1
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
3
|
Tiu YC, Gong L, Zhang Y, Luo J, Yang Y, Tang Y, Lee WM, Guan XY. GLIPR1 promotes proliferation, metastasis and 5-fluorouracil resistance in hepatocellular carcinoma by activating the PI3K/PDK1/ROCK1 pathway. Cancer Gene Ther 2022; 29:1720-1730. [PMID: 35760898 DOI: 10.1038/s41417-022-00490-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) contributes to a heavy disease burden for its high prevalence and poor prognosis, with limited effective systemic therapies available. In the era of precision medicine, treatment efficacy might be improved by combining personalized systemic therapies. Since oncogenic activation is one of the primary driving forces in HCC, characterization of these oncogenes can provide insights for developing new targeted therapies. Based on RNA sequencing of epithelial-mesenchymal transition (EMT)-induced HCC cells, this study discovers and characterizes glioma pathogenesis-related protein 1 (GLIPR1) that robustly drives HCC progression and can potentially serve as a prognostic biomarker and therapeutic target with clinical utility. GLIPR1 serves opposing roles and involves distinct mechanisms in different cancers. However, based on integrated in-silico analysis, in vitro and in vivo functional investigations, we demonstrate that GLIPR1 plays a multi-faceted oncogenic role in HCC development via enhancing tumor proliferation, metastasis, and 5FU resistance. We also found that GLIPR1 induces EMT and is actively involved in the PI3K/PDK1/ROCK1 singling axis to exert its oncogenic effects. Thus, pre-clinical evaluation of GLIPR1 and its downstream factors in HCC patients might facilitate further discovery of therapeutic targets, as well as improve HCC chemotherapeutic outcomes and prognosis.
Collapse
Affiliation(s)
- Yuen Chak Tiu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Luo
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
Expression and Genetic Effects of GLI Pathogenesis-Related 1 Gene on Backfat Thickness in Pigs. Genes (Basel) 2022; 13:genes13081448. [PMID: 36011359 PMCID: PMC9407767 DOI: 10.3390/genes13081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Backfat thickness (BFT) is an important carcass composition trait and regarded as a breeding focus. Our initial transcriptome analysis of pig BFT identified GLI pathogenesis-related 1 (GLIPR1) as one of the promising candidate genes. This study was conducted to identify the expression profiles, polymorphisms, and genetic effects of the GLIPR1 gene on BFT in pigs. The expression of the GLIPR1 gene existed in every detected tissue, and there was a significantly higher expression in spleen and adipose tissue than others (p < 0.05). At the different ages of pig, the expression of the GLIPR1 gene was low at an early age, increased with growth, and reached the highest level at 180 days. Genetic polymorphism analysis was detected in 553 individuals of the Large White × Minzhu F2 population. Four SNPs in the promoter significantly associated with 6−7 rib BFT (p < 0.05) were predicted to alter the transcription factor binding sites (TFBS), and the mutations of g.38758089 T>G and g.38758114 G>C were predicted to change the TFs associated with the regulation of adipogenesis. Haplotypes were formed by the detected SNPs, and one block showed a strong association with BFT (p < 0.05). In summary, our results indicate that the expression profiles and genetic variants of GLIPR1 affected the BFT of pigs. To our knowledge, this study is the first to demonstrate the biological function and genetic effects of the GLIPR1 gene on the BFT of pig and provide genetic markers to optimize breeding for BFT in pigs.
Collapse
|
5
|
Peng W, Wu Y, Zhang G, Zhu W, Chang M, Rouzi A, Jiang W, Tong L, Wang Q, Liu J, Song Y, Li H, Li K, Zhou J. GLIPR1 Protects Against Cigarette Smoke-Induced Airway Inflammation via PLAU/EGFR Signaling. Int J Chron Obstruct Pulmon Dis 2021; 16:2817-2832. [PMID: 34675506 PMCID: PMC8517531 DOI: 10.2147/copd.s328313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a major health problem associated with high mortality worldwide. Cigarette smoke (CS) exposure is the main cause of COPD. Glioma pathogenesis-related protein 1 (GLIPR1) plays a key role in cell growth, proliferation, and invasion; however, the role of GLIPR1 in COPD remains unclear. Methods To clarify the involvement of GLIPR1 in COPD pathogenesis, Glipr1 knockout (Glipr1-/-) mice were generated. Wild-type (WT) and Glipr1-/- mice were challenged with CS for 3 months. To illustrate how GLIPR1 regulates CS-induced airway damage, knockdown experiments targeting GLIPR1 and PLAU, as well as overexpression experiments of PLAU, were performed with human bronchial epithelial cells. Results Compared with WT mice, Glipr1-/- mice showed exacerbated CS-induced airway damage including lung inflammation, airway wall thickening, and alveolar destruction. After CS exposure, total proteins, total white cells, neutrophils, lymphocytes, IL-6, and matrix metalloproteinase-9 increased significantly in lung of Glipr1-/- mice than those in lung of WT mice. Furthermore, in vivo and in vitro experiments demonstrated that silencing of GLIPR1 inactivated PLAU/EGFR signaling and promoted caspase-1-dependent pyroptosis (a mode of inflammatory cell death) induced by CS and CS extract exposure, respectively. In vitro experiments further revealed the interaction between GLIPR1 and PLAU, and silencing of PLAU blocked EGFR signaling and promoted pyroptosis, while overexpression of PLAU activated EGFR signaling and reversed pyroptosis. Conclusion To conclude, GLIPR1 played a pivotal role in COPD pathogenesis and protected against CS-induced inflammatory response and airway damage, including cell pyroptosis, through the PLAU/EGFR signaling. Thus, GLIPR1 may play a potential role in COPD treatment.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ge Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Meijia Chang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ainiwaer Rouzi
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weipeng Jiang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, People's Republic of China.,Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, People's Republic of China.,Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, 200032, People's Republic of China
| | - Huayin Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ka Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, People's Republic of China.,Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, People's Republic of China.,Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
6
|
Oliveira-Barros EGD, Branco LC, Da Costa NM, Nicolau-Neto P, Palmero C, Pontes B, Ferreira do Amaral R, Alves-Leon SV, Marcondes de Souza J, Romão L, Fernandes PV, Martins I, Takiya CM, Ribeiro Pinto LF, Palumbo A, Nasciutti LE. GLIPR1 and SPARC expression profile reveals a signature associated with prostate Cancer Brain metastasis. Mol Cell Endocrinol 2021; 528:111230. [PMID: 33675864 DOI: 10.1016/j.mce.2021.111230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Despite advances in treatment of lethal prostate cancer, the incidence of prostate cancer brain metastases is increasing. In this sense, we analyzed the molecular profile, as well as the functional consequences involved in the reciprocal interactions between prostate tumor cells and human astrocytes. We observed that the DU145 cells, but not the LNCaP cells or the RWPE-1 cells, exhibited more pronounced, malignant and invasive phenotypes along their interactions with astrocytes. Moreover, global gene expression analysis revealed several genes that were differently expressed in our co-culture models with the overexpression of GLIPR1 and SPARC potentially representing a molecular signature associated with the invasion of central nervous system by prostate malignant cells. Further, these results were corroborated by immunohistochemistry and in silico analysis. Thus, we conjecture that the data here presented may increase the knowledge about the molecular mechanisms associated with the invasion of CNS by prostate malignant cells.
Collapse
Affiliation(s)
- Eliane Gouvêa de Oliveira-Barros
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer-Campus, São Pedro, Juiz de Fora, CEP: 36036-900, Brazil.
| | - Luíza Castello Branco
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Celia Palmero
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; UFRJ/Polo Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Bruno Pontes
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Rackele Ferreira do Amaral
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Jorge Marcondes de Souza
- Hospital Universitário Clementino Fraga Filho (HUCFF), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luciana Romão
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Priscila Valverde Fernandes
- Divisão de Patologia, Instituto Nacional de Câncer (INCA), Rua Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, CEP: 20220 -040, Brazil.
| | - Ivanir Martins
- Divisão de Patologia, Instituto Nacional de Câncer (INCA), Rua Cordeiro da Graça, 156 - Santo Cristo, Rio de Janeiro, CEP: 20220 -040, Brazil.
| | - Christina Maeda Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050, Brazil.
| | - Antonio Palumbo
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| | - Luiz Eurico Nasciutti
- Programa de Pesquisa Em Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária-Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil.
