1
|
Yang Y, Song S, Wang H, Ma Z, Gao Q. The antioxidative effect of STAT3 involved in cellular vulnerability to isoflurane. BMC Neurosci 2024; 25:75. [PMID: 39633283 PMCID: PMC11619428 DOI: 10.1186/s12868-024-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The vulnerable period to neurotoxicity of isoflurane overlaps with a developmental stage characterized by programmed neuronal death. STAT3 has been identified as a crucial molecule involved in survival pathways during this period. We aimed to investigate the role of STAT3 in cellular vulnerability to isoflurane. METHODS C57/BL6 mice on postnatal day 7 or 21, primary neurons derived from mice embryos at gestational days 14-16 and cultured for 5 or 14 days, as well as human neuroglioma U251 cells were treated with isoflurane. A plasmid containing human wild-type STAT3, STAT3 anti-sense oligonucleotide, STAT3 specific inhibitor STA21, proteasome inhibitor MG-132 and calcineurin inhibitor FK506 were utilized to evaluate the influence of STAT3 levels on isoflurane-induced cytotoxicity. The levels of Western blot results, mRNA, intracellular ROS, apoptotic rate, and calcineurin activity were analyzed using unpaired Student's t-test or one-way ANOVA followed by Bonferroni post hoc test, as appropriate. RESULTS Elevated levels of STAT3, reduced activity of calcineurin, as well as a diminished response to isoflurane-induced calcineurin activation and neuroapoptosis were observed in more mature brain or neurons. Isoflurane accelerated the degradation of ubiquitin-conjugated proteins but did not facilitate ubiquitin conjugation to proteins. STAT3 was of particular importance in the all ubiquitin-conjugated proteins degraded by isoflurane. Knockdown or inhibition of STAT3 nuclear translocation exacerbated isoflurane-induced oxidative injury and apoptosis, while STAT3 overexpression mitigated these effects. Finally, this study demonstrated that FK506 pretreatment mitigated the apoptosis, ROS accumulation, and the impairment of neurite growth in primary neurons after exposed to isoflurane. CONCLUSIONS These findings indicate that specific regulation of STAT3 was closely related with the cellular vulnerability to isoflurane via an antioxidative pathway.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China.
| | - Qian Gao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
2
|
Zhong L, Tan X, Yang W, Li P, Ye L, Luo Q, Hou H. Bioactive matters based on natural product for cardiovascular diseases. SMART MATERIALS IN MEDICINE 2024; 5:542-565. [DOI: 10.1016/j.smaim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Rath P, Chauhan A, Ranjan A, Aggarwal D, Rani I, Choudhary R, Shahwan M, Ramniwas S, Joshi H, Haque S, Mathkor DM, Tuli HS. Luteolin: A promising modulator of apoptosis and survival signaling in liver cancer. Pathol Res Pract 2024; 260:155430. [PMID: 39038389 DOI: 10.1016/j.prp.2024.155430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Due to the increasing incidence of cancer and the difficulties in determining the safety profile of existing therapeutic approaches, cancer research has recently become heavily involved in the search for new therapeutic approaches. The therapeutic significance of natural substances, especially flavonoids, against the onset and progression of cancer has been emphasized in traditional food-based medicine. Interestingly, the flavone luteolin possesses biological effects that have been linked to its anti-inflammatory, antioxidant, and anticancer effects. Luteolin interacts with several downstream chemicals and signaling pathways, including those involved in apoptosis, autophagy, cell cycle progression, and angiogenesis, to exert its anticancer effects on various cancerous cells. A complete understanding of both intrinsic and extrinsic apoptotic pathways, autophagy, and, most critically, the nanodelivery of luteolin in liver cancer is provided in the current review.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India.
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India.
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India.
| | - Renuka Choudhary
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India.
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shafiul Haque
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| |
Collapse
|
4
|
Najafi N, Barangi S, Moosavi Z, Aghaee-Bakhtiari SH, Mehri S, Karimi G. Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway. Biol Trace Elem Res 2024; 202:3163-3179. [PMID: 37853305 DOI: 10.1007/s12011-023-03897-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Arsenic (As) exposure is known to cause several neurological disorders through various molecular mechanisms such as oxidative stress, apoptosis, and autophagy. In the current study, we assessed the effect of melatonin (Mel) on As-induced neurotoxicity. Thirty male Wistar rat were treated daily for 28 consecutive days. As (15 mg/kg, gavage) and Mel (10 and 20 mg/kg, i.p.) were administered to rats. Morris water maze test was done to evaluate learning and memory impairment in training days and probe trial. Oxidative stress markers including MDA and GSH levels, SOD activity, and HO-1 levels were measured. Besides, the levels of apoptosis (caspase 3, Bax/Bcl2 ratio) and autophagy markers (Sirt1, Beclin-1, and LC3 II/I ratio) as well as the expression of miR-144 and miR-34a in cortex tissue were determined. As exposure disturbed learning and memory in animals and Mel alleviated these effects. Also, Mel recovered cortex pathological damages and oxidative stress induced by As. Furthermore, As increased the levels of apoptosis and autophagy proteins in cortex, while Mel (20 mg/kg) decreased apoptosis and autophagy. Also, Mel increased the expression of miR-144 and miR-34a which inhibited by As. In conclusion, Mel administration attenuated As-induced neurotoxicity through anti-oxidative, anti-apoptotic, and anti-autophagy mechanisms, which may be recommended as a therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Nahid Najafi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Upadhyay PK, Singh S, Vishwakarma VK. Natural Polyphenols in Cancer Management: Promising Role, Mechanisms, and Chemistry. Curr Pharm Biotechnol 2024; 25:694-712. [PMID: 37608669 DOI: 10.2174/1389201024666230822090318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Although cancers emerge rapidly and cancer cells divide aggressively, which affects our vital organ systems. Recently, cancer treatments are targeted immune systems mediating intrinsic cellular mechanisms. Natural efficacious polyphenols have been exhibited to help prevent most cancers and reverse the progression of cancers. METHODS Many resources have been used to know the promising role of polyphenols in preventing and treating cancers. The electronic databases include Science Direct, Google, Google Scholar, PubMed, and Scopus. The search was limited to the English language only. RESULTS Polyphenols have been reported as anti-metastatic agents that explore the promising role of these compounds in cancer prevention. Such agents act through many signaling pathways, including PI3K/Akt and TNF-induced signaling pathways. The chemical modifications of polyphenols and the structure-activity relationships (SARs) between polyphenols and anticancer activities have also been discussed. CONCLUSION Many research papers were reported to explain the anti-cancer potential of Polyphenols, The SARs between polyphenols and anti-cancer activities, which correlate structures of polyphenols with significant chemotherapeutic action. The mechanism of anti-cancer potential is to be added for searching for new anti-cancer natural products.
Collapse
Affiliation(s)
- Prabhat Kumar Upadhyay
- Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | | |
Collapse
|
7
|
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023; 167:115464. [PMID: 37713990 DOI: 10.1016/j.biopha.2023.115464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Langová D, Córdoba MAM, Sorrechia R, Hoová J, Svoboda Z, Mikulíková R, Correa MA, Pietro RCLR, Márová I. Achyrocline satureioides Hydroalcoholic Extract as a Hypoallergenic Antimicrobial Substitute of Natural Origin for Commonly Used Preservatives in Cosmetic Emulsions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2027. [PMID: 37653944 PMCID: PMC10222649 DOI: 10.3390/plants12102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Achyrocline satureioides is a South American herb used in traditional medicine to treat a wide range of ailments. The healing and antimicrobial effects of this plant have already been covered by many studies, which have confirmed its beneficial effects on human health. In this study, the antimicrobial effect of A. satureioides hydroalcoholic extract against Escherichia coli ATCC10536, Staphylococcus aureus ATCC25923, Staphylococcus epidermidis ATCC12228 and Lactobacillus acidophilus INCQS00076 was determined. The cytotoxicity of the extract was tested on human HaCaT keratinocytes showing very favourable effects on the proliferation and renewal of keratinocytes. According to the results of the HPLC and GC-MS analyses, the lyophilized extract contained only a minimal amount of fragrance allergens. The extract was then used in two cosmetic formulations, and one of them showed a significant synergistic interaction with other cosmetic components. We suggest the use of A.satureioides hydroalcoholic extract as a suitable antimicrobial component of natural origin for cosmetic preparations as a substitute for commonly used preservatives that can cause skin irritation and as a material with its own biological activity.
