM, Klein K, Bowdler LM, Montgomery GW, Leggett BA, Whitehall VLJ. Genome-wide DNA methylation analysis of formalin-fixed paraffin embedded colorectal cancer tissue. Genes Chromosomes Cancer 2014; 53:537-48. [PMID: 24677610 DOI: 10.1002/gcc.22164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/24/2023] Open
Abstract
Formalin fixation and embedding of clinical tissue samples in paraffin is a common method for archiving biological material. These samples are often well annotated and provide an invaluable resource for research. However, this process of fixation and storage of tissue leads to DNA damage and fragmentation. The use of DNA from formalin fixed, paraffin-embedded (FFPE) tissue to interrogate methylation levels on a genome-wide scale can pose challenges. We compared fresh and matched FFPE tissue DNA samples using the Illumina Infinium HD Human Methylation 450K BeadChip platform with a companion application for repair and "restoration" of DNA from FFPE tissue. Our results showed good correlation between fresh and FFPE sample data. FFPE DNA captured 99% of the CpG sites on the array on average. Significant cancer subgroups based on the CpG island methylator phenotype (CIMP) were clearly distinguished for both fresh and FFPE sample sets with cluster and scaling analysis. The DNA methylation status for the five standard CIMP panel genes which was evaluated for all samples by the MethyLight assay was correctly assigned in both fresh and FFPE samples by the array data. We conclude that the "restoration" method followed by assay on the Infinium HD Human Methylation 450K microarray can produce good quality data for DNA from FFPE samples.
Collapse
Affiliation(s)
- Troy D Dumenil
- Conjoint Gastroenterology Laboratory, Royal Brisbane and Women's Hospital, Clinical Research Centre and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rodrigues MJ, Gentien D, Stern MH, Desjardins L, Couturier J. Genomic amplification is not a frequent event in uveal melanomas. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:638. [PMID: 23885717 DOI: 10.1016/j.ajpath.2013.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
This Correspondence relates to the article by Lake et al that reported copy number and genotyping analysis on formalin-fixed, paraffin-embedded samples using genome-wide SNP arrays version 6.0.
Collapse
|
17
|
van den Tillaart SAHM, Corver WE, Ruano Neto D, ter Haar NT, Goeman JJ, Trimbos JBMZ, Fleuren GJ, Oosting J. Loss of heterozygosity and copy number alterations in flow-sorted bulky cervical cancer. PLoS One 2013; 8:e67414. [PMID: 23874418 PMCID: PMC3706587 DOI: 10.1371/journal.pone.0067414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/20/2013] [Indexed: 01/05/2023] Open
Abstract
Treatment choices for cervical cancer are primarily based on clinical FIGO stage and the post-operative evaluation of prognostic parameters including tumor diameter, parametrial and lymph node involvement, vaso-invasion, infiltration depth, and histological type. The aim of this study was to evaluate genomic changes in bulky cervical tumors and their relation to clinical parameters, using single nucleotide polymorphism (SNP)-analysis. Flow-sorted tumor cells and patient-matched normal cells were extracted from 81 bulky cervical tumors. DNA-index (DI) measurement and whole genome SNP-analysis were performed. Data were analyzed to detect copy number alterations (CNA) and allelic balance state: balanced, imbalanced or pure LOH, and their relation to clinical parameters. The DI varied from 0.92–2.56. Pure LOH was found in ≥40% of samples on chromosome-arms 3p, 4p, 6p, 6q, and 11q, CN gains in >20% on 1q, 3q, 5p, 8q, and 20q, and losses on 2q, 3p, 4p, 11q, and 13q. Over 40% showed gain on 3q. The only significant differences were found between histological types (squamous, adeno and adenosquamous) in the lesser allele intensity ratio (LAIR) (p = 0.035) and in the CNA analysis (p = 0.011). More losses were found on chromosome-arm 2q (FDR = 0.004) in squamous tumors and more gains on 7p, 7q, and 9p in adenosquamous tumors (FDR = 0.006, FDR = 0.004, and FDR = 0.029). Whole genome analysis of bulky cervical cancer shows widespread changes in allelic balance and CN. The overall genetic changes and CNA on specific chromosome-arms differed between histological types. No relation was found with the clinical parameters that currently dictate treatment choice.
Collapse
|
18
|
Evaluating the repair of DNA derived from formalin-fixed paraffin-embedded tissues prior to genomic profiling by SNP-CGH analysis. J Transl Med 2013; 93:701-10. [PMID: 23568031 DOI: 10.1038/labinvest.2013.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathology archives contain vast resources of clinical material in the form of formalin-fixed paraffin-embedded (FFPE) tissue samples. Owing to the methods of tissue fixation and storage, the integrity of DNA and RNA available from FFPE tissue is compromized, which means obtaining informative data regarding epigenetic, genomic, and expression alterations can be challenging. Here, we have investigated the utility of repairing damaged DNA derived from FFPE tumors prior to single-nucleotide polymorphism (SNP) arrays for whole-genome DNA copy number analysis. DNA was extracted from FFPE samples spanning five decades, involving tumor material obtained from surgical specimens and postmortems. Various aspects of the protocol were assessed, including the method of DNA extraction, the role of Quality Control quantitative PCR (qPCR) in predicting sample success, and the effect of DNA restoration on assay performance, data quality, and the prediction of copy number aberrations (CNAs). DNA that had undergone the repair process yielded higher SNP call rates, reduced log R ratio variance, and improved calling of CNAs compared with matched FFPE DNA not subjected to repair. Reproducible mapping of genomic break points and detection of focal CNAs representing high-level gains and homozygous deletions (HD) were possible, even on autopsy material obtained in 1974. For example, DNA amplifications at the ERBB2 and EGFR gene loci and a HD mapping to 13q14.2 were validated using immunohistochemistry, in situ hybridization, and qPCR. The power of SNP arrays lies in the detection of allele-specific aberrations; however, this aspect of the analysis remains challenging, particularly in the distinction between loss of heterozygosity (LOH) and copy neutral LOH. In summary, attempting to repair DNA that is damaged during fixation and storage may be a useful pretreatment step for genomic studies of large archival FFPE cohorts with long-term follow-up or for understanding rare cancer types, where fresh frozen material is scarce.