| |
Collapse
|
7
|
Scheuring UJ, Ritter S, Martin D, Schackert G, Temme A, Tietze S. GliPR1 knockdown by RNA interference exerts anti-glioma effects in vitro and in vivo. J Neurooncol 2021; 153:23-32. [PMID: 33856615 PMCID: PMC8131343 DOI: 10.1007/s11060-021-03737-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In human glioblastomas, glioma pathogenesis-related protein1 (GliPR1) is overexpressed and appears to be an oncoprotein. We investigated whether GliPR1 knockdown in glioma cells by RNA interference exerts anti-glioma effects. METHODS Experiments used human glioblastoma cell lines transduced with GliPR1 shRNA (sh#301, sh#258). Transduction produced stringent doxycycline-dependent GliPR1 knockdown in clones (via lentiviral "all-in-one" TetOn-shRNA vector) or stable GliPR1 knockdown in polyclonal cells (via constitutive retroviral-shRNA vector). In vitro assessments included cellular proliferation and clonogenic survival. In vivo assessments in tumor-bearing nude mice included tumor growth and survival. RESULTS Using doxycycline-dependent GliPR1 knockdown, shGliPR1-transduced U87-MG clones demonstrated reductions in cellular proliferation in the presence versus absence of doxycycline. Using stable GliPR1 knockdown, polyclonal shGliPR1-transduced U87-MG, A172, and U343-MG cells consistently showed decreased clonogenic survival and induced apoptosis (higher proportion of early apoptotic cells) compared to control shLuc-transduced cells. In tumor-bearing nude mice, using doxycycline-dependent GliPR1 knockdown, subcutaneous and cranial transplantation of the U87-MG clone 980-5 (transduced with GliPR1 sh#301) resulted in reduced subcutaneous tumor volume and cerebral tumor area in doxycycline-treated mice versus those left untreated. Using stable GliPR1 knockdown, nude mice cranially transplanted with polyclonal U87-MG cells transduced with GliPR1 sh#258 had significantly prolonged survival compared to mice cranially transplanted with control shLuc-transduced cells (41 versus 26 days; P < 0.001). CONCLUSION GliPR1 knockdown in glioma cells decreased cellular proliferation, decreased clonogenic survival, and induced apoptosis in vitro, and reduced glioblastoma tumor growth and prolonged survival in vivo. These findings support that GliPR1 may have potential value as a therapeutic target.
Collapse
Affiliation(s)
- Urban J Scheuring
- Department of Hematology/Oncology and Infectious Diseases, University Hospital, J.W. Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Steffi Ritter
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Daniel Martin
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stefanie Tietze
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
9
|
Glioma pathogenesis-related protein 1 performs dual functions in tumor cells. Cancer Gene Ther 2021; 29:253-263. [PMID: 33742130 DOI: 10.1038/s41417-021-00321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
Glioma pathogenesis-related protein 1 (GLIPR1) was identified as an oncoprotein in some cancer types including gliomas, breast cancers, melanoma cancers, and Wilms tumors, but as a tumor suppressor in some other types of cancers, such as prostate cancers, lung cancers, bladder cancers, and thyroid cancers. In gliomas, GLIPR1 promotes the migration and invasion of glioma cells by interaction with the actin polymerization regulator Neural Wiskott-Aldrich syndrome protein (N-WASP) and then abolishes the negative effects of Heterogeneous nuclear ribonuclear protein K (hnRNPK). In prostate cancers, high levels of GLIPR1 induce apoptosis and destruction of oncoproteins. In lung cancers, overexpression of GLIPR1 inhibits the growth of lung cancer cells partially through inhibiting the V-ErbB avian erythroblastic leukemia viral oncogene homolog3 (ErbB3) pathway. However, the mechanisms that GLIPR1 performs its function in other tumors still remain unclear. The tumor suppressing role of GLIPR1 has been explored to the cancer treatment. The adenoviral vector-mediated Glipr1 (AdGlipr1) gene therapy and the GLIPR1-transmembrane domain deleted (GLIPR1-ΔTM) protein therapy both showed antitumor activities and stimulated immune response in prostate cancers. Whether GLPIR1 can be used to treat other tumors is an important topic to be explored. Among which, whether GLPIR1 can be used to treat lung cancer by atomizing inhalation is the key topic we care about. If it does, this therapy has a wide application prospect and is a great progression in lung cancer treatment.
Collapse
|
10
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
11
|
Wang J, Liu J, Sun G, Meng H, Wang J, Guan Y, Yin Y, Zhao Z, Dong X, Yin S, Li H, Cheng Y, Wu H, Wu A, Yu X, Chen L. Glioblastoma extracellular vesicles induce the tumour-promoting transformation of neural stem cells. Cancer Lett 2019; 466:1-12. [PMID: 31521694 DOI: 10.1016/j.canlet.2019.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Recurrent glioblastomas are frequently found near subventricular zone (SVZ) areas of the brain where neural stem cells (NSCs) reside, and glioblastoma-derived extracellular vesicles (EVs) are reported to play important roles in tumour micro-environment, but the details are not clear. Here, we investigated the possibility that NSCs are involved in glioblastoma relapse mediated by glioblastoma-derived EVs. We studied changes to NSCs by adding glioblastoma-derived EVs into a culture system of NSCs, and found that NSCs differentiated into a type of tumour-promoting cell. These transformed cells had distinguished proliferation activity, a high migration rate, and clone-forming ability revealed by CCK-8, wound healing and soft agar clone formation assays, respectively. In vivo assays indicated that these cells could accelerate tumour formation by Ln229 cells in nude mice. Moreover, to explore the mechanisms underlying NSC transformation, single cell transcriptome sequencing was performed; our results suggest that several key genes such as S100B, CXCL14, EFEMP1, SCRG1, GLIPR1, HMGA1 and CD44 and dysregulated signalling may be important for the transformation of NSCs. It is also indicated that NSCs may be involved in glioblastoma recurrence through EV release by glioblastoma in this work. This could help to illuminate the mechanism of glioblastoma relapse, which occurs in a brief period after surgical excision, and contribute to finding new ways to treat this disease.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China; Department of Neurosurgery, Hospital of Eighty-first Army Group of Chinese PLA, Zhang Jiakou, 075000, China
| | - Jialin Liu
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Guochen Sun
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Hengxing Meng
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Jiayin Wang
- Department of Medicine, Surgery, and Cell Biology, The University of Oklahoma Health Sciences Center, Stanton L. Young Biomedical Research Center, Oklahoma City, OK, 73104, USA
| | - Yunqian Guan
- Department of Cell Biology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yiheng Yin
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Zhenyu Zhao
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Xiying Dong
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Shangjiong Yin
- Department of Neurosurgery, Hospital of Eighty-first Army Group of Chinese PLA, Zhang Jiakou, 075000, China
| | - Hongwei Li
- Department of Pathology, Hospital of Eighty-first Army Group of Chinese PLA, Zhang Jiakou, 075000, China
| | - Yuefei Cheng
- Department of Neurosurgery, Hospital of Eighty-first Army Group of Chinese PLA, Zhang Jiakou, 075000, China
| | - Hao Wu
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110122, China.
| | - Xinguang Yu
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China.
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
12
|
Somboonpatarakun C, Rodpai R, Intapan PM, Sanpool O, Sadaow L, Wongkham C, Insawang T, Boonmars T, Maleewong W. Immuno-proteomic analysis of Trichinella spiralis, T. pseudospiralis, and T. papuae extracts recognized by human T. spiralis-infected sera. Parasitol Res 2017; 117:201-212. [PMID: 29189952 DOI: 10.1007/s00436-017-5694-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022]
Abstract
The present study explored potentially immunogenic proteins of the encapsulated (Trichinella spiralis) and non-encapsulated (T. pseudospiralis, T. papuae) species within the genus Trichinella. The somatic muscle larval extracts of each species were subjected to immunoblotting analysis using human T. spiralis-infected serum samples. Fifteen reactive bands of all three species were selected for further protein identification by liquid chromatography-tandem mass spectrometry, and their possible functions were ascertained using the gene ontology. Our findings showed immunogenic protein patterns with molecular mass in the range of 33-67 kDa. Proteomic and bioinformatic analysis revealed a wide variety of functions of 17 identified proteins, which are associated with catalytic, binding, and structural activities. Most proteins were involved in cellular and metabolic processes that contribute in the invasion of host tissues and the larval molting processes. The parasite proteins were identified as actin-5C, serine protease, deoxyribonuclease-2, and intermediate filament protein ifa-1. This information may lead to alternative tools for selection of potential diagnostic protein markers or aid in the design of vaccine candidates for prevention and control of Trichinella infection.