Collapse
Affiliation(s)
- Denisa Langová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic; (D.L.); (J.H.); (Z.S.); (R.M.)
| | - Maria Angélica Mera Córdoba
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Araraquara 14801-902, São Paulo, Brazil; (M.A.M.C.); (R.S.); (M.A.C.); (R.C.L.R.P.)
| | - Rodrigo Sorrechia
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Araraquara 14801-902, São Paulo, Brazil; (M.A.M.C.); (R.S.); (M.A.C.); (R.C.L.R.P.)
| | - Julie Hoová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic; (D.L.); (J.H.); (Z.S.); (R.M.)
| | - Zdeněk Svoboda
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic; (D.L.); (J.H.); (Z.S.); (R.M.)
- Research Institute of Brewing and Malting, 614 00 Brno, Czech Republic
| | - Renata Mikulíková
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic; (D.L.); (J.H.); (Z.S.); (R.M.)
| | - Marcos Antonio Correa
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Araraquara 14801-902, São Paulo, Brazil; (M.A.M.C.); (R.S.); (M.A.C.); (R.C.L.R.P.)
| | - Rosemeire Cristina Linhari Rodrigues Pietro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University UNESP, Araraquara 14801-902, São Paulo, Brazil; (M.A.M.C.); (R.S.); (M.A.C.); (R.C.L.R.P.)
| | - Ivana Márová
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic; (D.L.); (J.H.); (Z.S.); (R.M.)
| |
Collapse
|
9
|
Therapeutic Potential of Luteolin on Cancer. Vaccines (Basel) 2023; 11:vaccines11030554. [PMID: 36992138 DOI: 10.3390/vaccines11030554] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Cancer is a global concern, as the rate of incidence is increasing each year. The challenges related to the current chemotherapy drugs, such as the concerns related to toxicity, turn to cancer therapeutic research to discover alternative therapy strategies that are less toxic to normal cells. Among those studies, the use of flavonoids—natural compounds produced by plants as secondary metabolites for cancer therapy—has been a hot topic in cancer treatment. Luteolin, a flavonoid that has been present in many fruits, vegetables, and herbs, has been identified to exhibit numerous biological activities, including anti-inflammatory, antidiabetic, and anticancer properties. The anticancer property of Luteolin has been extensively researched in many cancer types and has been related to its ability to inhibit tumor growth by targeting cellular processes such as apoptosis, angiogenesis, migration, and cell cycle progression. It achieves this by interacting with various signaling pathways and proteins. In the current review, the molecular targets of Luteolin as it exerts its anticancer properties, the combination therapy that includes Luteolin with other flavonoids or chemotherapeutic drugs, and the nanodelivery strategies for Luteolin are described for several cancer types.
Collapse
|
10
|
PARK JH, KIM JH, OH YS, LEE EJ, HONG JW, KIM JW. Effects of Cirsium setidens extract on gene expression related to apoptosis induction and metastasis inhibition in human breast cancer. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.127722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
| | | | | | | | | | - Jin Woo KIM
- Sun Moon University, Korea; Sun Moon University, Korea; Tangjeong-myeon, Korea
| |
Collapse
|
11
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
12
|
Singh Tuli H, Rath P, Chauhan A, Sak K, Aggarwal D, Choudhary R, Sharma U, Vashishth K, Sharma S, Kumar M, Yadav V, Singh T, Yerer MB, Haque S. Luteolin, a Potent Anticancer Compound: From Chemistry to Cellular Interactions and Synergetic Perspectives. Cancers (Basel) 2022; 14:5373. [PMID: 36358791 PMCID: PMC9658186 DOI: 10.3390/cancers14215373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/03/2023] Open
Abstract
Increasing rates of cancer incidence and the toxicity concerns of existing chemotherapeutic agents have intensified the research to explore more alternative routes to combat tumor. Luteolin, a flavone found in numerous fruits, vegetables, and herbs, has exhibited a number of biological activities, such as anticancer and anti-inflammatory. Luteolin inhibits tumor growth by targeting cellular processes such as apoptosis, cell-cycle progression, angiogenesis and migration. Mechanistically, luteolin causes cell death by downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, Bcl-2, and Bcl-xL, while upregulating BAX, caspase-3, and p21. It has also been reported to inhibit STAT3 signaling by the suppression of STAT3 activation and enhanced STAT3 protein degradation in various cancer cells. Therefore, extensive studies on the anticancer properties of luteolin reveal its promising role in chemoprevention. The present review describes all the possible cellular interactions of luteolin in cancer, along with its synergistic mode of action and nanodelivery insight.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Kanupriya Vashishth
- Department of Cardiology, Advance Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura 140401, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 133001, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, Delhi 110007, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
13
|
Xiang B, Geng R, Zhang Z, Ji X, Zou J, Chen L, Liu J. Identification of the effect and mechanism of Yiyi Fuzi Baijiang powder against colorectal cancer using network pharmacology and experimental validation. Front Pharmacol 2022; 13:929836. [PMID: 36353478 PMCID: PMC9637639 DOI: 10.3389/fphar.2022.929836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/22/2023] Open
Abstract
Background: Yiyi Fuzi Baijiang powder (YFBP) is a traditional Chinese medicine used to treat colorectal cancer, although its bioactivity and mechanisms of action have not been studied in depth yet. The study intended to identify the potential targets and signaling pathways affected by YFBP during the treatment of colorectal cancer through pharmacological network analysis and to further analyze its chemical compositions and molecular mechanisms of action. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), HitPredict (HIT), and Search Tool for Interactions of Chemicals (STITCH) databases were used to screen the bioactive components and promising targets of YFBP. Targets related to colorectal cancer were retrieved from the GeneCards and Gene Ontology databases. Cytoscape software was used to construct the "herb-active ingredient-target" network. The STRING database was used to construct and analyze protein-protein interactions (PPIs). Afterward, the R packages clusterProfiler and Cytoscape Hub plug-in were used to perform Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of target genes. The results of the network pharmacological analysis were also experimentally validated. Results: In total, 33 active components and 128 target genes were screened. Among them, 46 target genes were considered potential therapeutic targets that crossed the CRC target genes. The network pharmacology analysis showed that the active components of YFBP were correlated positively with CRC inflammatory target genes such as TLR4, TNF, and IL-6. The inflammation-related signaling pathways affected by the active components included the TNF-α, interleukin-17, and toll-like receptor signaling pathways. The active ingredients of YFBP, such as luteolin, β-sitosterol, myristic acid, and vanillin, may exert anti-tumor effects by downregulating SMOX expression via anti-inflammatory signaling and regulation of the TLR4/NF-κB signaling pathway. Conclusion: In the present study, the potential active components, potential targets, and key biological pathways involved in the YFBP treatment of CRC were determined, providing a theoretical foundation for further anti-tumor research.
Collapse
Affiliation(s)
- Bin Xiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhengkun Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xuxu Ji
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiaqiong Zou
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Zhang K, Ma J, Gangurde SS, Hou L, Xia H, Li N, Pan J, Tian R, Huang H, Wang X, Zhang Y, Zhao C. Targeted metabolome analysis reveals accumulation of metabolites in testa of four peanut germplasms. FRONTIERS IN PLANT SCIENCE 2022; 13:992124. [PMID: 36186006 PMCID: PMC9523574 DOI: 10.3389/fpls.2022.992124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important source of edible oil and protein. Peanut testa (seed coat) provides protection for seeds and serves as a carrier for diversity metabolites necessary for human health. There is significant diversity available for testa color in peanut germplasms. However, the kinds and type of metabolites in peanut testa has not been comprehensively investigated. In this study, we performed metabolite profiling using UPLC-MS/MS for four peanut germplasm lines with different testa colors, including pink, purple, red, and white. A total of 85 metabolites were identified in four peanuts. Comparative metabolomics analysis identified 78 differentially accumulated metabolites (DAMs). Some metabolites showed significant correlation with other metabolites. For instance, proanthocyanidins were positively correlated with cyanidin 3-O-rutinoside and malvin, and negatively correlated with pelargonidin-3-glucoside. We observed that the total proanthocyanidins are most abundant in pink peanut variety WH10. The red testa accumulated more isoflavones, flavonols and anthocyanidins compared with that in pink testa. These results provided valuable information about differential accumulation of metabolites in testa with different color, which are helpful for further investigation of the molecular mechanism underlying biosynthesis and accumulation of these metabolites in peanut.