Collapse
|
19
|
Song YX, Zhou X, Wang ZN, Gao P, Li AL, Liang JW, Zhu JL, Xu YY, Xu HM. The association between individual SNPs or haplotypes of matrix metalloproteinase 1 and gastric cancer susceptibility, progression and prognosis. PLoS One 2012; 7:e38002. [PMID: 22655095 PMCID: PMC3360011 DOI: 10.1371/journal.pone.0038002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/29/2012] [Indexed: 11/23/2022] Open
Abstract
Background The single nucleotide polymorphisms (SNPs) in matrix metalloproteinase 1(MMP-1)play important roles in some cancers. This study examined the associations between individual SNPs or haplotypes in MMP-1 and susceptibility, clinicopathological parameters and prognosis of gastric cancer in a large sample of the Han population in northern China. Methods In this case–controlled study, there were 404 patients with gastric cancer and 404 healthy controls. Seven SNPs were genotyped using the MALDI-TOF MS system. Then, SPSS software, Haploview 4.2 software, Haplo.states software and THEsias software were used to estimate the association between individual SNPs or haplotypes of MMP-1 and gastric cancer susceptibility, progression and prognosis. Results Among seven SNPs, there were no individual SNPs correlated to gastric cancer risk. Moreover, only the rs470206 genotype had a correlation with histologic grades, and the patients with GA/AA had well cell differentiation compared to the patients with genotype GG (OR=0.573; 95%CI: 0.353–0.929; P=0.023). Then, we constructed a four-marker haplotype block that contained 4 common haplotypes: TCCG, GCCG, TTCG and TTTA. However, all four common haplotypes had no correlation with gastric cancer risk and we did not find any relationship between these haplotypes and clinicopathological parameters in gastric cancer. Furthermore, neither individual SNPs nor haplotypes had an association with the survival of patients with gastric cancer. Conclusions This study evaluated polymorphisms of the MMP-1 gene in gastric cancer with a MALDI-TOF MS method in a large northern Chinese case-controlled cohort. Our results indicated that these seven SNPs of MMP-1 might not be useful as significant markers to predict gastric cancer susceptibility, progression or prognosis, at least in the Han population in northern China.
Collapse
Affiliation(s)
- Yong-Xi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xin Zhou
- Department of Gynecology and Obstetrics, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
- * E-mail:
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ai-Lin Li
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ji-Wang Liang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jin-Liang Zhu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ying-Ying Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hui-Mian Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
20
|
Erickson HS. Measuring molecular biomarkers in epidemiologic studies: laboratory techniques and biospecimen considerations. Stat Med 2012; 31:2400-13. [PMID: 22593027 DOI: 10.1002/sim.4485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 11/05/2011] [Accepted: 11/14/2011] [Indexed: 12/20/2022]
Abstract
The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling.
Collapse
Affiliation(s)
- Heidi S Erickson
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Abstract
Formalin is the most commonly used tissue fixative worldwide. While it offers excellent morphological preservation for routine histology, it has detrimental effects on nucleic acids. Most studies of nucleic acids have therefore used fresh frozen tissue, the collection and storage of which is resource intensive. The ability to use modern genomic, transcriptomic and epigenomic methods with nucleic acids derived from formalin-fixed, paraffin-embedded (FFPE) tissues would allow enormous archives of routinely stored tissues (usually with well-annotated clinical data) to be used for translational research. This paper outlines the effects of formalin on nucleic acids, describes ways of minimizing nucleic acid degradation and optimizing extraction, and reviews recent studies that have used contemporary techniques to analyse FFPE-derived nucleic acids (with a focus on malignant tissue sources). Simple tips are also offered to ensure the utility of your institution's samples for future studies, and broadly applicable guidelines are listed for those contemplating their own study using FFPE-derived material.
Collapse
Affiliation(s)
- Adam Frankel
- University of Queensland, Ipswich Road, Woolloongabba,Brisbane, Qld 4102, Australia.
| |
Collapse
|
22
|
A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment. PLoS One 2012; 7:e31968. [PMID: 22363777 PMCID: PMC3282791 DOI: 10.1371/journal.pone.0031968] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/19/2012] [Indexed: 01/10/2023] Open
Abstract
In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illumina's Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF)--a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment.
Collapse
|
23
|
Li AL, Song YX, Wang ZN, Gao P, Miao Y, Zhu JL, Yue ZY, Xu HM. Polymorphisms and a haplotype in heparanase gene associations with the progression and prognosis of gastric cancer in a northern Chinese population. PLoS One 2012; 7:e30277. [PMID: 22276173 PMCID: PMC3262795 DOI: 10.1371/journal.pone.0030277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Background Human heparanase plays an important role in cancer development and single nucleotide polymorphisms (SNPs) in the heparanase gene (HPSE) have been shown to be correlated with gastric cancer. The present study examined the associations between individual SNPs or haplotypes in HPSE and susceptibility, clinicopathological parameters and prognosis of gastric cancer in a large sample of the Han population in northern China. Methodology/Principal Findings Genomic DNA was extracted from formalin-fixed, paraffin-embedded normal gastric tissue samples from 404 patients and from blood from 404 healthy controls. Six SNPs were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A chi-square (χ2) test and unconditional logistic regression were used to analyze the risk of gastric cancer; a Log-rank test and Cox proportional hazards model were used to produce survival analysis and a Kaplan-Meier method was used to map survival curves. The mean genotyping success rates were more than 99% in both groups. Haplotype CA in the block composed of rs11099592 and rs4693608 had a greater distribution in the group of Borrmann types 3 and 4 (P = 0.037), the group of a greater number of lymph node metastases (N3 vs N0 group, P = 0.046), and moreover was correlated to poor survival (CG vs CA: HR = 0.645, 95%CI: 0.421–0.989, P = 0.044). In addition, genotypes rs4693608 AA and rs4364254 TT were associated with poor survival (P = 0.030, HR = 1.527, 95%CI: 1.042–2.238 for rs4693608 AA; P = 0.013, HR = 1.546, 95%CI: 1.096–2.181 for rs4364254 TT). There were no correlations between individual SNPs or haplotypes and gastric cancer risk. Conclusions/Significance A functional haplotype in HPSE was found, which included the important SNP rs4693608. SNPs in HPSE play an important role in gastric cancer progression and survival, and perhaps may be a molecular marker for prognosis and treatment values.