Collapse
Affiliation(s)
- Chalermchai Somboonpatarakun
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tonkla Insawang
- Khon Kaen University Research Instrument Center, Research Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
13
|
Tracing the Evolutionary History of the CAP Superfamily of Proteins Using Amino Acid Sequence Homology and Conservation of Splice Sites. J Mol Evol 2017; 85:137-157. [DOI: 10.1007/s00239-017-9813-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
|
14
|
Duan D, Wang H, Zhou R, Jiang Q, Xiao R. The PR-1 domain accounts for the anti-angiogenic activity of a cysteine-rich secretory protein member from the buccal glands of Lampetra japonica. Int J Biol Macromol 2017; 107:2102-2112. [PMID: 29042283 DOI: 10.1016/j.ijbiomac.2017.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that cysteine-rich buccal gland protein (CRBGP) from buccal glands of Lampetra japonica could suppress angiogenesis in chick chorioallantoic membrane models. As CRBGP is composed of a pathogenesis-related group 1 (PR-1) domain and a cysteine-rich domain (CRD), which domain accounts for the effects of CRBGP on anti-angiogenesis? In the present study, recombinant PR-1 and CRD (rL-PR-1 and rL-CRD) were obtained. MTT assays showed rL-PR-1 inhibited the proliferation of HUVECs significantly in a dose-dependent manner with an IC50 of 2μM, while rL-CRD had no obviously inhibitory effect on the proliferation of HUVECs, suggested that PR-1 is the main function domain on the anti-angiogenic activity of CRBGP. Similar to CRBGP, rL-PR-1 induced apoptosis in HUVECs in a mitochondrial-dependent pathway by affecting the level of BAX, BCL2 and caspase 3. Also, the cytotoxic property of rL-PR-1 might be one of the factors which suppressed the proliferation of HUVECs. Furthermore, rL-PR-1 blocked the adhesion, migration, invasion and tube formation of HUVECs by disturbing the cytoskeleton arrangement and down-regulating the level of matrix metallo-peptidase 2. In summary, rL-PR-1 has the anti-angiogenic activity which would provide the information on the functions and mechanisms of cysteine-rich secretory protein family members.
Collapse
Affiliation(s)
- Dandan Duan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Hongyan Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Rong Zhou
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Qi Jiang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China
| | - Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China.
| |
Collapse
|
15
|
Gong X, Liu J, Zhang D, Yang D, Min Z, Wen X, Wang G, Li H, Song Y, Bai C, Li J, Zhou J. GLIPR1 modulates the response of cisplatin-resistant human lung cancer cells to cisplatin. PLoS One 2017; 12:e0182410. [PMID: 28771580 PMCID: PMC5542429 DOI: 10.1371/journal.pone.0182410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/18/2017] [Indexed: 01/01/2023] Open
Abstract
Background and objective Chemotherapy drugs, such as cisplatin (DDP), improve the survival of patients with lung cancer by inducing apoptosis in cancer cells, which quickly develop resistance to DDP through uncharacterized mechanisms. Glioma Pathogenesis-Related Protein 1 (GLIPR1) plays an important role in cell proliferation, migration and apoptosis. However, the expression and function of GLIPR1 in mediating DDP resistance in human lung adenocarcinoma A549/DDP and human large cell lung cancer H460/DDP cells has not yet been reported. Methods In this study, real-time PCR (RT-PCR) and western blot were used to examine the mRNA and protein expression of GLIPR1, respectively. Bright-field microscopy, the cell counting kit-8 (CCK-8) assay, flow cytometry analysis and JC-1 dye were used to measure the cellular morphology, proliferation, apoptosis and mitochondrial membrane potential, respectively. Results Compared to human lung adenocarcinoma A549 cells, the mRNA and protein expression of GLIPR1 were significantly increased in DDP-resistant A549/DDP cells (p < 0.05). Similarly, the mRNA level of GLIPR1 in DDP-resistant H460/DDP cells was also significantly higher than that in DDP-sensitive H460 cells (p < 0.05). Silencing of GLIPR1 in A549/DDP and H460/DDP cells led to increased apoptosis via a mitochondrial signaling pathway following incubation with various concentrations of DDP. Furthermore, GLIPR1 downregulation markedly reduced the protein expression of Bcl-2, and increased the cleaved Poly (ADP-Ribose) Polymerase (PARP) and cleaved caspase-3 in DDP-resistant A549/DDP cells. Conclusion In this study, we demonstrated for the first time that GLIPR1 could modulate the response of DDP-resistant A549/DDP and H460/DDP cells to cisplatin. Therefore, GLIPR1 deserves further investigation in the context of none-small lung cancer (NSCLC).
Collapse
Affiliation(s)
- Xin Gong
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Liu
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Dan Zhang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Yang
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Min
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxing Wen
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guifang Wang
- Department of Pulmonary Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Huayin Li
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (JZ); (JL)
| | - Jian Zhou
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (JZ); (JL)
| |
Collapse
|
16
|
Mercatelli N, Galardi S, Ciafrè SA. MicroRNAs as Multifaceted Players in Glioblastoma Multiforme. MIRNAS IN DIFFERENTIATION AND DEVELOPMENT 2017; 333:269-323. [DOI: 10.1016/bs.ircmb.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Giladi ND, Ziv-Av A, Lee HK, Finniss S, Cazacu S, Xiang C, Waldman Ben-Asher H, deCarvalho A, Mikkelsen T, Poisson L, Brodie C. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop. Oncotarget 2016; 6:22680-97. [PMID: 26267319 PMCID: PMC4673191 DOI: 10.18632/oncotarget.4205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023] Open
Abstract
Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Nis David Giladi
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Amotz Ziv-Av
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hae Kyung Lee
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Susan Finniss
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Simona Cazacu
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Cunli Xiang
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Hiba Waldman Ben-Asher
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ana deCarvalho
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Laila Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Chaya Brodie
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.,Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
18
|
RTVP-1 regulates glioma cell migration and invasion via interaction with N-WASP and hnRNPK. Oncotarget 2016; 6:19826-40. [PMID: 26305187 PMCID: PMC4637324 DOI: 10.18632/oncotarget.4471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) are characterized by increased invasion into the surrounding normal brain tissue. RTVP-1 is highly expressed in GBM and regulates the migration and invasion of glioma cells. To further study RTVP-1 effects we performed a pull-down assay using His-tagged RTVP-1 followed by mass spectrometry and found that RTVP-1 was associated with the actin polymerization regulator, N-WASP. This association was further validated by co-immunoprecipitation and FRET analysis. We found that RTVP-1 increased cell spreading, migration and invasion and these effects were at least partly mediated by N-WASP. Another protein which was found by the pull-down assay to interact with RTVP-1 is hnRNPK. This protein has been recently reported to associate with and to inhibit the effect of N-WASP on cell spreading. hnRNPK decreased cell migration, spreading and invasion in glioma cells. Using co-immunoprecipitation we validated the interactions of hnRNPK with N-WASP and RTVP-1 in glioma cells. In addition, we found that overexpression of RTVP-1 decreased the association of N-WASP and hnRNPK. In summary, we report that RTVP-1 regulates glioma cell spreading, migration and invasion and that these effects are mediated via interaction with N-WASP and by interfering with the inhibitory effect of hnRNPK on the function of this protein.
Collapse
|
19
|
Sheng X, Bowen N, Wang Z. GLI pathogenesis-related 1 functions as a tumor-suppressor in lung cancer. Mol Cancer 2016; 15:25. [PMID: 26988096 PMCID: PMC4797332 DOI: 10.1186/s12943-016-0508-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/27/2016] [Indexed: 11/26/2022] Open
Abstract
Background GLI pathogenesis-related 1 (GLIPR1) was originally identified in glioblastomas and its expression was also found to be down-regulated in prostate cancer. Functional studies revealed both growth suppression and proapoptotic activities for GLIPR1 in multiple cancer cell lines. GLIPR1’s role in lung cancer has not been investigated. Protein arginine methyltransferase 5 (PRMT5) is a protein arginine methyltransferase and forms a stoichiometric complex with the WD repeat domain 77 (WDR77) protein. Both PRMT5 and WDR77 are essential for growth of lung epithelial and cancer cells. But additional gene products that interact genetically or biochemichally with PRMT5 and WDR77 in the control of lung cancer cell growth are not characterized. Methods DNA microarray and immunostaining were used to detect GLIPR1 expression during lung development and lung tumorigenesis. GLIPR1 expression was also analyzed in the TCGA lung cancer cohort. The consequence of GLIPR1 on growth of lung cancer cells in the tissue culture and lung tumor xenografts in the nude mice was observed. Results We found that GLIPR1 expression is negatively associated with PRMT5/WDR77. GLIPR1 is absent in growing epithelial cells at the early stages of mouse lung development and highly expressed in the adult lung. Expression of GLIPR1 was down-regulated during lung tumorigenesis and its expression suppressed growth of lung cancer cells in the tissue culture and lung tumor xenografts in mice. GLIPR1 regulates lung cancer growth through the V-Erb-B avian erythroblastic leukemia viral oncogene homolog 3 (ErbB3). Conclusions This study reveals a novel pathway that PRMT5/WDR77 regulates GLIPR1 expression to control lung cancer cell growth and GLIPR1 as a potential therapeutic agent for lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0508-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiumei Sheng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.,The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Drive, S.W., Atlanta, Georgia, 30314, USA
| | - Nathan Bowen
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Drive, S.W., Atlanta, Georgia, 30314, USA
| | - Zhengxin Wang
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Drive, S.W., Atlanta, Georgia, 30314, USA.
| |
Collapse
|
20
|
RasGRP3 regulates the migration of glioma cells via interaction with Arp3. Oncotarget 2015; 6:1850-64. [PMID: 25682201 PMCID: PMC4359336 DOI: 10.18632/oncotarget.2575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM.