Collapse
Affiliation(s)
- Kun Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, China
| | - Jing Ma
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sunil S. Gangurde
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nana Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Huailing Huang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yindong Zhang
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Academy of Agricultural Sciences, Haikou, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
15
|
Islam F, Mitra S, Emran TB, Khan Z, Nath N, Das R, Sharma R, Awadh AAA, Park MN, Kim B. Natural Small Molecules in Gastrointestinal Tract and Associated Cancers: Molecular Insights and Targeted Therapies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175686. [PMID: 36080453 PMCID: PMC9457641 DOI: 10.3390/molecules27175686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (T.B.E.); (B.K.)
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
- Correspondence: (T.B.E.); (B.K.)
| |
Collapse
|
16
|
Li T, Fu X, Liu B, Wang X, Li J, Zhu P, Niu X, Bai J, Liu Y, Lu X, Yu ZL. Luteolin binds Src, promotes STAT3 protein ubiquitination and exerts anti-melanoma effects in cell and mouse models. Biochem Pharmacol 2022; 200:115044. [PMID: 35460630 DOI: 10.1016/j.bcp.2022.115044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been proposed as a target for melanoma prevention. Luteolin, a bioactive flavonoid abundant inmedicinal herbs, has been reported to have anti-melanoma activity in vitro. However, its in vivo anti-melanoma effects and underlying mechanisms have not been fully elucidated. In this study, ten cell lines and two mouse models (B16F10 allograft and A375 xenograft models) were used for assessing the in vitro and in vivo anti-melanoma effects of luteolin. A STAT3 over-activated stable A375 cell line was used to determine the contribution of STAT3 signaling in luteolin's anti-melanoma effects. Results showed that luteolin dose-dependently reduced viability of melanoma cells. Luteolin also induced apoptosis in, and suppressed migration and invasion of, A375 and B16F10 melanoma cells. Mechanistically, luteolin inhibited phosphorylation of STAT3 and Src (an upstream kinase of STAT3), accelerated ubiquitin-proteasome pathway-mediated STAT3 degradation, and downregulated the expression of STAT3-targeted genes involved in cell survival and invasion in melanoma cells. Molecular modelling and surface plasmon resonance imaging showed that luteolin stably bound to the protein kinase domain of Src. Animal studies demonstrated that prophylactic administration of luteolin restrained melanoma growth and Src/STAT3 signaling in both A375 and B16F10 melanoma-bearing mice. Moreover, luteolin's anti-melanoma effects were diminished by STAT3 over-activation in A375 cells. Our findings indicate that luteolin inhibits STAT3 signaling by suppressing STAT3 activation and promoting STAT3 protein degradation in melanoma cells, thereby exhibiting anti-melanoma effects. This study provides further pharmacological groundwork for developing luteolin as a chemopreventive agent against melanoma.
Collapse
Affiliation(s)
- Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiuqiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xueyu Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Junkui Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Peili Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiaodi Niu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jingxuan Bai
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yuxi Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xinshan Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Development Centre for Natural Health Products, HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
17
|
Mishan MA, Khazeei Tabari MA, Mahrooz A, Bagheri A. Role of microRNAs in the anticancer effects of the flavonoid luteolin: a systematic review. Eur J Cancer Prev 2021; 30:413-421. [PMID: 33720053 DOI: 10.1097/cej.0000000000000645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flavonoids, a broad class of polyphenolic compounds, can potentially have several therapeutic properties in human diseases, including protective effects against oxidative stress, inflammation, cardiovascular disease, diabetes, neurodegenerative disorders, and cancers. Luteolin as a member of flavonoids has been found to exhibit several anticancer properties mainly through cell apoptosis induction, inhibition of invasion, cell proliferation, network formation, and migration. Recent studies have revealed that phytochemicals such as luteolin may exert therapeutic properties through microRNAs (miRNAs or miRs), which have been emerged as important molecules in cancer biology in recent years. miRNAs, as a class of noncoding RNAs, have several important roles in cancer progression or regression. In this review, we aimed to summarize and discuss the role of miRNAs in the luteolin effects on different cancers. This review can be in line with the studies, which have shown that miRNAs may be potential therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran
| | | | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center
- Department of Clinical Biochemistry and Medical Genetics, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Galvani G, Mottolese N, Gennaccaro L, Loi M, Medici G, Tassinari M, Fuchs C, Ciani E, Trazzi S. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder. J Neuroinflammation 2021; 18:155. [PMID: 34238328 PMCID: PMC8265075 DOI: 10.1186/s12974-021-02204-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disorder characterized by early onset epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these alterations is still limited. Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of CDD. Methods We evaluated microglia activation using AIF-1 immunofluorescence, proinflammatory cytokine expression, and signaling in the brain of a mouse model of CDD, the Cdkl5 KO mouse, which is characterized by an impaired survival of hippocampal neurons that worsens with age. Hippocampal neuron survival was determined by DCX, NeuN, and cleaved caspase-3 immunostaining in Cdkl5 KO mice treated with luteolin (10 mg/kg), a natural anti-inflammatory flavonoid. Since hippocampal neurons of Cdkl5 KO mice exhibit increased susceptibility to excitotoxic stress, we evaluated neuronal survival in Cdkl5 KO mice injected with NMDA (60 mg/kg) after a 7-day treatment with luteolin. Results We found increased microglial activation in the brain of the Cdkl5 KO mouse. We found alterations in microglial cell morphology and number, increased levels of AIF-1 and proinflammatory cytokines, and activation of STAT3 signaling. Remarkably, treatment with luteolin recovers microglia alterations as well as neuronal survival and maturation in Cdkl5 KO mice, and prevents the increase in NMDA-induced cell death in the hippocampus. Conclusions Our results suggest that neuroinflammatory processes contribute to the pathogenesis of CDD and imply the potential usefulness of luteolin as a treatment option in CDD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02204-0.
Collapse
Affiliation(s)
- Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy.
| |
Collapse
|
19
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
20
|
Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Med Oncol 2021; 38:66. [PMID: 33950369 DOI: 10.1007/s12032-021-01508-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process that assumes a primary role in the induction of cancer metastasis. This results in increased cell renewal, and resistance to cell death and therapies. EMT, therefore, represents an effective strategy for regulating cancerous cell activity. A need for efficacy and low cytotoxicity epithelial to mesenchymal transition modifying drugs has led to the investigational testing of the efficacy of plethora of different groups of phytonutrients. Luteolin is a natural flavonoid inhibits the growth of cancer cells by various mechanisms, such as the stimulation of cancer cell apoptosis, cell cycle arrest, inhibition of cell replication, tumor growth, improvement of drug resistance, prevention of cancer cell intrusiveness and metastasis. This review article focuses on the anti-cancer and anti-metastatic potential of luteolin targeting various transcription factors, markers and signaling pathways associated with the repression of epithelial to mesenchymal transition.