Collapse
Affiliation(s)
- Ai-Lin Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
- * E-mail:
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan Miao
- Department of Pathology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jin-Liang Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhen-Yu Yue
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hui-Mian Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
24
|
Krijgsman O, Israeli D, Haan JC, van Essen HF, Smeets SJ, Eijk PP, Steenbergen RDM, Kok K, Tejpar S, Meijer GA, Ylstra B. CGH arrays compared for DNA isolated from formalin-fixed, paraffin-embedded material. Genes Chromosomes Cancer 2011; 51:344-52. [PMID: 22162309 DOI: 10.1002/gcc.21920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/07/2011] [Indexed: 12/13/2022] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) archival tissue is an important source of DNA material. The most commonly used technique to identify copy number aberrations from chromosomal DNA in tumorigenesis is array comparative genomic hybridization (aCGH). Although copy number analysis using DNA from FFPE archival tissue is challenging, several research groups have reported high quality and reproducible DNA copy number results using aCGH. Aim of this study is to compare the commercially available aCGH platforms suitable for high-resolution copy number analysis using FFPE-derived DNA. Two dual channel aCGH platforms (Agilent and NimbleGen) and a single channel SNP-based platform (Affymetrix) were evaluated using seven FFPE colon cancer samples, and median absolute deviation (MAD), deflection, signal-to-noise ratio, and DNA input requirements were used as quality criteria. Large differences were observed between platforms; Agilent and NimbleGen showed better MAD values (0.13 for both) compared with Affymetrix (0.22). On the contrary, Affymetrix showed a better deflection of 0.94, followed by 0.71 for Agilent and 0.51 for NimbleGen. This resulted in signal-to-nose ratios that were comparable between the three commercially available platforms. Interestingly, DNA input amounts from FFPE material lower than recommended still yielded high quality profiles on all platforms. Copy number analysis using DNA derived from FFPE archival material is feasible using all three high-resolution copy number platforms and shows reproducible results, also with DNA input amounts lower than recommended.
Collapse
Affiliation(s)
- Oscar Krijgsman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morlighem JÉ, Harbers M, Traeger-Synodinos J, Lezhava A. DNA amplification techniques in pharmacogenomics. Pharmacogenomics 2011; 12:845-60. [PMID: 21692615 DOI: 10.2217/pgs.11.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The variable predisposition of patients, both to disease susceptibility and drug response, is well established. It is largely attributed to genetic, as well as epigenetic variations between individuals, which may be inherited or acquired. The most common variation in the human genome is the SNP, which occurs throughout the genome, both within coding and noncoding regions. Characterization of SNPs in the context of both inherited and acquired conditions, such as cancer, are a main focus of many genotyping procedures. The demand for identifying (diagnosing) targeted SNPs or other variations, as well as the application of genome-wide screens, is continuously directing the development of new technologies. In general, most methods require a DNA amplification step to provide the amounts of DNA needed for the SNP detection step. In addition, DNA amplification is an important step when investigating other types of genomic information, for instance when addressing repeat, deletion, copy number variation or epigenetic regulation by DNA methylation. Besides the widely used PCR technique, there are several alternative approaches for genomic DNA amplification suitable for supporting the detection of genomic variation. In this article, we describe and evaluate a number of techniques, and discuss possible future prospects of DNA amplification in the fields of pharmacogenetics and pharmacogenomics.
Collapse
Affiliation(s)
- Jean-Étienne Morlighem
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
26
|
Corver WE, Ter Haar NT, Fleuren GJ, Oosting J. Cervical carcinoma-associated fibroblasts are DNA diploid and do not show evidence for somatic genetic alterations. Cell Oncol (Dordr) 2011; 34:553-63. [PMID: 22042555 PMCID: PMC3223353 DOI: 10.1007/s13402-011-0061-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2011] [Indexed: 02/03/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) have been recognized as important contributors to cancer development and progression. However, opposing evidence has been published whether CAFs, in addition to epigenetic, also undergo somatic genetic alterations and whether these changes contribute to carcinogenesis and tumour progression. Methods We combined multiparameter DNA flow cytometry, flow-sorting and 6K SNP-arrays to study DNA aneuploidy, % S-phase, loss of heterozygosity (LOH) and copy number alterations (CNAs) in cervical cancer-associated stromal cell fractions (n = 57) from formalin-fixed, paraffin-embedded (FFPE) samples. Tissue sections were examined for the presence of CAFs. Microsatellite analysis was used to confirm LOH findings. Results Smooth muscle actin and vimentin immunohistochemistry verified the presence of CAFs in all cases tested. However, we found no evidence for DNA aneuploidy, somatic genetic alterations in the vimentin-positive stromal cell fractions of any samples, while high frequencies of DNA content abnormalities (43/57) and substantial numbers of CNAs and LOH were identified in the keratin-positive epithelial cell fractions. LOH hot-spots on chromosomes 3p, 4p and 6p found were confirmed by microsatellite analysis. Conclusion From our study we conclude that stromal cell fractions from cervical carcinomas are DNA diploid, have a genotype undistinguishable from patient-matched normal tissue and are genetically stable. Using flow cytometry and SNP-arrays, stromal genetic changes do not seem to play a role during cervical carcinogenesis and progression. In addition, the stromal cell fraction of cervical carcinomas can be used as reference allowing large retrospective studies of archival FFPE tissues for which no normal reference tissue is available. Electronic supplementary material The online version of this article (doi:10.1007/s13402-011-0061-5) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Mao X, Young BD, Lu YJ. The application of single nucleotide polymorphism microarrays in cancer research. Curr Genomics 2011; 8:219-28. [PMID: 18645599 DOI: 10.2174/138920207781386924] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/22/2007] [Accepted: 03/02/2007] [Indexed: 01/21/2023] Open
Abstract
The development of microarray technology has had a significant impact on the genetic analysis of human disease. The recently developed single nucleotide polymorphism (SNP) array can be used to measure both DNA polymorphism and dosage changes. Our laboratory has applied SNP microarray analysis to uncover frequent uniparental disomies and sub-microscopic genomic copy number gains and losses in different cancers. This review will focus on the wide range of applications of SNP microarray analysis to cancer research. SNP array genotyping can determine loss of heterozygosity, genomic copy number changes and DNA methylation alterations of cancer cells. The same technology can also be used to investigate allelic association in cancers. Therefore, it can be applied to the identification of cancer predisposition genes, oncogenes and tumor suppressor genes in specific types of tumors. As a consequence, they have potential in cancer risk assessment, diagnosis, prognosis and treatment selection.