Collapse
|
21
|
Role of the anti-glioma drug AT13148 in the inhibition of Notch signaling pathway. Gene 2015; 573:153-9. [DOI: 10.1016/j.gene.2015.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/03/2015] [Accepted: 07/11/2015] [Indexed: 11/18/2022]
|
22
|
Wang X, Chen Y, Zhang S, Zhang L, Liu X, Zhang L, Li X, Chen D. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis. J Neurooncol 2015; 125:277-85. [PMID: 26334317 DOI: 10.1007/s11060-015-1919-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/29/2015] [Indexed: 12/27/2022]
Abstract
Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) are important factors in tumorigenesis and malignant progression; however, studies of their roles in glioblastoma have produced conflicting results. To define the frequencies of COX-2 and 5-LO expression and their correlation with clinicopathological features and prognosis, tumor tissues from 76 cases of newly diagnosed primary ordinary glioblastoma were examined for COX-2 and 5-LO expression by immunohistochemistry. The expression levels of COX-2 and 5-LO and the relationships between the co-expression of COX-2/5-LO and patient age and gender, edema index (EI), Karnofsky Performance Scale and overall survival (OS) were analyzed. COX-2 and 5-LO were expressed in 73.7 % (56/76) and 92.1 % (70/76) of the samples, respectively. Among the clinicopathological characteristics, only age (>60 years) exhibited a significant association with the high expression of COX-2. No statistically significant correlations were found in the 5-LO cohort. A significant positive correlation was revealed between the COX-2 and 5-LO scores (r = 0.374; p = 0.001). The elevated co-expression of COX-2 and 5-LO was observed primarily in the patients over the age of 60 years. Patients with a high expression of COX-2 had a significantly shorter OS (p < 0.01), whereas the immunoexpression of 5-LO was not associated with the OS of patients with glioblastoma. Survival analysis indicated that simultaneous high levels of COX-2 and 5-LO expression were significantly correlated with poor OS and, conversely, that a low/low expression pattern of these two proteins was significantly associated with better OS (p < 0.05). Moreover, the Cox multivariable proportional hazard model showed that a high expression of COX-2, high co-expression of COX-2 and 5-LO, and a high Ki-67 index were significant predictors of shorter OS in primary glioblastoma, independent of age, gender, EI, 5-LO expression and p53 status. The hazard ratios for OS were 2.347 (95 % CI 1.30-4.25, p = 0.005), 1.900 (95 % CI 1.30-2.78, p = 0.001), and 2.210 (95 % CI 1.19-4.09, p = 0.011), respectively. These results suggest that COX-2 and 5-LO play roles in tumorigenesis and the progression of primary glioblastoma and that the co-expression pattern of COX-2/5-LO may be used as an independent prognostic factor in this disease.
Collapse
Affiliation(s)
- Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang Ditrict, Fuzhou City, 350005, China.
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang Ditrict, Fuzhou City, 350005, China.
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang Ditrict, Fuzhou City, 350005, China.
| | - Lifeng Zhang
- Department of Endocrinology, Fujian Province Governmental Hospital, No. 67 Guping Road, Gulou Ditrict, Fuzhou City, 350003, China.
| | - Xueyong Liu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang Ditrict, Fuzhou City, 350005, China.
| | - Li Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang Ditrict, Fuzhou City, 350005, China.
| | - Xiaoling Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang Ditrict, Fuzhou City, 350005, China.
| | - Dayang Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang Ditrict, Fuzhou City, 350005, China.
| |
Collapse
|
23
|
de Vasconcellos JF, Laranjeira ABA, Leal PC, Bhasin MK, Zenatti PP, Nunes RJ, Yunes RA, Nowill AE, Libermann TA, Zerbini LF, Yunes JA. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1. PLoS One 2015; 10:e0134783. [PMID: 26302043 PMCID: PMC4547718 DOI: 10.1371/journal.pone.0134783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/14/2015] [Indexed: 01/07/2023] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002.
Collapse
Affiliation(s)
- Jaíra Ferreira de Vasconcellos
- Centro Infantil Boldrini, Campinas, SP, Brazil
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Paulo C. Leal
- Department of Chemistry, Santa Catarina Federal University, Florianopólis, SC, Brazil
| | - Manoj K. Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Ricardo J. Nunes
- Department of Chemistry, Santa Catarina Federal University, Florianopólis, SC, Brazil
| | - Rosendo A. Yunes
- Department of Chemistry, Santa Catarina Federal University, Florianopólis, SC, Brazil
| | - Alexandre E. Nowill
- Centro Integrado de Pesquisas Oncohematológicas da Infancia, University of Campinas, Campinas, SP, Brazil
| | - Towia A. Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Luiz Fernando Zerbini
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Cancer Genomics Group, International Center for Genetic Engineering and Biotechnology and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
| | - José Andrés Yunes
- Centro Infantil Boldrini, Campinas, SP, Brazil
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
24
|
Yoshino TP, Brown M, Wu XJ, Jackson CJ, Ocadiz-Ruiz R, Chalmers IW, Kolb M, Hokke CH, Hoffmann KF. Excreted/secreted Schistosoma mansoni venom allergen-like 9 (SmVAL9) modulates host extracellular matrix remodelling gene expression. Int J Parasitol 2014; 44:551-63. [PMID: 24859313 PMCID: PMC4079936 DOI: 10.1016/j.ijpara.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
Schistosoma mansoni VAL9 (SmVAL9) is a secreted N-linked glycoprotein containing a unique, difucosyl modification. SmVAL9 is found throughout miracidia/sporocyst parenchymal cell inclusions/vesicles and germinal cells. SmVAL9 differentially regulates murine and snail matrix metalloproteinases.
The Schistosoma mansoni venom allergen-like (SmVAL) protein family consists of 29 members, each possessing a conserved α-β-α sandwich tertiary feature called the Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain. While the SmVALs have been found in both excretory/secretory (E/S) products and in intra/sub-tegumental (non-E/S) fractions, the role(s) of this family in host/parasite relationships or schistosome developmental processes remains poorly resolved. In order to begin quantifying SmVAL functional diversity or redundancy, dissecting the specific activity (ies) of individual family members is necessary. Towards this end, we present the characterisation of SmVAL9; a protein previously found enriched in both miracidia/sporocyst larval transformation proteins and in egg secretions. While our study confirms that SmVAL9 is indeed found in soluble egg products and miracidia/sporocyst larval transformation proteins, we find it to be maximally transcribed/translated in miracidia and subsequently down-regulated during in vitro sporocyst development. SmVAL9 localisation within sporocysts appears concentrated in parenchymal cells/vesicles as well as associated with larval germinal cells. Furthermore, we demonstrate that egg-derived SmVAL9 carries an N-linked glycan containing a schistosome-specific difucosyl element and is an immunogenic target during chronic murine schistosomiasis. Finally, we demonstrate that recombinant SmVAL9 affects the expression of extracellular matrix, remodelling matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase (TIMP) gene products in both Biomphalaria glabrata embryonic cell (BgMMP1) and Mus musculus bone marrow-derived macrophage (MmMMP2, MmMMP9, MmMMP12, MmMMP13, MmMMP14, MmMMP28, TIMP1 and TIMP2) in vitro cultures. These findings importantly suggest that excreted/secreted SmVAL9 participates in tissue reorganisation/extracellular matrix remodelling during intra-mammalian egg translocation, miracidia infection and intra-molluscan sporocyst development/migration.
Collapse
Affiliation(s)
- Timothy P Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Martha Brown
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Room 3.31, Edward Llwyd Building, Penglais Campus, Aberystwyth SY23 3DA, UK
| | - Xiao-Jun Wu
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Colin J Jackson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Room 3.31, Edward Llwyd Building, Penglais Campus, Aberystwyth SY23 3DA, UK
| | - Ramon Ocadiz-Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Iain W Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Room 3.31, Edward Llwyd Building, Penglais Campus, Aberystwyth SY23 3DA, UK
| | - Marlen Kolb
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Room 3.31, Edward Llwyd Building, Penglais Campus, Aberystwyth SY23 3DA, UK
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Room 3.31, Edward Llwyd Building, Penglais Campus, Aberystwyth SY23 3DA, UK.
| |
Collapse
|
25
|
Bier A, Giladi N, Kronfeld N, Lee HK, Cazacu S, Finniss S, Xiang C, Poisson L, deCarvalho AC, Slavin S, Jacoby E, Yalon M, Toren A, Mikkelsen T, Brodie C. MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 2014; 4:665-76. [PMID: 23714687 PMCID: PMC3742828 DOI: 10.18632/oncotarget.928] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastomas (GBM), the most common and aggressive malignant astrocytic tumors, contain a small subpopulation of cancer stem cells (GSCs) that are implicated in therapeutic resistance and tumor recurrence. Here, we study the expression and function of miR-137, a putative suppressor miRNA, in GBM and GSCs. We found that the expression of miR-137 was significantly lower in GBM and GSCs compared to normal brains and neural stem cells (NSCs) and that the miR-137 promoter was hypermethylated in the GBM specimens. The expression of miR-137 was increased in differentiated NSCs and GSCs and overexpression of miR-137 promoted the neural differentiation of both cell types. Moreover, pre-miR-137 significantly decreased the self-renewal of GSCs and the stem cell markers Oct4, Nanog, Sox2 and Shh. We identified RTVP-1 as a novel target of miR-137 in GSCs; transfection of the cells with miR-137 decreased the expression of RTVP-1 and the luciferase activity of RTVP-1 3'-UTR reporter plasmid. Furthermore, overexpression of RTVP-1 plasmid lacking its 3'-UTR abrogated the inhibitory effect of miR-137 on the self-renewal of GSCs. Silencing of RTVP-1 decreased the self-renewal of GSCs and the expression of CXCR4 and overexpression of CXCR4 abrogated the inhibitory effect of RTVP-1 silencing on GSC self-renewal. These results demonstrate that miR-137 is downregulated in GBM probably due to promoter hypermethylation. miR-137 inhibits GSC self-renewal and promotes their differentiation by targeting RTVP-1 which downregulates CXCR4. Thus, miR-137 and RTVP-1 are attractive therapeutic targets for the eradication of GSCs and for the treatment of GBM.