Collapse
|
21
|
Juszczak AM, Czarnomysy R, Strawa JW, Zovko Končić M, Bielawski K, Tomczyk M. In Vitro Anticancer Potential of Jasione montana and Its Main Components against Human Amelanotic Melanoma Cells. Int J Mol Sci 2021; 22:3345. [PMID: 33805898 PMCID: PMC8036727 DOI: 10.3390/ijms22073345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Jasione montana L. (Campanulaceae) is used in traditional Belarusian herbal medicine for sleep disorders in children, but the chemical composition and biological activity have not been investigated. In this study, the activities of J. montana extracts, their fractions and main compounds were evaluated in amelanotic melanoma C32 (CRL-1585) cells and normal fibroblasts (PCS-201-012). The extracts and fractions were analyzed using liquid chromatography-photodiode array detection-electrospray ionization-mass spectrometry (LC-PDA-ESI-MS/TOF) to characterize 25 compounds. Further, three major and known constituents, luteolin (22) and its derivatives such as 7-O-glucoside (12) and 7-O-sambubioside (9) were isolated and identified. The cytotoxic activities against fibroblasts and the amelanotic melanoma cell line were determined using the fixable viability stain (FVS) assay. The influence of diethyl ether (Et2O) fraction (JM4) and 22 on apoptosis induction was investigated using an annexin V binding assay. The obtained results showed significant cytotoxicity of JM4 and 22 with IC50 values of 119.7 ± 3.2 and 95.1 ± 7.2 μg/mL, respectively. The proapoptotic potential after 22 treatment in the C32 human amelanotic melanoma cell line was comparable to that of vinblastine sulfate (VLB), detecting 29.2 ± 3.0% apoptotic cells. Moreover, 22 displayed less necrotic potential against melanoma cells than VLB. In addition, the influences of JM4 and 22 on the dysfunction of the mitochondrial membrane potential (MMP), cell cycle and activity of caspases 3, 8, 9, and 10 were established. The effects of JM4 on MMP change (74.5 ± 3.0% of the cells showed a reduced MMP) corresponded to the results obtained from the annexin V binding assay and activation of caspase-9. JM4 and 22 displayed a significant impact on caspase-9 (40.9 ± 2.4% of the cells contained active caspase-9 after JM4 treatment and 16.6 ± 0.8% after incubation with 22) and the intrinsic (mitochondrial) apoptotic pathway. Moreover, studies have shown that JM4 and 22 affect the activation of external apoptosis pathways by inducing the caspase-8 and caspase-10 cascades. Thus, activation of caspase-3 and DNA damage via external and internal apoptotic pathways were observed after treatment with JM4 and 22. The obtained results suggest that J. montana extracts could be developed as new topical preparations with potential anticancer properties due to their promising cytotoxic and proapoptotic potential.
Collapse
Affiliation(s)
- Aleksandra Maria Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Jakub Władysław Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20/II, 10000 Zagreb, Croatia;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| |
Collapse
|
22
|
Yoo HS, Won SB, Kwon YH. Luteolin Induces Apoptosis and Autophagy in HCT116 Colon Cancer Cells via p53-Dependent Pathway. Nutr Cancer 2021; 74:677-686. [PMID: 33757400 DOI: 10.1080/01635581.2021.1903947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although a dietary phytochemical luteolin has been shown to regulate various anticancer mechanisms, a role of luteolin in autophagy regulation is mostly unidentified. Here, we investigated whether luteolin exhibits its anticancer effects by induction of apoptosis and autophagy in a p53-dependent manner in colon cancer cells. Cell viability was determined using trypan blue exclusion test. The expressions of proteins and mRNAs were measured by immunoblotting and reverse transcription polymerase chain reaction, respectively. Luteolin at 10 - 20 μM induced cytotoxicity in p53 wild-type HCT116 colon cancer cells but not in p53 mutant HT-29 cells and normal colon cells. Luteolin exhibited its anticancer effect by increasing p53 phosphorylation and p53 target gene expression, leading to apoptosis and cell cycle arrest in HCT116 cells. We identified that luteolin can induce autophagy in p53 wild-type cells but not in p53 mutant cells, suggesting that luteolin-induced autophagy is p53-dependent; however, chloroquine-mediated inhibition of autophagy did not alter cytotoxicity and apoptosis of cells treated with luteolin. In conclusion, the present data showed that luteolin inhibits the growth of HCT116 colon cancer cells through p53-dependent regulation of apoptosis and cell cycle arrest regardless of the induction of autophagy.
Collapse
Affiliation(s)
- Ho Soo Yoo
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Sae Bom Won
- Department of Human Nutrition and Food Science, Chungwoon University, Hongseong, Chungnam, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Extracts of Perilla frutescens var. Acuta (Odash.) Kudo Leaves Have Antitumor Effects on Breast Cancer Cells by Suppressing YAP Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5619761. [PMID: 33628300 PMCID: PMC7899781 DOI: 10.1155/2021/5619761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Yes-associated protein (YAP)/WW domain-containing transcription factor (TAZ) is critical for cell proliferation, survival, and self-renewal. It has been shown to play a crucial oncogenic role in many different types of tumors. In this study, we investigated the antitumor effect of the extracts of Perilla frutescens var. acuta (Odash.) Kudo leaves (PLE) on Hippo-YAP/TAZ signaling. PLE induced the phosphorylation of YAP/TAZ, thereby inhibiting their activity. In addition, the treatment suppresses YAP/TAZ transcriptional activity via the dissociation of the YAP/TAZ-TEAD complex. To elucidate the molecular mechanism of PLE in the regulation of YAP activity, we treated WT and cell lines with gene knockout (KO) for Hippo pathway components with PLE. The inhibitory effects of PLE on YAP-TEAD target genes were significantly attenuated in LATS1/2 KO cells. Moreover, we found the antitumor effect of PLE on MDA-MB-231 and BT549, both of which are triple-negative breast cancer (TNBC) cell lines. PLE reduced the viability of TNBC cells in a dose-dependent manner and induced cell apoptosis. Further, PLE inhibited the migration ability in MDA-MB-231 cells. This ability was weakened in YAP and TEAD-activated clones suggesting that the inhibition of migration by PLE is mainly achieved by regulating YAP activity. Taken together, the results of this study indicate that PLE suppressed cell growth and increased the apoptosis of breast cancer (BC) cells via inactivation of YAP activity in a LATS1/2-dependent manner.
Collapse
|
24
|
Ganai SA, Sheikh FA, Baba ZA, Mir MA, Mantoo MA, Yatoo MA. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated. Phytother Res 2021; 35:3509-3532. [DOI: 10.1002/ptr.7044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Shabir Ahmad Ganai
- Division of Basic Sciences and Humanities FoA, SKUAST Kashmir Sopore Jammu & Kashmir India
| | - Farooq Ahmad Sheikh
- Division of Genetics and Plant Breeding FoA, SKUAST Kashmir Sopore Jammu & Kashmir India
| | - Zahoor Ahmad Baba
- Division of Basic Sciences and Humanities FoA, SKUAST Kashmir Sopore Jammu & Kashmir India
| | - Mudasir Ahmad Mir
- Department of Microbiology Government Medical College Anantnag Jammu & Kashmir India
| | - Mohd Ayoob Mantoo
- Division of Entomology FoA, SKUAST Kashmir Sopore Jammu & Kashmir India
| | - Manzoor Ahmad Yatoo
- Division of Basic Sciences and Humanities FoA, SKUAST Kashmir Sopore Jammu & Kashmir India
| |
Collapse
|
25
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
26
|
Yanagimichi M, Nishino K, Sakamoto A, Kurodai R, Kojima K, Eto N, Isoda H, Ksouri R, Irie K, Kambe T, Masuda S, Akita T, Maejima K, Nagao M. Analyses of putative anti-cancer potential of three STAT3 signaling inhibitory compounds derived from Salvia officinalis. Biochem Biophys Rep 2020; 25:100882. [PMID: 33392396 PMCID: PMC7772785 DOI: 10.1016/j.bbrep.2020.100882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 12/05/2022] Open
Abstract
The extract of Salvia officinalis (Common Sage) exhibited inhibitory activity of STAT3 signal after screening of several plants extracts using the STAT3-responsive reporter system. Cirsiliol, luteolin, and carnosol were identified from the methanol extract of Silvia officinalis as inhibitors of STAT3 signaling and the effects of these three compounds on STAT3 protein or growth inhibition on cancer cells was compared. Luteolin at the dose of 90 μM clearly suppressed the phosphorylation of STAT3 induced by IL-6, while carnosol was prone to decrease total STAT3 proteins at high doses (>90 μM). Cirsiliol had almost no effect. Since the three compounds exhibited similar concentration-dependent suppression patterns in the reporter assay except for cirsiliol became plateau beyond 30 μM, these compounds appeared to function as STAT3 inhibitory factors in different ways. The direct anti-proliferative activity of three compounds was examined with or without the anti-cancer drug gefitinib using HepG2 and A549 cells. The anti-proliferative effect of the three compounds was additively enhanced by gefitinib. At the doses of 3.6 μM, statistically significant suppression of proliferation was observed in HepG2 cells only by cirsiliol among the three compounds in the absence of gefitinib but all three compounds were prone to suppress the proliferation of HepG2 cells and A549 cells dose-dependently although cirsiliol showed a modest dose-dependency and this suppression of proliferation was enhanced by the addition of gefitinib. Cirsiliol, a dimethyoxylated flavone, activated the natural killer activity of KHYG-1 cells against erythroleukemia K562 cells like a hexamethoxylated flavone, nobiletin, suggesting that it may also have an indirect anti-cancer potential through activation of NK cells. These results shed light on the putative anti-cancer potential of Salvia officinalis. Carnosol, luteolin and cirsiliol were identified as STAT3 signal inhibitors in S. officinalis. Cirsiliol inhibited the STAT3-responsive reporter expression at 7.5 μM but showed low dose-dependency at higher doses. Cirsiliol at 90 μM showed almost no effect on phosphorylation of STAT3 and weakly suppressed total STAT3. Cirsiliol exhibited anti-proliferative activity at 3.6 μM against HepG2 cells and A549 cells but showed low dose-dependency. Cirsiliol activated NK cells by stimulating exocytosis of granules for cytolysis.