Collapse
Affiliation(s)
- Xueying Mao
- Medical Oncology Centre, Cancer Institute, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
28
|
|
29
|
A multiplex MALDI-TOF MS approach facilitates genotyping of DNA from formalin-fixed paraffin-embedded tumour specimens. Pharmacogenet Genomics 2011; 20:598-604. [PMID: 20802378 DOI: 10.1097/fpc.0b013e32833deb16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The impact of single-nucleotide polymorphisms (SNPs) on tumour susceptibility and pathogenesis has gained enormous attention. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based genotyping facilitates the analysis of short DNA amplicons and is, therefore, a promising tool for the investigation of formalin-fixed paraffin-embedded (FFPE) tissue samples, particularly in targeted genotyping analysis. METHODS To examine the applicability of genotyping FFPE DNA with MALDI-TOF MS in multiplex reactions, we investigated five DNA samples extracted from FFPE tumour specimens from follicular lymphoma patients using different extraction methods (phenol-chloroform, commercial kit). Thirty-one SNPs from 25 genes, integrated in different-sized multiplex assays (7-plex, 10-plex, 14-plex, 24-plex), were analyzed. To investigate the reliability of genotyping tumour-derived DNA extracted from FFPE tissue, we examined 64 FFPE tumour specimens in comparison with matched germline DNA samples. RESULTS Call rates of 99.6 (274/275) and 93.5% (257/275) were observed for the DNA extracted with the phenol-chloroform approach or the commercial extraction kit, respectively. Increasing the number of SNPs per assay resulted in reduced genotyping call rates and genotyping quality, especially in the DNA samples isolated with the commercial extraction kit. When comparing the genotypes of DNA derived from germline and tumour (FFPE) specimens, a perfect concordance rate of 100% was detected. CONCLUSION Our data delineate that MALDI-TOF-based genotyping of FFPE DNA is reliable and reproducible even in multiplex reactions, enabling the retrospective investigation of FFPE study cohorts in future experiments.
Collapse
|
30
|
|
31
|
Hirst DG, Robson T. Molecular biology: the key to personalised treatment in radiation oncology? Br J Radiol 2011; 83:723-8. [PMID: 20739343 DOI: 10.1259/bjr/91488645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We know considerably more about what makes cells and tissues resistant or sensitive to radiation than we did 20 years ago. Novel techniques in molecular biology have made a major contribution to our understanding at the level of signalling pathways. Before the "New Biology" era, radioresponsiveness was defined in terms of physiological parameters designated as the five Rs. These are: repair, repopulation, reassortment, reoxygenation and radiosensitivity. Of these, only the role of hypoxia proved to be a robust predictive and prognostic marker, but radiotherapy regimens were nonetheless modified in terms of dose per fraction, fraction size and overall time, in ways that persist in clinical practice today. The first molecular techniques were applied to radiobiology about two decades ago and soon revealed the existence of genes/proteins that respond to and influence the cellular outcome of irradiation. The subsequent development of screening techniques using microarray technology has since revealed that a very large number of genes fall into this category. We can now obtain an adequately robust molecular signature, predicting for a radioresponsive phenotype using gene expression and proteomic approaches. In parallel with these developments, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) can now detect specific biological molecules such as haemoglobin and glucose, so revealing a 3D map of tumour blood flow and metabolism. The key to personalised radiotherapy will be to extend this capability to the proteins of the molecular signature that determine radiosensitivity.