Collapse
Affiliation(s)
- Ariel Bier
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jacoby E, Yalon M, Leitner M, Cohen ZR, Cohen Y, Fisher T, Eder S, Amariglio N, Rechavi G, Cazacu S, Xiang C, Mikkelsen T, Brodie C, Toren A. Related to testes-specific, vespid and pathogenesis protein-1 is regulated by methylation in glioblastoma. Oncol Lett 2014; 7:1209-1212. [PMID: 24944694 PMCID: PMC3961359 DOI: 10.3892/ol.2014.1829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022] Open
Abstract
Related to testes-specific, vespid and pathogenesis protein-1 (RTVP-1), also known as glioma pathogenesis-related protein 1, is highly expressed and has oncogenic features in glioblastoma (GBM; World Health Organization class IV). Promoter methylation has been found to control RTVP-1 expression in prostate carcinoma, Wilms' tumor, acute myeloid leukemia and melanoma. In this bi-institutional study, the methylation status of RTVP-1 in astrocytic brain malignancies (GBM and oligodendroglioma) was examined. The RTVP-1 promoter was hypomethylated in GBM compared with non-tumor brain samples, but was hypermethylated in oligodendroglioma. RTVP-1 methylation correlated with RTVP-1 expression at the mRNA level. In GBM, hypermethylation of the RTVP-1 promoter was associated with improved overall survival although with no statistical significance.
Collapse
Affiliation(s)
- Elad Jacoby
- Department of Pediatric Hematology and Oncology, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel ; Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Michal Yalon
- Department of Pediatric Hematology and Oncology, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel ; Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Moshe Leitner
- Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Zvi R Cohen
- Department of Neurosurgery, The Chaim Sheba Medical Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Yehudit Cohen
- Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Tamar Fisher
- Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Sarit Eder
- Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Ninette Amariglio
- Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Gideon Rechavi
- Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| | - Simona Cazacu
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Cunli Xiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Tom Mikkelsen
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Chaya Brodie
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Tel Aviv 52900, Israel
| | - Amos Toren
- Department of Pediatric Hematology and Oncology, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel ; Cancer Research Center, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Gan, Tel Aviv 52621, Israel
| |
Collapse
|
27
|
Capalbo G, Mueller-Kuller T, Koschmieder S, Klein HU, Ottmann OG, Hoelzer D, Scheuring UJ. Endoplasmic reticulum protein GliPR1 regulates G protein signaling and the cell cycle and is overexpressed in AML. Oncol Rep 2013; 30:2254-62. [PMID: 24008279 DOI: 10.3892/or.2013.2716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/19/2013] [Indexed: 11/05/2022] Open
Abstract
Glioma pathogenesis‑related protein 1 (GliPR1) is a pleiotropic protein involved in cell proliferation, tumor growth and apoptosis. The aim of the present study was to further characterize GliPR1 in regard to its subcellular localization and its overall effect on cellular gene expression. Knockdown of GliPR1 and Affymetrix microarray mRNA expression analysis revealed 262 GliPR1‑dependent differentially expressed genes, of which 40 were induced and 222 were suppressed. Differentially expressed genes were overrepresented in five Gene Ontology categories: G protein signaling pathways, regulation of cyclin‑dependent protein kinase activity, ER to Golgi vesicle-mediated transport, axon guidance and dephosphorylation. GliPR1-EGFP fusion protein co‑localized with the endoplasmic reticulum (ER) or with cytoplasmic vesicles as demonstrated by confocal microscopy. GliPR1 expression was found to be significantly increased in acute myeloid leukemia (AML) bone marrow samples, while markedly reduced in acute lymphoblastic leukemia, unchanged in myelodysplastic syndrome and slightly decreased in chronic lymphocytic leukemia as well as in chronic myelocytic leukemia (CML) when compared to normal samples. GliPR1 was localized and involved in the ER secretory protein pathway. GliPR1 affects G protein signaling and cell cycle regulation. Based on the observed overexpression in AML samples, GliPR1 should be further explored as a potential target for AML.
Collapse
Affiliation(s)
- Gianni Capalbo
- Department of Hematology/Oncology and Infectious Diseases, J.W. Goethe University Hospital, D‑60590 Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Awasthi A, Woolley AG, Lecomte FJ, Hung N, Baguley BC, Wilbanks SM, Jeffs AR, Tyndall JDA. Variable Expression of GLIPR1 Correlates with Invasive Potential in Melanoma Cells. Front Oncol 2013; 3:225. [PMID: 24010123 PMCID: PMC3757444 DOI: 10.3389/fonc.2013.00225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
GLI pathogenesis-related 1 (GLIPR1) was previously identified as an epigenetically regulated tumor suppressor in prostate cancer and, conversely, an oncoprotein in glioma. More recently, GLIPR1 was shown to be differentially expressed in other cancers including ovarian, acute myeloid leukemia, and Wilms' tumor. Here we investigated GLIPR1 expression in metastatic melanoma cell lines and tissue. GLIPR1 was variably expressed in metastatic melanoma cells, and transcript levels correlated with degree of GLIPR1 promoter methylation in vitro. Elevated GLIPR1 levels were correlated with increased invasive potential, and siRNA-mediated knockdown of GLIPR1 expression resulted in reduced cell migration and proliferation in vitro. Immunohistochemical studies of melanoma tissue microarrays showed moderate to high staining for GLIPR1 in 50% of specimens analyzed. GLIPR1 staining was observed in normal skin in merocrine sweat glands, sebaceous glands, and hair follicles within the dermis.
Collapse
Affiliation(s)
- Anshul Awasthi
- School of Pharmacy, University of Otago , Dunedin , New Zealand ; Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin , New Zealand ; Department of Biochemistry, Otago School of Medical Sciences, University of Otago , Dunedin , New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee HK, Bier A, Cazacu S, Finniss S, Xiang C, Twito H, Poisson LM, Mikkelsen T, Slavin S, Jacoby E, Yalon M, Toren A, Rempel SA, Brodie C. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PLoS One 2013; 8:e54652. [PMID: 23390502 PMCID: PMC3563647 DOI: 10.1371/journal.pone.0054652] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/13/2012] [Indexed: 01/10/2023] Open
Abstract
Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3′-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3′-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.
Collapse
Affiliation(s)
- Hae Kyung Lee
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Ariel Bier
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Simona Cazacu
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Susan Finniss
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Cunli Xiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Hodaya Twito
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laila M. Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Tom Mikkelsen
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Shimon Slavin
- International Center for Cell Therapy and Cancer Immunotherapy (CTCI), Tel-Aviv, Israel
| | - Elad Jacoby
- Pediatric Hemato-Oncology, The Edmond and Lilly Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer and The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, The Edmond and Lilly Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer and The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amos Toren
- Pediatric Hemato-Oncology, The Edmond and Lilly Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer and The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sandra A. Rempel
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Chaya Brodie
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, United States of America
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
30
|
Tanaka M, Kuriyama S, Aiba N. Nm23-H1 regulates contact inhibition of locomotion, which is affected by ephrin-B1. J Cell Sci 2012; 125:4343-53. [PMID: 22718351 DOI: 10.1242/jcs.104083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Contact inhibition of locomotion (CIL) is the process by which cells stop the continual migration in the same direction after collision with another cell. Highly invasive malignant cells exhibit diminished CIL when they contact stromal cells, which allows invasion of the tissue by tumors. We show that Nm23-H1 is essential for the suppression of Rac1 through inactivation of Tiam1 at the sites of cell-cell contact, which plays a pivotal role in CIL. U87MG cells show CIL when they contact normal glia. In spheroid confrontation assays U87MG cells showed only limited invasion of the glial population, but reduction of Nm23-H1 expression in U87MG cells abrogated CIL resulting in invasion. In U87MG cells, Nm23-H1 is translocated to the sites of contact with glia through association with α-catenin and N-cadherin. Mutants of Nm23-H1, which lacked the binding ability with Tiam1, or α-catenin did not restore CIL. Moreover, the expression of ephrin-B1 in tumor cells disrupted CIL and promoted invasion. As one mechanism, ephrin-B1 inhibits the association of Nm23-H1 with Tiam1, which contributes for activation of Rac1. These results indicate a novel function of Nm23-H1 to control CIL, and its negative regulation by ephrin-B1.