Collapse
Affiliation(s)
- Maho Yanagimichi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Akiho Sakamoto
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryusei Kurodai
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Kojima
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Nozomu Eto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Riadh Ksouri
- Centre de Biotechnologie à la Technopole de Borj Cédria (CBBC), BP 901, 2050, Hammam-lif, Tunisia
| | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Seiji Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Toru Akita
- Nippon Shinyaku CO., LTD., Kyoto, 601-8550, Japan
| | | | - Masaya Nagao
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
27
|
Modulatory influences of antiviral bioactive compounds on cell viability, mRNA and protein expression of cytochrome P450 3A4 and P-glycoprotein in HepG2 and HEK293 cells. Bioorg Chem 2020; 107:104573. [PMID: 33387731 DOI: 10.1016/j.bioorg.2020.104573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
The induction of cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (ABCB1) influence drug plasma, and eventually decreases the drugs' therapeutic effects. The effects of Plant-derived compounds (PCs) on drug-metabolising proteins are largely unknown. This study investigated the cytotoxicity, cell viability profiles and regulatory influences of four PCs (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) on the mRNA and protein expressions of CYP3A4 and ABCB1 in HepG2 and HEK293 cells. After treatment with the PCs (0-400 µM) for 24 h, 80% (IC20) and 50% (IC50) cell viability were determined. The PCs were not toxic to HepG2 (ATP levels increased at IC20, insignificant change in LDH (lactate dehydrogenase) with the exception of LUT, and ABCB1 protein expressions decreased. The PCs decreased CYP3A4 at IC20 (except LUT), EGCG and K7G at IC20 decreased mRNA expression. For HEK293 cells, no significant change in ATP, except for EGCG IC20 and K7G IC50 which decreased and increased, respectively. LDH decreased at IC20, but LUT IC50 significant increase LDH. ABCB1 protein expression increased at both IC20 and IC50, but LUT and EGA at IC50 decreased mRNA expression. The PCs at IC20, and IC50 of LUT, K7G and of EGCG may enhance drug bioavailability.
Collapse
|
28
|
Namdeo AG, Boddu SHS, Amawi H, Ashby CR, Tukaramrao DB, Trivedi P, Babu RJ, Tiwari AK. Flavonoids as Multi-Target Compounds: A Special Emphasis on their Potential as Chemo-adjuvants in Cancer Therapy. Curr Pharm Des 2020; 26:1712-1728. [PMID: 32003663 DOI: 10.2174/1381612826666200128095248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Flavonoids are low molecular weight, polyphenolic phytochemicals, obtained from secondary metabolism of various plant compounds. They have a spectrum of pharmacological efficacies, including potential anticancer efficacy. Natural flavonoids are present in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. Flavonoids can attenuate or inhibit the initiation, promotion and progression of cancer by modulating various enzymes and receptors in diverse pathways that involve cellular proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis. Furthermore, in vitro, flavonoids have been shown to reverse multidrug resistance when used as chemo-adjuvants. Flavonoids (both natural and synthetic analogues) interact with several oncogenic targets through dependent and independent mechanisms to mediate their anticancer efficacy in different types of cancer cells.
Collapse
Affiliation(s)
- Ajay G Namdeo
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Haneen Amawi
- Department of Pharmacy practice, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, United States
| | - Diwakar B Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| | - Piyush Trivedi
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43606, United States
| |
Collapse
|
29
|
Farooqi AA, Butt G, El-Zahaby SA, Attar R, Sabitaliyevich UY, Jovic JJ, Tang KF, Naureen H, Xu B. Luteolin mediated targeting of protein network and microRNAs in different cancers: Focus on JAK-STAT, NOTCH, mTOR and TRAIL-mediated signaling pathways. Pharmacol Res 2020. [DOI: https://doi.org/10.1016/j.phrs.2020.105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Farooqi AA, Butt G, El-Zahaby SA, Attar R, Sabitaliyevich UY, Jovic JJ, Tang KF, Naureen H, Xu B. Luteolin mediated targeting of protein network and microRNAs in different cancers: Focus on JAK-STAT, NOTCH, mTOR and TRAIL-mediated signaling pathways. Pharmacol Res 2020; 160:105188. [PMID: 32919041 DOI: 10.1016/j.phrs.2020.105188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
There has always been a keen interest of basic and clinical researchers to search for cancer therapeutics having minimum off-target effects and maximum anticancer activities. In accordance with this approach, there has been an explosion in the field of natural products research in the past few decades because of extra-ordinary list of natural extracts and their biologically and pharmacologically active constituents having significant medicinal properties. Apparently, luteolin-mediated anticancer effects have been investigated in different cancers but there is superfluousness of superficial data. Generalized scientific evidence encompassing apoptosis, DNA damage and anti-inflammatory effects has been reported extensively. However, how luteolin modulates deregulated oncogenic pathways in different cancers has not been comprehensively uncovered. In this review we have attempted to focus on cutting-edge research which has unveiled remarkable abilities of luteolin to modulate deregulated oncogenic pathways in different cancers. We have partitioned the review into various sections to separately discuss advancements in therapeutic targeting of oncogenic protein networks. We have provided detailed mechanistic insights related to JAK-STAT signaling and summarized how luteolin inhibited STAT proteins to inhibit STAT-driven gene network. We have also individually analyzed Wnt/β-catenin and NOTCH pathway and how luteolin effectively targeted these pathways. Mapping of the signaling landscape has revealed that NOTCH pathway can be targeted therapeutically. NOTCH pathway was noted to be targeted by luteolin. We have also conceptually analyzed how luteolin restored TRAIL-induced apoptosis in resistant cancers. Luteolin induced an increase in pro-apoptotic proteins and efficiently inhibited anti-apoptotic proteins to induce apoptosis. Luteolin mediated regulation of non-coding RNAs is an exciting and emerging facet. Excitingly, there is sequential and systematic accumulation of clues which have started to shed light on intricate regulation of microRNAs by luteolin in different cancers. Collectively, sophisticated information will enable us to develop a refined understanding of the multi-layered regulation of signaling pathways and non-coding RNAs by luteolin in different cancers.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan.