Collapse
|
32
|
Kanda M, Nomoto S, Okamura Y, Hayashi M, Hishida M, Fujii T, Nishikawa Y, Sugimoto H, Takeda S, Nakao A. Promoter hypermethylation of fibulin 1 gene is associated with tumor progression in hepatocellular carcinoma. Mol Carcinog 2011; 50:571-9. [PMID: 21268132 DOI: 10.1002/mc.20735] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers world-wide but the molecular mechanisms that underlie hepatocarcinogenesis are not fully determined. On the same surgical sample with HCC, we performed microarray-based gene expression profiling and karyotype analysis using a single nucleotide polymorphism (SNP) array. In addition, quantitative real-time reverse transcription polymerase chain reaction (PCR), methylation specific PCR (MSP) and immunohistochemical staining were conducted using specimens from 48 patients with HCC. Gene expression profiling showed the expression of fibulin 1 (FBLN1), located on 22q13, to be decreased in tumor tissue. Karyotype analysis revealed no loss of heterozygosity (LOH) since deletions were not detected in 22q, and one of the SNPs on 22q13 showed AB genotype in both cancerous tissue and in corresponding noncancerous tissue, indicating retention of heterozygosity. Quantitative real-time PCR showed FBLN1 mRNA levels in cancerous tissues to be significantly decreased compared with that in corresponding noncancerous tissues. The immunohistochemical staining results were consistent with both gene expression profiling and quantitative PCR data. Twenty-four out of 48 HCCs gave a positive result in MSP. Moreover, promoter hypermethylation of FBLN1 was significantly associated with advanced stage HCC, multiple tumors and increased tumor size. Our results indicated that FBLN1 is a novel candidate of tumor suppressor gene and that promoter hypermethylation of FBLN1 is associated with tumor progression in HCC. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Surgery II, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hagleitner MM, Coenen MJH, Jeuken JWM, Flucke U, Schreuder HWB, te Loo DMWM, Hoogerbrugge PM. Taqman genotyping assays can be used on decalcified and paraffin-embedded tissue from patients with osteosarcoma. Pediatr Blood Cancer 2011; 56:35-8. [PMID: 20848662 DOI: 10.1002/pbc.22654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/23/2010] [Indexed: 11/09/2022]
Abstract
BACKGROUND In cancers like osteosarcoma with a 5-year overall survival of 50-60%, archived histological specimens can be a useful source of biological material. However, this material generally has been decalcified and formalin-fixed for many years. In our study, we investigated whether DNA obtained from these tissues can be used for reliable single nucleotide polymorphism (SNP) genotyping. PROCEDURE We studied two SNPs in the drug transporter MDR1 using Taqman® SNP genotyping assays. Genotypes of the germ line DNA derived from freshly isolated DNA of 20 surviving patients with osteosarcoma were compared with genotypes obtained from archived material from decalcified formalin-fixed, paraffin-embedded (FFPE) blocks of the same patients. RESULTS Decalcified FFPE-derived DNA yielded smaller PCR fragments compared to DNA extracted from peripheral blood cells, with a reliable size of ∼200 bp. However, we were able to evaluate each SNP in 19 of 20 cases included in this study. All successfully genotyped samples showed 100% concordance between genotypes obtained from DNA of FFPE tissue and the genotypes obtained from DNA of blood from the same patients. CONCLUSIONS In conclusion, we have demonstrated that decalcified FFPE tissue can be used for genetic polymorphism analysis using Taqman® allelic discrimination assays. This forms a unique opportunity to combine new insights in genetic research with historical patient cohorts.
Collapse
Affiliation(s)
- Melanie M Hagleitner
- Department of Pediatric Hematology and Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
van Eijk R, Middeldorp A, Lips EH, van Puijenbroek M, Morreau H, Oosting J, van Wezel T. Genotyping and LOH Analysis on Archival Tissue using SNP Arrays. Genomics 2010. [DOI: 10.1002/9780470711675.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Hermsen M, Coffa J, Ylstra B, Meijer G, Morreau H, van Eijk R, Oosting J, van Wezel T. High‐Resolution Analysis of Genomic Copy Number Changes. Genomics 2010. [DOI: 10.1002/9780470711675.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
Sudden cardiac death (SCD) is a major health problem and constitutes one of the most important unsolved challenges in the practice of forensic pathology due to the failure to determine the cause of death. Particularly, an important number of previously healthy young people who have died suddenly and unexpectedly are consequence of genetic heart disorders, either structural cardiomyopathies or arrhythmogenic abnormalities. The technological approach to analyze this type of genetically heterogeneous disorders is far from easy but nowadays the variety of chemistries and methodologies improves choice. This review offers to the reader a state of the art of the available technologies for the study of genetics of sudden cardiac death, including mutation screening approaches, genome wide association studies, and the recently developed next-generation sequencing.
Collapse
|
37
|
Whipp E, Beresford M, Sawyer E, Halliwell M. True Local Recurrence Rate in the Conserved Breast After Magnetic Resonance Imaging–Targeted Radiotherapy. Int J Radiat Oncol Biol Phys 2010; 76:984-90. [DOI: 10.1016/j.ijrobp.2009.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/24/2009] [Accepted: 03/03/2009] [Indexed: 11/27/2022]
|
38
|
van Eijk R, Eilers PHC, Natté R, Cleton-Jansen AM, Morreau H, van Wezel T, Oosting J. MLPAinter for MLPA interpretation: an integrated approach for the analysis, visualisation and data management of Multiplex Ligation-dependent Probe Amplification. BMC Bioinformatics 2010; 11:67. [PMID: 20113482 PMCID: PMC3098110 DOI: 10.1186/1471-2105-11-67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiplex Ligation-Dependent Probe Amplification (MLPA) is an application that can be used for the detection of multiple chromosomal aberrations in a single experiment. In one reaction, up to 50 different genomic sequences can be analysed. For a reliable work-flow, tools are needed for administrative support, data management, normalisation, visualisation, reporting and interpretation. RESULTS Here, we developed a data management system, MLPAInter for MLPA interpretation, that is windows executable and has a stand-alone database for monitoring and interpreting the MLPA data stream that is generated from the experimental setup to analysis, quality control and visualisation. A statistical approach is applied for the normalisation and analysis of large series of MLPA traces, making use of multiple control samples and internal controls. CONCLUSIONS MLPAinter visualises MLPA data in plots with information about sample replicates, normalisation settings, and sample characteristics. This integrated approach helps in the automated handling of large series of MLPA data and guarantees a quick and streamlined dataflow from the beginning of an experiment to an authorised report.
Collapse
Affiliation(s)
- Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
van Eijk R, van Puijenbroek M, Chhatta AR, Gupta N, Vossen RHAM, Lips EH, Cleton-Jansen AM, Morreau H, van Wezel T. Sensitive and specific KRAS somatic mutation analysis on whole-genome amplified DNA from archival tissues. J Mol Diagn 2009; 12:27-34. [PMID: 19959798 DOI: 10.2353/jmoldx.2010.090028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kirsten RAS (KRAS) is a small GTPase that plays a key role in Ras/mitogen-activated protein kinase signaling; somatic mutations in KRAS are frequently found in many cancers. The most common KRAS mutations result in a constitutively active protein. Accurate detection of KRAS mutations is pivotal to the molecular diagnosis of cancer and may guide proper treatment selection. Here, we describe a two-step KRAS mutation screening protocol that combines whole-genome amplification (WGA), high-resolution melting analysis (HRM) as a prescreen method for mutation carrying samples, and direct Sanger sequencing of DNA from formalin-fixed, paraffin-embedded (FFPE) tissue, from which limited amounts of DNA are available. We developed target-specific primers, thereby avoiding amplification of homologous KRAS sequences. The addition of herring sperm DNA facilitated WGA in DNA samples isolated from as few as 100 cells. KRAS mutation screening using high-resolution melting analysis on wgaDNA from formalin-fixed, paraffin-embedded tissue is highly sensitive and specific; additionally, this method is feasible for screening of clinical specimens, as illustrated by our analysis of pancreatic cancers. Furthermore, PCR on wgaDNA does not introduce genotypic changes, as opposed to unamplified genomic DNA. This method can, after validation, be applied to virtually any potentially mutated region in the genome.