Collapse
Affiliation(s)
- Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | |
Collapse
|
31
|
Prados-Rosales RC, Roldán-Rodríguez R, Serena C, López-Berges MS, Guarro J, Martínez-del-Pozo Á, Di Pietro A. A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. J Biol Chem 2012; 287:21970-9. [PMID: 22553200 DOI: 10.1074/jbc.m112.364034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity.
Collapse
Affiliation(s)
- Rafael C Prados-Rosales
- Departamento de Genetica, Facultad de Ciencias and Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Cordoba, 14071 Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Cantacessi C, Hofmann A, Young ND, Broder U, Hall RS, Loukas A, Gasser RB. Insights into SCP/TAPS proteins of liver flukes based on large-scale bioinformatic analyses of sequence datasets. PLoS One 2012; 7:e31164. [PMID: 22384000 PMCID: PMC3284463 DOI: 10.1371/journal.pone.0031164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/03/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND SCP/TAPS proteins of parasitic helminths have been proposed to play key roles in fundamental biological processes linked to the invasion of and establishment in their mammalian host animals, such as the transition from free-living to parasitic stages and the modulation of host immune responses. Despite the evidence that SCP/TAPS proteins of parasitic nematodes are involved in host-parasite interactions, there is a paucity of information on this protein family for parasitic trematodes of socio-economic importance. METHODOLOGY/PRINCIPAL FINDINGS We conducted the first large-scale study of SCP/TAPS proteins of a range of parasitic trematodes of both human and veterinary importance (including the liver flukes Clonorchis sinensis, Opisthorchis viverrini, Fasciola hepatica and F. gigantica as well as the blood flukes Schistosoma mansoni, S. japonicum and S. haematobium). We mined all current transcriptomic and/or genomic sequence datasets from public databases, predicted secondary structures of full-length protein sequences, undertook systematic phylogenetic analyses and investigated the differential transcription of SCP/TAPS genes in O. viverrini and F. hepatica, with an emphasis on those that are up-regulated in the developmental stages infecting the mammalian host. CONCLUSIONS This work, which sheds new light on SCP/TAPS proteins, guides future structural and functional explorations of key SCP/TAPS molecules associated with diseases caused by flatworms. Future fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new approaches for the control of parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ursula Broder
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Smithfield, Queensland, Australia
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Burnett LA, Washburn CA, Sugiyama H, Xiang X, Olson JH, Al-Anzi B, Bieber AL, Chandler DE. Allurin, an amphibian sperm chemoattractant having implications for mammalian sperm physiology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:1-61. [PMID: 22449486 DOI: 10.1016/b978-0-12-394306-4.00007-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eggs of many species are surrounded by extracellular coats that emit ligands to which conspecific sperm respond by undergoing chemotaxis and changes in metabolism, motility, and acrosomal status in preparation for fertilization. Here we review methods used to measure sperm chemotaxis and focus on recent studies of allurin, a 21-kDa protein belonging to the Cysteine-RIch Secretory Protein (CRISP) family that has chemoattraction activity for both amphibian and mammalian sperm. Allurin is unique in being the first extensively characterized Crisp protein found in the female reproductive tract and is the product of a newly discovered amphibian gene within a gene cluster that has been largely conserved in mammals. Study of its expression, function, and tertiary structure could lead to new insights in the role of Crisp proteins in sperm physiology.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li L, Ren C, Yang G, Fattah EA, Goltsov AA, Kim SM, Lee JS, Park S, Demayo FJ, Ittmann MM, Troncoso P, Thompson TC. GLIPR1 suppresses prostate cancer development through targeted oncoprotein destruction. Cancer Res 2011; 71:7694-704. [PMID: 22025562 DOI: 10.1158/0008-5472.can-11-1714] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Downregulation of the proapoptotic p53 target gene glioma pathogenesis-related protein 1 (GLIPR1) occurs frequently in prostate cancer, but the functional meaning of this event is obscure. Here, we report the discovery of functional relationship between GLIPR1 and c-Myc in prostate cancer where c-Myc is often upregulated. We found that the expression of GLIPR1 and c-Myc were inversely correlated in human prostate cancer. Restoration of GLIPR1 expression in prostate cancer cells downregulated c-myc levels, inhibiting cell-cycle progression. Downregulation was linked to a reduction in β-catenin/TCF4-mediated transcription of the c-myc gene, which was caused by GLIPR1-mediated redistribution of casein kinase 1α (CK1α) from the Golgi apparatus to the cytoplasm where CK1α could phosphorylate β-catenin and mediate its destruction. In parallel, GLIPR1 also promoted c-Myc protein ubiquitination and degradation by glycogen synthase kinase-3α- and/or CK1α-mediated c-Myc phosphorylation. Notably, genetic ablation of the mouse homolog of Glipr1 cooperated with c-myc overexpression to induce prostatic intraepithelial neoplasia and prostate cancer. Together, our findings provide evidence for CK1α-mediated destruction of c-Myc and identify c-Myc S252 as a crucial CK1α phosphorylation site for c-Myc degradation. Furthermore, they reveal parallel mechanisms of c-myc downregulation by GLIPR1 that when ablated in the prostate are sufficient to drive c-Myc expression and malignant development.
Collapse
Affiliation(s)
- Likun Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Burnett LA, Anderson DM, Rawls A, Bieber AL, Chandler DE. Mouse sperm exhibit chemotaxis to allurin, a truncated member of the cysteine-rich secretory protein family. Dev Biol 2011; 360:318-28. [PMID: 22008793 DOI: 10.1016/j.ydbio.2011.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 12/14/2022]
Abstract
Allurin, a 21 kDa protein isolated from egg jelly of the frog Xenopus laevis, has previously been demonstrated to attract frog sperm in two-chamber and microscopic assays. cDNA cloning and sequencing has shown that allurin is a truncated member of the Cysteine-Rich Secretory Protein (CRISP) family, whose members include mammalian sperm-binding proteins that have been postulated to play roles in spermatogenesis, sperm capacitation and sperm-egg binding in mammals. Here, we show that allurin is a chemoattractant for mouse sperm, as determined by a 2.5-fold stimulation of sperm passage across a porous membrane and by analysis of sperm trajectories within an allurin gradient as observed by time-lapse microscopy. Chemotaxis was accompanied by an overall change in trajectory from circular to linear thereby increasing sperm movement along the gradient axis. Allurin did not increase sperm velocity although it did produce a modest increase in flagellar beat frequency. Oregon Green 488-conjugated allurin was observed to bind to the sub-equatorial region of the mouse sperm head and to the midpiece of the flagellum. These findings demonstrate that sperm have retained the ability to bind and respond to truncated Crisp proteins over 300 million years of vertebrate evolution.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | |
Collapse
|
36
|
Asojo OA, Koski RA, Bonafé N. Structural studies of human glioma pathogenesis-related protein 1. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:847-55. [PMID: 21931216 PMCID: PMC3176621 DOI: 10.1107/s0907444911028198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 11/10/2022]
Abstract
Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn2+ complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn2+ similarly to snake-venom CRISPs, which are involved in Zn2+-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- Department of Pathology and Microbiology, College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | | | | |
Collapse
|
37
|
Ziv-Av A, Taller D, Attia M, Xiang C, Lee HK, Cazacu S, Finniss S, Kazimirsky G, Sarid R, Brodie C. RTVP-1 expression is regulated by SRF downstream of protein kinase C and contributes to the effect of SRF on glioma cell migration. Cell Signal 2011; 23:1936-43. [PMID: 21777672 DOI: 10.1016/j.cellsig.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/04/2011] [Indexed: 01/13/2023]
Abstract
Gliomas are characterized by increased infiltration into the surrounding normal brain tissue. We recently reported that RTVP-1 is highly expressed in gliomas and plays a role in the migration of these cells, however the regulation of RTVP-1 expression in these cells is not yet described. In this study we examined the role of PKC in the regulation of RTVP-1 expression and found that PMA and overexpression of PKCα and PKCε increased the expression of RTVP-1, whereas PKCδ exerted an opposite effect. Using the MatInspector software, we identified a SRF binding site on the RTVP-1 promoter. Chromatin immunoprecipitation (ChIP) assay revealed that SRF binds to the RTVP-1 promoter in U87 cells, and that this binding was significantly increased in response to serum addition. Moreover, silencing of SRF blocked the induction of RTVP-1 expression in response to serum. We found that overexpression of PKCα and PKCε increased the activity of the RTVP-1 promoter and the binding of SRF to the promoter. In contrast, overexpression of PKCδ blocked the increase in RTVP-1 expression in response to serum and the inhibitory effect of PKCδ was abrogated in cells expressing a SRFT160A mutant. SRF regulated the migration of glioma cells and its effect was partially mediated by RTVP-1. We conclude that RTVP-1 is a PKC-regulated gene and that this regulation is at least partly mediated by SRF. Moreover, RTVP-1 plays a role in the effect of SRF on glioma cell migration.