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | - Uteuliyev Yerzhan Sabitaliyevich
- Department of Health Policy and Health Care Development, Kazakh Medical University of Continuing Education, Almaty, 050004, Kazakhstan
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, SvetozaraMarkovića 69, 34000, Kragujevac, Serbia
| | - Kai-Fu Tang
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Humaira Naureen
- Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, China.
| |
Collapse
|
31
|
Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur J Med Chem 2020; 206:112677. [PMID: 32823005 DOI: 10.1016/j.ejmech.2020.112677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) inhibitors have demonstrated a great clinical achievement in hematological malignancies. However, the efficacy of HDACs inhibitors in treating solid tumors remains limited due to the complicated tumor microenvironment. In this study, we designed and synthesized a class of novel HDACs inhibitors based on the structure of flavones and isoflavones, followed by biological evaluation. To be specific, a lead compound 15a was discovered with strong anti-proliferative effects on a variety of solid tumor cells, especially for breast cancer cells with resistance to SAHA. Studies demonstrated that 15a could significantly inhibit the activity of HDAC 1, 2, 3 (class I) and 6 (class IIB), leading to a dose-dependent accumulation of acetylated histones and α-Tubulin, cell cycle arrest (G1/S phase) and apoptosis in breast cancer cells. Furthermore, the lead compound 15a could also antagonize the activation of STAT3 induced by HDACs inhibition in some breast cancer cells, which further reduced the level of pro-survive proteins in tumor cells and enhanced anti-tumor activity regulated by STAT3 signaling in vivo. Overall, our findings demonstrated that the novel compound 15a might be a HDACs inhibitor candidate, which could be used as promising chemotherapeutic agent for breast cancer.
Collapse
|
32
|
Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses 2020; 141:109723. [DOI: 10.1016/j.mehy.2020.109723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
|
33
|
Schomberg J, Wang Z, Farhat A, Guo KL, Xie J, Zhou Z, Liu J, Kovacs B, Liu-Smith F. Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS. Biochem Pharmacol 2020; 177:114025. [PMID: 32413425 DOI: 10.1016/j.bcp.2020.114025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Luteolin inhibited growth of several cancer cells in vitro in previous studies, with limited in vivo studies, and no comprehensive understanding of molecular mechanisms at genomics level. This study identified luteolin as an effective agent to inhibit melanoma cell growth in vitro and in vivo. Molecular studies and genomic profiling were used to identify the mechanism of action of luteolin in melanoma cells. As a ROS (reactive oxygen species) scavenger, luteolin unexpectedly induced ROS; but co-treatment with antioxidants NAC or mito-TEMPO did not rescue cell growth inhibition, although the levels of ROS levels were reduced. Next, we profiled luteolin-induced differentially expressed genes (DEGs) in 4 melanoma cell lines using RNA-Seq, and performed pathway analysis using a combination of bioinformatics software including PharmetRx which was especially effective in discovering pharmacological pathways for potential drugs. Our results show that luteolin induces changes in three main aspects: the cell-cell interacting pathway (extracellular matrix, ECM), the oncogenic pathway and the immune response signaling pathway. Based on these results, we further validated that luteolin was especially effective in inhibiting cell proliferation when cells were seeded at low density, concomitantly with down-regulation of fibronectin accumulation. In conclusion, through extensive DEG profiling in a total of 4 melanoma cell lines, we found that luteolin-mediated growth inhibition in melanoma cells was perhaps not through ROS induction, but likely through simultaneously acting on multiple pathways including the ECM (extracellular matrix) pathway, the oncogenic signaling and the immune response pathways. Further investigations on the mechanisms of this promising compound are warranted and likely result in application to cancer patients as its safety pharmacology has been validated in autism patients.
Collapse
Affiliation(s)
- John Schomberg
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Zi Wang
- Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ahmed Farhat
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States.
| | - Katherine L Guo
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90024, United States.
| | - Jun Xie
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States
| | - Zhidong Zhou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, United States.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Bruce Kovacs
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Feng Liu-Smith
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
34
|
Nakano D, Kawaguchi T, Iwamoto H, Hayakawa M, Koga H, Torimura T. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS One 2020; 15:e0232283. [PMID: 32343721 PMCID: PMC7188283 DOI: 10.1371/journal.pone.0232283] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Aim Metabolic reprograming is crucial in the proliferation of hepatocellular carcinoma (HCC). Canagliflozin (CANA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, affects various metabolisms. We investigated the effects of CANA on proliferation and metabolic reprograming of HCC cell lines using multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). Methods The cells were counted 72 hours after treatment with CANA (10 μM; n = 5) or dimethyl sulfoxide (control [CON]; n = 5) in Hep3B and Huh7 cells. In Hep3B cells, metabolomics and iMPAQT were used to evaluate the levels of metabolites and metabolic enzymes in the CANA and CON groups (each n = 5) 48 hours after treatment. Results Seventy-two hours after treatment, the number of cells in the CANA group was significantly decreased compared to that in the CON group in Hep3B and Huh7 cells. On multi-omics analysis, there was a significant difference in the levels of 85 metabolites and 68 metabolic enzymes between the CANA and CON groups. For instance, CANA significantly downregulated ATP synthase F1 subunit alpha, a mitochondrial electron transport system protein (CON 297.28±20.63 vs. CANA 251.83±22.83 fmol/10 μg protein; P = 0.0183). CANA also significantly upregulated 3-hydroxybutyrate, a beta-oxidation metabolite (CON 530±14 vs. CANA 854±68 arbitrary units; P<0.001). Moreover, CANA significantly downregulated nucleoside diphosphate kinase 1 (CON 110.30±11.37 vs. CANA 89.14±8.39 fmol/10 μg protein; P = 0.0172). Conclusions We found that CANA suppressed the proliferation of HCC cells through alterations in mitochondrial oxidative phosphorylation metabolism, fatty acid metabolism, and purine and pyrimidine metabolism. Thus, CANA may suppress the proliferation of HCC by regulating metabolic reprograming.
Collapse
Affiliation(s)
- Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- * E-mail:
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Masako Hayakawa
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| |
Collapse
|
35
|
Aryappalli P, Shabbiri K, Masad RJ, Al-Marri RH, Haneefa SM, Mohamed YA, Arafat K, Attoub S, Cabral-Marques O, Ramadi KB, Fernandez-Cabezudo MJ, Al-Ramadi BK. Inhibition of Tyrosine-Phosphorylated STAT3 in Human Breast and Lung Cancer Cells by Manuka Honey is Mediated by Selective Antagonism of the IL-6 Receptor. Int J Mol Sci 2019; 20:E4340. [PMID: 31491838 PMCID: PMC6769459 DOI: 10.3390/ijms20184340] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrantly high levels of tyrosine-phosphorylated signal transducer and activator of transcription 3 (p-STAT3) are found constitutively in ~50% of human lung and breast cancers, acting as an oncogenic transcription factor. We previously demonstrated that Manuka honey (MH) inhibits p-STAT3 in breast cancer cells, but the exact mechanism remained unknown. Herein, we show that MH-mediated inhibition of p-STAT3 in breast (MDA-MB-231) and lung (A549) cancer cell lines is accompanied by decreased levels of gp130 and p-JAK2, two upstream components of the IL-6 receptor (IL-6R) signaling pathway. Using an ELISA-based assay, we demonstrate that MH binds directly to IL-6Rα, significantly inhibiting (~60%) its binding to the IL-6 ligand. Importantly, no evidence of MH binding to two other cytokine receptors, IL-11Rα and IL-8R, was found. Moreover, MH did not alter the levels of tyrosine-phosphorylated or total Src family kinases, which are also constitutively activated in cancer cells, suggesting that signaling via other growth factor receptors is unaffected by MH. Binding of five major MH flavonoids (luteolin, quercetin, galangin, pinocembrin, and chrysin) was also tested, and all but pinocembrin could demonstrably bind IL-6Rα, partially (30-35%) blocking IL-6 binding at the highest concentration (50 μM) used. In agreement, each flavonoid inhibited p-STAT3 in a dose-dependent manner, with estimated IC50 values in the 3.5-70 μM range. Finally, docking analysis confirmed the capacity of each flavonoid to bind in an energetically favorable configuration to IL-6Rα at a site predicted to interfere with ligand binding. Taken together, our findings identify IL-6Rα as a direct target of MH and its flavonoids, highlighting IL-6R blockade as a mechanism for the anti-tumor activity of MH, as well as a viable therapeutic target in IL-6-dependent cancers.