Collapse
Affiliation(s)
- Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies.
Collapse
Affiliation(s)
- Jiannis Ragoussis
- Genomics Laboratory, Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
41
|
Howarth K, Ranta S, Winter E, Teixeira A, Schaschl H, Harvey JJ, Rowan A, Jones A, Spain S, Clark S, Guenther T, Stewart A, Silver A, Tomlinson I. A mitotic recombination map proximal to the APC locus on chromosome 5q and assessment of influences on colorectal cancer risk. BMC MEDICAL GENETICS 2009; 10:54. [PMID: 19515250 PMCID: PMC2705358 DOI: 10.1186/1471-2350-10-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 06/10/2009] [Indexed: 11/10/2022]
Abstract
Background Mitotic recombination is important for inactivating tumour suppressor genes by copy-neutral loss of heterozygosity (LOH). Although meiotic recombination maps are plentiful, little is known about mitotic recombination. The APC gene (chr5q21) is mutated in most colorectal tumours and its usual mode of LOH is mitotic recombination. Methods We mapped mitotic recombination boundaries ("breakpoints") between the centromere (~50 Mb) and APC (~112 Mb) in early colorectal tumours. Results Breakpoints were non-random, with the highest frequency between 65 Mb and 75 Mb, close to a low copy number repeat region (68–71 Mb). There were, surprisingly, few breakpoints close to APC, contrary to expectations were there constraints on tumorigenesis caused by uncovering recessive lethal alleles or if mitotic recombination were mechanistically favoured by a longer residual chromosome arm. The locations of mitotic and meiotic recombination breakpoints were correlated, suggesting that the two types of recombination are influenced by similar processes, whether mutational or selective in origin. Breakpoints were also associated with higher local G+C content. The recombination and gain/deletion breakpoint maps on 5q were not, however, associated, perhaps owing to selective constraints on APC dosage in early colorectal tumours. Since polymorphisms within the region of frequent mitotic recombination on 5q might influence the frequency of LOH, we tested the 68–71 Mb low copy number repeat and nearby tagSNPs, but no associations with colorectal cancer risk were found. Conclusion LOH on 5q is non-random, but local factors do not greatly influence the rate of LOH at APC or explain inter differential susceptibility to colorectal tumours.
Collapse
Affiliation(s)
- Kimberley Howarth
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Boyd LK, Mao X, Lu YJ. Use of SNPs in cancer predisposition analysis, diagnosis and prognosis: tools and prospects. ACTA ACUST UNITED AC 2009; 3:313-26. [PMID: 23488466 DOI: 10.1517/17530050902828325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of cancer is accompanied by several genetic alterations. Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation found in the human population. SNP arrays offer a high-resolution, high-throughput technology for genome-wide analysis, allowing the simultaneous detection of genotype and copy number changes. The power of SNP arrays as a research tool has accelerated our understanding of the genetic alterations in cancer, providing potential clinical applications. OBJECTIVE This manuscript reviews the use of SNPs in cancer research and discusses the potential clinical application of analysing SNPs for cancer predisposition analysis, diagnosis and prognosis. We also discuss potential future applications for the analysis of SNPs. METHODS In writing this review, we have reflected on our own extensive experience in the field of cancer genomics and have surveyed peer-reviewed articles focussing on the application of SNPs in cancer research. In addition, we have referred to product websites. CONCLUSION Since its development, SNP array technology has been extensively applied in cancer research. Information generated from SNP array analysis has been providing valuable information. With the full understanding of the rich resources of SNPs and their effects on influencing cellular function, SNP arrays will revolutionise the clinical practice in cancer risk assessment, diagnosis and prognosis making the concept of personalised medicine a reality.
Collapse
Affiliation(s)
- Lara K Boyd
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Institute of Cancer, Centre for Molecular Oncology and Imaging, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK +44 20 7882 6140 ; +44 20 7014 0431 ;
| | | | | |
Collapse
|
43
|
Wang Y, Carlton VEH, Karlin-Neumann G, Sapolsky R, Zhang L, Moorhead M, Wang ZC, Richardson AL, Warren R, Walther A, Bondy M, Sahin A, Krahe R, Tuna M, Thompson PA, Spellman PT, Gray JW, Mills GB, Faham M. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays. BMC Med Genomics 2009; 2:8. [PMID: 19228381 PMCID: PMC2649948 DOI: 10.1186/1755-8794-2-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 02/19/2009] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (approximately 40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. RESULTS Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. CONCLUSION MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Robert Warren
- University of California San Francisco, San Francisco, CA, USA
| | - Axel Walther
- Cancer Research UK, London Research Institute, London, UK
| | | | | | - Ralf Krahe
- MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Joe W Gray
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | |
Collapse
|
44
|
Corver WE, Middeldorp A, ter Haar NT, Jordanova ES, van Puijenbroek M, van Eijk R, Cornelisse CJ, Fleuren GJ, Morreau H, Oosting J, van Wezel T. Genome-wide allelic state analysis on flow-sorted tumor fractions provides an accurate measure of chromosomal aberrations. Cancer Res 2009; 68:10333-40. [PMID: 19074902 DOI: 10.1158/0008-5472.can-08-2665] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromosomal aberrations are a common characteristic of cancer and are associated with copy number abnormalities and loss of heterozygosity (LOH). Tumor heterogeneity, low tumor cell percentage, and lack of knowledge of the DNA content impair the identification of these alterations especially in aneuploid tumors. To accurately detect allelic changes in carcinomas, we combined flow-sorting and single nucleotide polymorphism arrays. Cells derived from archival cervical and colon cancers were flow-sorted based on differential vimentin and keratin expression and DNA content and analyzed on single nucleotide polymorphism arrays. A new algorithm, the lesser allele intensity ratio, was used to generate a molecular measure of chromosomal aberrations for each case. Flow-sorting significantly improved the detection of copy number abnormalities; 31.8% showed an increase in amplitude and 23.2% were missed in the unsorted fraction, whereas 15.9% were detected but interpreted differently. Integration of the DNA index in the analysis enabled the identification of the allelic state of chromosomal aberrations, such as LOH ([A]), copy-neutral LOH ([AA]), balanced amplifications ([AABB]), and allelic imbalances ([AAB] or [AAAB], etc.). Chromosomal segments were sharply defined. Fluorescence in situ hybridization copy numbers, as well as the high similarity between the DNA index and the allelic state index, which is the average of the allelic states across the genome, validated the method. This new approach provides an individual molecular measure of chromosomal aberrations and will likely have repercussions for preoperative molecular staging, classification, and prognostic profiling of tumors, particularly for heterogeneous aneuploid tumors, and allows the study of the underlying molecular genetic mechanisms and clonal evolution of tumor subpopulations.