Collapse
Affiliation(s)
- Amotz Ziv-Av
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hattermann K, Held-Feindt J, Mentlein R. Spheroid confrontation assay: a simple method to monitor the three-dimensional migration of different cell types in vitro. Ann Anat 2011; 193:181-4. [PMID: 21339059 DOI: 10.1016/j.aanat.2010.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 01/12/2023]
Abstract
Cell migration and tissue invasion is an important issue in tumour and developmental research. Here, we describe the spheroid invasion assay in detail, a method for monitoring migration of different cell types in a three-dimensional model in vitro. Different (or same) cell types are fluorescently labelled with two different dyes, e.g. Vybrant® CFDA SE Kit ([5(6)carboxyfluorescein diacetate] succidimidylester, green) or SNARF-1® (red), and spheroids of these cells are formed in a medium with 0.24% methylcellulose. After this, spheroids are detached, picked and confronted with each other. After different periods of time, cell invasion can be easily followed microscopically. As an example, the method was applied here to visualize the migration and invasion of microglial and glial precursor cells into spheroids of tumour cells driven by chemokines or chemotactic growth factors. Antibodies to chemokines or chemotactic growth factors/receptors or inhibitors of signal transduction/proteases generating soluble factors can be used to demonstrate the specificity of the chemotactic agents. Thus, this method provides an easy in vitro-method to monitor chemotaxis and three-dimensional cell migration.
Collapse
Affiliation(s)
- Kirsten Hattermann
- Department of Anatomy, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | |
Collapse
|
39
|
Bonafé N, Zhan B, Bottazzi ME, Perez OA, Koski RA, Asojo OA. Expression, purification, crystallization and preliminary X-ray analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1487-9. [PMID: 21045302 DOI: 10.1107/s1744309110035669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/05/2010] [Indexed: 11/10/2022]
Abstract
Glioma pathogenesis-related protein 1 (GLIPR1) is a member of the CAP superfamily that includes proteins from a wide range of eukaryotic organisms. The biological functions of most CAP proteins, including GLIPR1, are unclear. GLIPR1 is up-regulated in aggressive glioblastomas and contributes to the invasiveness of cultured glioblastoma cells. In contrast, decreased GLIPR1 expression is associated with advanced prostate cancer. Forced GLIPR1 overexpression is pro-apoptotic in prostate cancer cells and is being tested in clinical trials as an experimental prostate-cancer therapy. Human GLIPR1 was expressed as a truncated soluble protein (sGLIPR1), purified and crystallized. Useful X-ray data have been collected to beyond 1.9 Å resolution from a crystal that belonged to the orthorhombic space group P2(1)2(1)2 with average unit-cell parameters a = 85.1, b = 79.5, c = 38.9 Å and either a monomer or dimer in the asymmetric unit.
Collapse
Affiliation(s)
- Nathalie Bonafé
- L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
40
|
Müller I, Wischnewski F, Pantel K, Schwarzenbach H. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by methyl-CpG binding proteins and histone modifications. BMC Cancer 2010; 10:297. [PMID: 20565761 PMCID: PMC2912262 DOI: 10.1186/1471-2407-10-297] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/17/2010] [Indexed: 12/14/2022] Open
Abstract
Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.
Collapse
Affiliation(s)
- Imke Müller
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
41
|
Gibbs GM, Lo JCY, Nixon B, Jamsai D, O'Connor AE, Rijal S, Sanchez-Partida LG, Hearn MTW, Bianco DM, O'Bryan MK. Glioma pathogenesis-related 1-like 1 is testis enriched, dynamically modified, and redistributed during male germ cell maturation and has a potential role in sperm-oocyte binding. Endocrinology 2010; 151:2331-42. [PMID: 20219979 DOI: 10.1210/en.2009-1255] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The glioma pathogenesis-related 1 (GLIPR1) family consists of three genes [GLIPR1, GLIPR1-like 1 (GLIPR1L1), and GLIPR1-like 2 (GLIPR1L2)] and forms a distinct subgroup within the cysteine-rich secretory protein (CRISP), antigen 5, and pathogenesis-related 1 (CAP) superfamily. CAP superfamily proteins are found in phyla ranging from plants to humans and, based largely on expression and limited functional studies, are hypothesized to have roles in carcinogenesis, immunity, cell adhesion, and male fertility. Specifically data from a number of systems suggests that sequences within the C-terminal CAP domain of CAP proteins have the ability to promote cell-cell adhesion. Herein we cloned mouse Glipr1l1 and have shown it has a testis-enriched expression profile. GLIPR1L1 is posttranslationally modified by N-linked glycosylation during spermatogenesis and ultimately becomes localized to the connecting piece of elongated spermatids and sperm. After sperm capacitation, however, GLIPR1L1 is also localized to the anterior regions of the sperm head. Zona pellucida binding assays indicate that GLIPR1L1 has a role in the binding of sperm to the zona pellucida surrounding the oocyte. These data suggest that, along with other members of the CAP superfamily and several other proteins, GLIPR1L1 is involved in the binding of sperm to the oocyte complex. Collectively these data further strengthen the role of CAP domain-containing proteins in cellular adhesion and propose a mechanism whereby CAP proteins show overlapping functional significance during fertilization.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Inhibition of HIV-1 replication by small interfering RNAs directed against glioma pathogenesis related protein (GliPR) expression. Retrovirology 2010; 7:26. [PMID: 20356381 PMCID: PMC2859388 DOI: 10.1186/1742-4690-7-26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 03/31/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously, we showed that glioma pathogenesis related protein (GliPR) is induced in CEM T cells upon HIV-1 infection in vitro. To examine whether GliPR plays a role as HIV dependency factor (HDF), we tested the effect of GliPR suppression by siRNA on HIV-1 replication. RESULTS Induction of GliPR expression by HIV-1 was confirmed in P4-CCR5 cells. When GliPR was suppressed by siRNA, HIV-1 replication was significantly reduced as measured by HIV-1 transcript levels, HIV-1 p24 protein levels, and HIV-1 LTR-driven reporter gene expression, suggesting that GliPR is a cellular co-factor of HIV-1. Microarray analysis of uninfected HeLa cells following knockdown of GliPR revealed, among a multitude of gene expression alterations, a down-regulation of syndecan-1, syndecan-2, protein kinase C alpha (PRKCA), the catalytic subunit beta of cAMP-dependent protein kinase (PRKACB), nuclear receptor co-activator 3 (NCOA3), and cell surface protein CD59 (protectin), all genes having relevance for HIV-1 pathology. CONCLUSIONS The up-regulation of GliPR by HIV-1 and the early significant inhibition of HIV-1 replication mediated by knockdown of GliPR reveal GliPR as an important HIV-1 dependency factor (HDF), which may be exploited for HIV-1 inhibition.
Collapse
|
43
|
Van Galen J, Van Balkom BWM, Serrano RL, Kaloyanova D, Eerland R, Stüven E, Helms JB. Binding of GAPR-1 to negatively charged phospholipid membranes: Unusual binding characteristics to phosphatidylinositol. Mol Membr Biol 2010; 27:81-91. [DOI: 10.3109/09687680903507080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Cantacessi C, Campbell BE, Visser A, Geldhof P, Nolan MJ, Nisbet AJ, Matthews JB, Loukas A, Hofmann A, Otranto D, Sternberg PW, Gasser RB. A portrait of the "SCP/TAPS" proteins of eukaryotes--developing a framework for fundamental research and biotechnological outcomes. Biotechnol Adv 2009; 27:376-88. [PMID: 19239923 DOI: 10.1016/j.biotechadv.2009.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/05/2009] [Accepted: 02/11/2009] [Indexed: 01/17/2023]
Abstract
A wide range of proteins belonging to the SCP/TAPS "family" has been described for various eukaryotic organisms, including plants and animals (vertebrates and invertebrates, such as helminths). Although SCP/TAPS proteins have been proposed to play key roles in a number of fundamental biological processes, such as host-pathogen interactions and defence mechanisms, there is a paucity of information on their genetic relationships, structures and functions, and there is no standardised nomenclature for these proteins. A detailed analysis of the relationships of members of the SCP/TAPS family of proteins, based on key protein signatures, could provide a foundation for investigating these areas. In this article, we review the current state of knowledge of key SCP/TAPS proteins of eukaryotes, with an emphasis on those from parasitic helminths, and undertake a comprehensive, systematic phylogenetic analysis of currently available full-length protein sequence data (considering characteristic protein signatures or motifs) to infer relationships and provide a framework (based on statistical support) for the naming of these proteins. This framework is intended to guide genomic and molecular biological explorations of key SCP/TAPS molecules associated with infectious diseases of plants and animals. In particular, fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new and innovative approaches for the control of parasitic diseases, with important biotechnological outcomes.