Collapse
Affiliation(s)
- Priyanka Aryappalli
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khadija Shabbiri
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J Masad
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roadha H Al-Marri
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shoja M Haneefa
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Khalil B Ramadi
- Harvard-MIT Health Sciences and Technology Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Basel K Al-Ramadi
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
36
|
Oner M, Lin E, Chen MC, Hsu FN, Shazzad Hossain Prince GM, Chiu KY, Teng CLJ, Yang TY, Wang HY, Yue CH, Yu CH, Lai CH, Hsieh JT, Lin H. Future Aspects of CDK5 in Prostate Cancer: From Pathogenesis to Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20163881. [PMID: 31395805 PMCID: PMC6720211 DOI: 10.3390/ijms20163881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a unique member of the cyclin-dependent kinase family. CDK5 is activated by binding with its regulatory proteins, mainly p35, and its activation is essential in the development of the central nervous system (CNS) and neurodegeneration. Recently, it has been reported that CDK5 plays important roles in regulating various biological and pathological processes, including cancer progression. Concerning prostate cancer, the androgen receptor (AR) is majorly involved in tumorigenesis, while CDK5 can phosphorylate AR and promotes the proliferation of prostate cancer cells. Clinical evidence has also shown that the level of CDK5 is associated with the progression of prostate cancer. Interestingly, inhibition of CDK5 prevents prostate cancer cell growth, while drug-triggered CDK5 hyperactivation leads to apoptosis. The blocking of CDK5 activity by its small interfering RNAs (siRNA) or Roscovitine, a pan-CDK inhibitor, reduces the cellular AR protein level and triggers the death of prostate cancer cells. Thus, CDK5 plays a crucial role in the growth of prostate cancer cells, and AR regulation is one of the important pathways. In this review paper, we summarize the significant studies on CDK5-mediated regulation of prostate cancer cells. We propose that the CDK5–p35 complex might be an outstanding candidate as a diagnostic marker and potential target for prostate cancer treatment in the near future.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Eugene Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Urology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Fu-Ning Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Internal, Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chia-Herng Yue
- Department of Surgery, Tung's Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung Medical University, Taoyuan 33302, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
37
|
Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed Pharmacother 2019; 116:109004. [DOI: 10.1016/j.biopha.2019.109004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
|
38
|
Luteolin modulates gene expression related to steroidogenesis, apoptosis, and stress response in rat LC540 tumor Leydig cells. Cell Biol Toxicol 2019; 36:31-49. [DOI: 10.1007/s10565-019-09481-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/27/2019] [Indexed: 01/09/2023]
|
39
|
Doan P, Musa A, Candeias NR, Emmert-Streib F, Yli-Harja O, Kandhavelu M. Alkylaminophenol Induces G1/S Phase Cell Cycle Arrest in Glioblastoma Cells Through p53 and Cyclin-Dependent Kinase Signaling Pathway. Front Pharmacol 2019; 10:330. [PMID: 31001122 PMCID: PMC6454069 DOI: 10.3389/fphar.2019.00330] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. We show here that small molecule 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), a potential anticancer agent, increases the human glioblastoma cell death. Its mechanism of action and the interaction of selective signaling pathways remain elusive. Three structurally related phenolic compounds were tested in multiple glioma cell lines in which the potential activity of the compound, THTMP, was further validated and characterized. Upon prolonged exposer to THTMP, all glioma cell lines undergo p53 and cyclin-dependent kinase mediated cell death with the IC50 concentration of 26.5 and 75.4 μM in LN229 and Snb19, respectively. We found that THTMP strongly inhibited cell growth in a dose and in time dependent manner. THTMP treatment led to G1/S cell cycle arrest and apoptosis induction of glioma cell lines. Furthermore, we identified 3,714 genes with significant changes at the transcriptional level in response to THTMP. Further, a transcriptional analysis (RNA-seq) revealed that THTMP targeted the p53 signaling pathway specific genes causing DNA damage and cell cycle arrest at G1/S phase explained by the decrease of cyclin-dependent kinase 1, cyclin A2, cyclin E1 and E2 in glioma cells. Consistently, THTMP induced the apoptosis by regulating the expression of Bcl-2 family genes and reactive oxygen species while it also changed the expression of several anti-apoptotic genes. These observations suggest that THTMP exerts proliferation activity inhibition and pro-apoptosis effects in glioma through affecting cell cycle arrest and intrinsic apoptosis signaling. Importantly, THTMP has more potential at inhibiting GBM cell proliferation compared to TMZ, the current chemotherapy treatment administered to GBM patients; thus, we propose that THTMP may be an alternative therapeutic option for glioblastoma.
Collapse
Affiliation(s)
- Phuong Doan
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| | - Aliyu Musa
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Predictive Medicine and Data Analytics Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Frank Emmert-Streib
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Predictive Medicine and Data Analytics Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland
| | - Olli Yli-Harja
- Institute of Biosciences and Medical Technology, Tampere, Finland.,Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, United States
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, Tampere, Finland.,Institute of Biosciences and Medical Technology, Tampere, Finland
| |
Collapse
|
40
|
Meng G, Fei Z, Fang M, Li B, Chen A, Xu C, Xia M, Yu D, Wei J. Fludarabine as an Adjuvant Improves Newcastle Disease Virus-Mediated Antitumor Immunity in Hepatocellular Carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:22-34. [PMID: 31011625 PMCID: PMC6461577 DOI: 10.1016/j.omto.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
In addition to direct oncolysis, oncolytic viruses (OVs) also induce antitumor immunity, also called viro-immunotherapy. Limited viral replication and immune-negative feedback are the major hurdles to effective viro-immunotherapy. In this study, we found that use of an adjuvant of fludarabine, a chemotherapeutic drug for chronic myeloid leukemia, increased the replication of Newcastle disease virus (NDV) by targeting signal transducer and activator of transcription 1 (STAT1), which led to enhanced oncolysis of hepatocellular carcinoma (HCC) cells. Moreover, fludarabine accelerated ubiquitin-proteasomal degradation by enhancing ubiquitylation rather than proteasomal activity. This resulted in accelerated degradation of phosphorylated STAT3 and indoleamine 2, 3-dioxygenase 1 (IDO1), whose expression was induced by NDV infection. In addition, fludarabine significantly increased the NDV-induced infiltration of NK cells and decreased the number of NDV-induced myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. The aforementioned effects of fludarabine significantly improved NDV-mediated antitumor immunity and prolonged survival in mouse model of HCC. Our findings indicate the utility of fludarabine as an adjuvant for oncolytic anticancer viro-immunotherapy.