Collapse
Affiliation(s)
- Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Genetic abnormalities in leukaemia range from single gene defects to chromosomal translocations, inversions, losses and gains. While conventional technologies can detect macroscopic abnormalities, finding smaller regions remained a challenge until the recent introduction of high-resolution genomic platforms. Microarrays based on single nucleotide polymorphisms is one such technology. It has made possible genome-wide allelic association studies of predisposition to common clinical problems. This approach is also being used to identify somatic changes in cancer, such as loss, gain and copy-neutral loss of heterozygosity (CN-LOH), which are below the level of detection by conventional systems. Such arrays have been used to identify key genes involved in paediatric acute lymphoblastic leukaemia. We have used these arrays to identify regions of CN-LOH on a genome-wide scale in a large series of acute myeloid leukaemia samples, which so far has not been possible through any other technology.
Collapse
|
46
|
Tuefferd M, De Bondt A, Van Den Wyngaert I, Talloen W, Verbeke T, Carvalho B, Clevert DA, Alifano M, Raghavan N, Amaratunga D, Göhlmann H, Broët P, Camilleri-Broët S. Genome-wide copy number alterations detection in fresh frozen and matched FFPE samples using SNP 6.0 arrays. Genes Chromosomes Cancer 2008; 47:957-64. [PMID: 18663747 DOI: 10.1002/gcc.20599] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SNP arrays offer the opportunity to get a genome-wide view on copy number alterations and are increasingly used in oncology. DNA from formalin-fixed paraffin-embedded material (FFPE) is partially degraded which limits the application of those technologies for retrospective studies. We present the use of Affymetrix GeneChip SNP6.0 for identification of copy number alterations in fresh frozen (FF) and matched FFPE samples. Fifteen pairs of adenocarcinomas with both frozen and FFPE embedded material were analyzed. We present an optimization of the sample preparation and show the importance of correcting the measured intensities for fragment length and GC-content when using FFPE samples. The absence of GC content correction results in a chromosome specific "wave pattern" which may lead to the misclassification of genomic regions as being altered. The highest concordance between FFPE and matched FF were found in samples with the highest call rates. Nineteen of the 23 high level amplifications (83%) seen using FF samples were also detected in the corresponding FFPE material. For limiting the rate of "false positive" alterations, we have chosen a conservative False Discovery Rate (FDR). We observed better results using SNP probes than CNV probes for copy number analysis of FFPE material. This is the first report on the detection of copy number alterations in FFPE samples using Affymetrix GeneChip SNP6.0.
Collapse
Affiliation(s)
- Marianne Tuefferd
- JE2492 Department, Faculté de Médecine Paris-Sud, IFR69, Villejuif, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cheng YW, Pincas H, Bacolod MD, Schemmann G, Giardina SF, Huang J, Barral S, Idrees K, Khan SA, Zeng Z, Rosenberg S, Notterman DA, Ott J, Paty P, Barany F. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res 2008; 14:6005-13. [PMID: 18829479 DOI: 10.1158/1078-0432.ccr-08-0216] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Aberrant promoter methylation and genomic instability occur frequently during colorectal cancer development. CpG island methylator phenotype (CIMP) has been shown to associate with microsatellite instability, and BRAF mutation and is often found in the right-side colon. Nevertheless, the relative importance of CIMP and chromosomal instability (CIN) for tumorigenesis has yet to be thoroughly investigated in sporadic colorectal cancers. EXPERIMENTAL DESIGN We determined CIMP in 161 primary colorectal cancers and 66 matched normal mucosae using a quantitative bisulfite/PCR/ligase detection reaction (LDR)/Universal Array assay. The validity of CIMP was confirmed in a subset of 60 primary tumors using MethyLight assay and five independent markers. In parallel, CIN was analyzed in the same study cohort using Affymetrix 50K Human Mapping arrays. RESULTS The identified CIMP-positive cancers correlate with microsatellite instability (P = 0.075) and the BRAF mutation V600E (P = 0.00005). The array-based high-resolution analysis of chromosomal aberrations indicated that the degree of aneuploidy is spread over a wide spectrum among analyzed colorectal cancers. Whether CIN was defined by copy number variations in selected microsatellite loci (criterion 1) or considered as a continuous variable (criterion 2), CIMP-positive samples showed a strong correlation with low-degree chromosomal aberrations (P = 0.075 and P = 0.012, respectively). Similar correlations were observed when CIMP was determined by MethyLight assay (P = 0.001 and P = 0.013, respectively). CONCLUSION CIMP-positive tumors generally possess lower chromosomal aberrations, which may only be revealed using a genome-wide approach. The significant difference in the degree of chromosomal aberrations between CIMP-positive and the remainder of samples suggests that epigenetic (CIMP) and genetic (CIN) abnormalities may arise from independent molecular mechanisms of tumor progression.