Collapse
Affiliation(s)
- C Cantacessi
- Department of Veterinary Science, The University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|
46
|
Golembieski WA, Thomas SL, Schultz CR, Yunker CK, McClung HM, Lemke N, Cazacu S, Barker T, Sage EH, Brodie C, Rempel SA. HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia 2008; 56:1061-75. [PMID: 18442089 DOI: 10.1002/glia.20679] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) regulates cell-extracellular matrix interactions that influence cell adhesion and migration. We have demonstrated that SPARC is highly expressed in human gliomas, and it promotes brain tumor invasion in vitro and in vivo. To further our understanding regarding SPARC function in glioma migration, we transfected SPARC-green fluorescent protein (GFP) and control GFP vectors into U87MG cells, and assessed the effects of SPARC on cell morphology, migration, and invasion after 24 h. The expression of SPARC was associated with elongated cell morphology, and increased migration and invasion. The effects of SPARC on downstream signaling were assessed from 0 to 6 h and 24 h. SPARC increased the levels of total and phosphorylated HSP27; the latter was preceded by activation of p38 MAPK and inhibited by the p38 MAPK inhibitor SB203580. Augmented expression of SPARC was correlated with increased levels of HSP27 mRNA. In a panel of glioma cell lines, increasing levels of SPARC correlated with increasing total and phosphorylated HSP27. SPARC and HSP27 were colocalized to invading cells in vivo. Inhibition of HSP27 mRNA reversed the SPARC-induced changes in cell morphology, migration, and invasion in vitro. These data indicate that HSP27, a protein that regulates actin polymerization, cell contraction, and migration, is a novel downstream effector of SPARC-regulated cell morphology and migration. As such, it is a potential therapeutic target to inhibit SPARC-induced glioma invasion.
Collapse
Affiliation(s)
- William A Golembieski
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yunker CK, Golembieski W, Lemke N, Schultz CR, Cazacu S, Brodie C, Rempel SA. SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. Int J Cancer 2008; 122:2735-43. [PMID: 18350569 PMCID: PMC3644882 DOI: 10.1002/ijc.23450] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/27/2007] [Indexed: 11/23/2022]
Abstract
Glioblastomas are heterogeneous tumors displaying regions of necrosis, proliferation, angiogenesis, apoptosis and invasion. SPARC, a matricellular protein that negatively regulates angiogenesis and cell proliferation, but enhances cell deadhesion from matrix, is upregulated in gliomas (Grades II-IV). We previously demonstrated that SPARC promotes invasion while concomitantly decreasing tumor growth, in part by decreasing proliferation of the tumor cells. In other cancer types, SPARC has been shown to influence tumor growth by altering matrix production, and by decreasing angiogenesis via interfering with the VEGF-VEGFR1 signaling pathway. We therefore examined whether the SPARC-induced decrease in glioma tumor growth was also, in part, due to alterations in matrix and/or decreased vascularity, and assessed SPARC-VEGF interactions. The data demonstrate that SPARC upregulates glioma matrix, collagen I is a constituent of the matrix and SPARC promotes collagen fibrillogenesis. Furthermore, SPARC suppressed glioma vascularity, and this was accompanied by decreased VEGF expression and secretion, which was, in part, due to reduced VEGF165 transcript abundance. These data indicate that SPARC modulates glioma growth by altering the tumor microenvironment and by suppressing tumor vascularity through suppression of VEGF expression and secretion. These experiments implicate a novel mechanism, whereby SPARC regulates VEGF function by limiting the available growth factor. Because SPARC is considered to be a therapeutic target for gliomas, a further understanding of its complex signaling mechanisms is important, as targeting SPARC to decrease invasion could undesirably lead to the growth of more vascular and proliferative tumors.
Collapse
Affiliation(s)
- Christopher K Yunker
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - William Golembieski
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Nancy Lemke
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Chad R Schultz
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Simona Cazacu
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Chaya Brodie
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Sandra A Rempel
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| |
Collapse
|
48
|
Lee HK, Xiang C, Cazacu S, Finniss S, Kazimirsky G, Lemke N, Lehman NL, Rempel SA, Mikkelsen T, Brodie C. GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro Oncol 2008; 10:236-43. [PMID: 18403493 DOI: 10.1215/15228517-2008-006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We characterized the expression and function of the endoplasmic reticulum protein GRP78 in glial tumors. GRP78 is highly expressed in glioblastomas but not in oligodendrogliomas, and its expression is inversely correlated with median patient survival. Overexpression of GRP78 in glioma cells decreases caspase 7 activation and renders the cells resistant to etoposide- and cisplatin-induced apoptosis, whereas silencing of GRP78 decreases cell growth and sensitizes glioma cells to etoposide, cisplatin, and gamma-radiation. Thus, GRP78 contributes to the increased apoptosis resistance and growth of glioma cells and may provide a target for enhancing the therapeutic responsiveness of these tumors.
Collapse
Affiliation(s)
- Hae Kyung Lee
- Department of Neurosurgery and Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chalmers IW, McArdle AJ, Coulson RM, Wagner MA, Schmid R, Hirai H, Hoffmann KF. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family. BMC Genomics 2008; 9:89. [PMID: 18294395 PMCID: PMC2270263 DOI: 10.1186/1471-2164-9-89] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 02/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background The Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain is found across phyla and is a major structural feature of insect allergens, mammalian sperm proteins and parasitic nematode secreted molecules. Proteins containing this domain are implicated in diverse biological activities and may be important for chronic host/parasite interactions. Results We report the first description of an SCP/TAPS gene family (Schistosoma mansoni venom allergen-like (SmVALs)) in the medically important Platyhelminthes (class Trematoda) and describe individual members' phylogenetic relationships, genomic organization and life cycle expression profiles. Twenty-eight SmVALs with complete SCP/TAPS domains were identified and comparison of their predicted protein features and gene structures indicated the presence of two distinct sub-families (group 1 & group 2). Phylogenetic analysis demonstrated that this group 1/group 2 split is zoologically widespread as it exists across the metazoan sub-kingdom. Chromosomal localisation and PCR analysis, coupled to inspection of the current S. mansoni genomic assembly, revealed that many of the SmVAL genes are spatially linked throughout the genome. Quantitative lifecycle expression profiling demonstrated distinct SmVAL expression patterns, including transcripts specifically associated with lifestages involved in definitive host invasion, transcripts restricted to lifestages involved in the invasion of the intermediate host and transcripts ubiquitously expressed. Analysis of SmVAL6 transcript diversity demonstrated statistically significant, developmentally regulated, alternative splicing. Conclusion Our results highlight the existence of two distinct SCP/TAPS protein types within the Platyhelminthes and across taxa. The extensive lifecycle expression analysis indicates several SmVAL transcripts are upregulated in infective stages of the parasite, suggesting that these particular protein products may be linked to the establishment of chronic host/parasite interactions.
Collapse
Affiliation(s)
- Iain W Chalmers
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Li L, Abdel Fattah E, Cao G, Ren C, Yang G, Goltsov AA, Chinault AC, Cai WW, Timme TL, Thompson TC. Glioma pathogenesis-related protein 1 exerts tumor suppressor activities through proapoptotic reactive oxygen species-c-Jun-NH2 kinase signaling. Cancer Res 2008; 68:434-43. [PMID: 18199537 DOI: 10.1158/0008-5472.can-07-2931] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioma pathogenesis-related protein 1 (GLIPR1), a novel p53 target gene, is down-regulated by methylation in prostate cancer and has p53-dependent and -independent proapoptotic activities in tumor cells. These properties suggest an important tumor suppressor role for GLIPR1, yet direct genetic evidence of a tumor suppressor function for GLIPR1 is lacking and the molecular mechanism(s), through which GLIPR1 exerts its tumor suppressor functions, has not been shown. Here, we report that the expression of GLIPR1 is significantly reduced in human prostate tumor tissues compared with adjacent normal prostate tissues and in multiple human cancer cell lines. Overexpression of GLIPR1 in cancer cells leads to suppression of colony growth and induction of apoptosis. Mice with an inactivated Glipr1 gene had significantly shorter tumor-free survival times than either Glipr1(+/+) or Glipr1(+/-) mice in both p53(+/+) and p53(+/-) genetic backgrounds, owing to their development of a unique array of malignant tumors. Mechanistic analysis indicated that GLIPR1 up-regulation increases the production of reactive oxygen species (ROS) leading to apoptosis through activation of the c-Jun-NH(2) kinase (JNK) signaling cascade. Thus, our results identify GLIPR1 as a proapoptotic tumor suppressor acting through the ROS-JNK pathway and support the therapeutic potential for this protein.
Collapse
Affiliation(s)
- Likun Li
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|