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Middeldorp A, van Puijenbroek M, Nielsen M, Corver WE, Jordanova ES, ter Haar N, Tops CMJ, Vasen HFA, Lips EH, van Eijk R, Hes FJ, Oosting J, Wijnen J, van Wezel T, Morreau H. High frequency of copy-neutral LOH in MUTYH-associated polyposis carcinomas. J Pathol 2008; 216:25-31. [PMID: 18506705 DOI: 10.1002/path.2375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic instability is known to drive colorectal carcinogenesis. Generally, a distinction is made between two types of genetic instability: chromosomal instability (CIN) and microsatellite instability (MIN or MSI). Most CIN tumours are aneuploid, whereas MSI tumours are considered near-diploid. However, for MUTYH-associated polyposis (MAP) the genetic instability involved in the carcinogenesis remains unclear, as near-diploid adenomas, aneuploid adenomas and near-diploid carcinomas have been reported. Remarkably, our analysis of 26 MAP carcinomas, using SNP arrays and flow sorting, showed that these tumours are often near-diploid (52%) and mainly contain chromosomal regions of copy-neutral loss of heterozygosity (LOH) (71%). This is in contrast to sporadic colon cancer, where physical loss is the main characteristic. The percentage of chromosomal gains (24%) is comparable to sporadic colorectal cancers with CIN. Furthermore, we verified our scoring of copy-neutral LOH versus physical loss in MAP carcinomas by two methods: fluorescence in situ hybridization, and LOH analysis using polymorphic markers on carcinoma fractions purified by flow sorting. The results presented in this study suggest that copy-neutral LOH is an important mechanism in the tumorigenesis of MAP.
Collapse
Affiliation(s)
- A Middeldorp
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kurashina K, Yamashita Y, Ueno T, Koinuma K, Ohashi J, Horie H, Miyakura Y, Hamada T, Haruta H, Hatanaka H, Soda M, Choi YL, Takada S, Yasuda Y, Nagai H, Mano H. Chromosome copy number analysis in screening for prognosis-related genomic regions in colorectal carcinoma. Cancer Sci 2008; 99:1835-40. [PMID: 18564138 PMCID: PMC11158266 DOI: 10.1111/j.1349-7006.2008.00881.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Colorectal carcinoma (CRC) remains the major cause of cancer death in humans. Although chromosomal structural anomaly is presumed to play an important role in the carcinogenesis of CRC, chromosomal copy number alterations (CNA) and loss of heterozygosity (LOH) have not yet been analyzed extensively at high resolution in CRC. Here we aim to identify recurrent CNA and LOH in human CRC with the use of single nucleotide polymorphism-typing microarrays, and to reveal their relevance to clinical outcome. Surgically resected CRC specimens and paired normal mucosa were obtained from a consecutive series of 94 patients with CRC, and both of them were subjected to genotyping with Affymetrix Mapping 50K arrays. CNA and LOH were inferred computationally on every single nucleotide polymorphism site by integrating the array data for paired specimens. Our large dataset reveals recurrent CNA in CRC at chromosomes 7, 8, 13, 18, and 20, and recurrent LOH at chromosomes 1p, 4q, 5q, 8p, 11q, 14q, 15q, 17p, 18, and 22. Frequent uniparental disomy was also identified in chromosomes 8p, 17p, and 18q. Very common CNA and LOH were present at narrow loci of <1 Mbp containing only a few genes. In addition, we revealed a number of novel CNA and LOH that were linked statistically to the prognosis of the patients. The precise and large-scale measurement of CNA and LOH in the CRC genome is efficient for pinpointing prognosis-related genome regions as well as providing a list of unknown genes that are likely to be involved in CRC development.
Collapse
Affiliation(s)
- Kentaro Kurashina
- Division of Functional Genomics, Jichi Medical University, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen J, Guo L, Peiffer DA, Zhou L, Chan OTM, Bibikova M, Wickham-Garcia E, Lu SH, Zhan Q, Wang-Rodriguez J, Jiang W, Fan JB. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int J Cancer 2008; 122:2249-54. [PMID: 18241037 DOI: 10.1002/ijc.23397] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We employed the BeadArraytrade mark technology to perform a genetic analysis in 33 formalin-fixed, paraffin-embedded (FFPE) human esophageal carcinomas, mostly squamous-cell-carcinoma (ESCC), and their adjacent normal tissues. A total of 1,432 single nucleotide polymorphisms (SNPs) derived from 766 cancer-related genes were genotyped with partially degraded genomic DNAs isolated from these samples. This directly targeted genomic profiling identified not only previously reported somatic gene amplifications (e.g., CCND1) and deletions (e.g., CDKN2A and CDKN2B) but also novel genomic aberrations. Among these novel targets, the most frequently deleted genomic regions were chromosome 3p (including tumor suppressor genes FANCD2 and CTNNB1) and chromosome 5 (including tumor suppressor gene APC). The most frequently amplified genomic region was chromosome 3q (containing DVL3, MLF1, ABCC5, BCL6, AGTR1 and known oncogenes TNK2, TNFSF10, FGF12). The chromosome 3p deletion and 3q amplification occurred coincidently in nearly all of the affected cases, suggesting a molecular mechanism for the generation of somatic chromosomal aberrations. We also detected significant differences in germline allele frequency between the esophageal cohort of our study and normal control samples from the International HapMap Project for 10 genes (CSF1, KIAA1804, IL2, PMS2, IRF7, FLT3, NTRK2, MAP3K9, ERBB2 and PRKAR1A), suggesting that they might play roles in esophageal cancer susceptibility and/or development. Taken together, our results demonstrated the utility of the BeadArray technology for high-throughput genetic analysis in FFPE tumor tissues and provided a detailed genetic profiling of cancer-related genes in human esophageal cancer.
Collapse
Affiliation(s)
- Jing Chen
- Illumina Inc., San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|