Collapse
Affiliation(s)
- Gang Meng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ziwei Fei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Mingyue Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Binghua Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Anxian Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chun Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, China
| | - Mao Xia
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Decai Yu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
41
|
Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, Imran A, Orhan IE, Rizwan M, Atif M, Gondal TA, Mubarak MS. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother 2019; 112:108612. [PMID: 30798142 DOI: 10.1016/j.biopha.2019.108612] [Citation(s) in RCA: 517] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022] Open
Abstract
Many food-derived phytochemicals and their derivatives represent a cornucopia of new anti-cancer compounds. Luteolin (3,4,5,7-tetrahydroxy flavone) is a flavonoid found in different plants such as vegetables, medicinal herbs, and fruits. It acts as an anticancer agent against various types of human malignancies such as lung, breast, glioblastoma, prostate, colon, and pancreatic cancers. It also blocks cancer development in vitro and in vivo by inhibition of proliferation of tumor cells, protection from carcinogenic stimuli, and activation of cell cycle arrest, and by inducing apoptosis through different signaling pathways. Luteolin can additionally reverse epithelial-mesenchymal transition (EMT) through a mechanism that involves cytoskeleton shrinkage, induction of the epithelial biomarker E-cadherin expression, and by down-regulation of the mesenchymal biomarkers N-cadherin, snail, and vimentin. Furthermore, luteolin increases levels of intracellular reactive oxygen species (ROS) by activation of lethal endoplasmic reticulum stress response and mitochondrial dysfunction in glioblastoma cells, and by activation of ER stress-associated proteins expressions, including phosphorylation of eIF2α, PERK, CHOP, ATF4, and cleaved-caspase 12. Accordingly, the present review article summarizes the progress of recent research on luteolin against several human cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahor, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain Campus, UAE
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026, Orel, Russia
| | - Imtiaz Ali Khan
- Department of Agriculture, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ali Imran
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Muhammad Rizwan
- Department of Microbiology and Biotechnology, Abasyn University Peshawar, KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Australia
| | - Mohammad S Mubarak
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
42
|
Im E, Yeo C, Lee EO. Luteolin induces caspase-dependent apoptosis via inhibiting the AKT/osteopontin pathway in human hepatocellular carcinoma SK-Hep-1 cells. Life Sci 2018; 209:259-266. [DOI: 10.1016/j.lfs.2018.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
|
43
|
Wada F, Koga H, Akiba J, Niizeki T, Iwamoto H, Ikezono Y, Nakamura T, Abe M, Masuda A, Sakaue T, Tanaka T, Kakuma T, Yano H, Torimura T. High expression of CD44v9 and xCT in chemoresistant hepatocellular carcinoma: Potential targets by sulfasalazine. Cancer Sci 2018; 109:2801-2810. [PMID: 29981246 PMCID: PMC6125439 DOI: 10.1111/cas.13728] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
CD44v9 is expressed in cancer stem cells (CSC) and stabilizes the glutamate‐cystine transporter xCT on the cytoplasmic membrane, thereby decreasing intracellular levels of reactive oxygen species (ROS). This mechanism confers ROS resistance to CSC and CD44v9‐expressing cancer cells. The aims of the present study were to assess: (i) expression status of CD44v9 and xCT in hepatocellular carcinoma (HCC) tissues, including those derived from patients treated with hepatic arterial infusion chemoembolization (HAIC) therapy with cisplatin (CDDP); and (ii) whether combination of CDDP with sulfasalazine (SASP), an inhibitor of xCT, was more effective on tumor cells than CDDP alone by inducing ROS‐mediated apoptosis. Twenty non‐pretreated HCC tissues and 7 HCC tissues administered HAIC therapy with CDDP before surgical resection were subjected to immunohistochemistry analysis of CD44v9 and xCT expression. Human HCC cell lines HAK‐1A and HAK‐1B were used in this study; the latter was also used for xenograft experiments in nude mice to assess in vivo efficacy of combination treatment. CD44v9 positivity was significantly higher in HAIC‐treated tissues (5/7) than in non‐pretreated tissues (2/30), suggesting the involvement of CD44v9 in the resistance to HAIC. xCT was significantly expressed in poorly differentiated HCC tissues. Combination treatment effectively killed the CD44v9‐harboring HAK‐1B cells through ROS‐mediated apoptosis and significantly decreased xenografted tumor growth. In conclusion, the xCT inhibitor SASP augmented ROS‐mediated apoptosis in CDDP‐treated HCC cells, in which the CD44v9‐xCT system functioned. As CD44v9 is typically expressed in HAIC‐resistant HCC cells, combination treatment with SASP with CDDP may overcome such drug resistance.
Collapse
Affiliation(s)
- Fumitaka Wada
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Niizeki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Yu Ikezono
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Mitsuhiko Abe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | | | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.,Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| |
Collapse
|
44
|
Flavonoids Effects on Hepatocellular Carcinoma in Murine Models: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6328970. [PMID: 29681978 PMCID: PMC5850900 DOI: 10.1155/2018/6328970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
The hepatocellular carcinoma (HCC) is the second most common cause of cancer deaths worldwide. It occurs primarily as manifestation of other pathological processes, such as viral hepatitis, cirrhosis, and toxin exposure that affect directly the cellular process. Studies were selected from PubMed and Scopus databases according to the PRISMA statement. The research filters were constructed using three parameters: flavonoids, hepatocellular carcinoma, and animal model. The bias analysis of the 34 selected works was done using the ARRIVE guidelines. The most widely used flavonoid in the studies was epigallocatechin gallate extracted from green tea. In general, the treatment with different flavonoids presented inhibition of tumor growth and antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory activities. The bias analysis evidenced the absence of methodological processes in all studies, such as the age or weight of the animals, the method of flavonoids' extraction, or the experimental designs, analytical methods, and outcome measures. It has been known that flavonoids have a protective effect against HCC. However, the absence or incomplete characterization of the animal models, treatment protocols, and phytochemical and toxicity analyses impaired the internal validity of the individual studies, making it difficult to determine the effectiveness of plant-derived products in the treatment of HCC.
Collapse
|
45
|
Qian P, Zhang YW, Zhou ZH, Liu JQ, Yue SY, Guo XL, Sun LQ, Lv XT, Chen JQ. Artesunate enhances γδ T-cell-mediated antitumor activity through augmenting γδ T-cell function and reversing immune escape of HepG2 cells. Immunopharmacol Immunotoxicol 2018; 40:107-116. [PMID: 29405080 DOI: 10.1080/08923973.2017.1386212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Peng Qian
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yong-Wen Zhang
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhong-Hai Zhou
- Department of Central Laboratory, 97th Hospital of PLA, Xuzhou, Jiangsu, China
| | - Jun-Quan Liu
- Department of Central Laboratory, 97th Hospital of PLA, Xuzhou, Jiangsu, China
| | - Su-Yang Yue
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Li Guo
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei-Qing Sun
- Department of Central Laboratory, 97th Hospital of PLA, Xuzhou, Jiangsu, China
| | - Xiao-Ting Lv
- Department of Central Laboratory, 97th Hospital of PLA, Xuzhou, Jiangsu, China
| | - Jian-Qun Chen
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
46
|
Saini U, Suarez AA, Naidu S, Wallbillich JJ, Bixel K, Wanner RA, Bice J, Kladney RD, Lester J, Karlan BY, Goodfellow PJ, Cohn DE, Selvendiran K. STAT3/PIAS3 Levels Serve as "Early Signature" Genes in the Development of High-Grade Serous Carcinoma from the Fallopian Tube. Cancer Res 2018; 78:1739-1750. [PMID: 29339537 DOI: 10.1158/0008-5472.can-17-1671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/13/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
The initial molecular events that lead to malignant transformation of the fimbria of the fallopian tube (FT) through high-grade serous ovarian carcinoma (HGSC) remain poorly understood. In this study, we report that increased expression of signal transducer and activator of transcription 3 (pSTAT3 Tyr705) and suppression or loss of protein inhibitor of activated STAT3 (PIAS3) in FT likely drive HGSC. We evaluated human tissues-benign normal FT, tubal-peritoneal junction (TPJ), p53 signature FT tissue, tubal intraepithelial lesion in transition (TILT), serous tubal intraepithelial carcinoma (STIC) without ovarian cancer, and HGSC for expression of STAT3/PIAS3 (compared with their known TP53 signature) and their target proliferation genes. We observed constitutive activation of STAT3 and low levels or loss of PIAS3 in the TPJ, p53 signature, TILT, and STIC through advanced stage IV (HGSC) tissues. Elevated expression of pSTAT3 Tyr705 and decreased levels of PIAS3 appeared as early as TPJ and the trend continued until very advanced stage HGSC (compared with high PIAS3 and low pSTAT3 expression in normal benign FT). Exogenous expression of STAT3 in FT cells mediated translocation of pSTAT3 and c-Myc into the nucleus. In vivo experiments demonstrated that overexpression of STAT3 in FT secretory epithelial cells promoted tumor progression and metastasis, mimicking the clinical disease observed in patients with HGSC. Thus, we conclude that the STAT3 pathway plays a role in the development and progression of HGSC from its earliest premalignant states.Significance: Concomitant gain of pSTAT3 Tyr705 and loss of PIAS3 appear critical for initiation and development of high-grade serous carcinoma. Cancer Res; 78(7); 1739-50. ©2018 AACR.
Collapse
Affiliation(s)
- Uksha Saini
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Adrian A Suarez
- Department of Pathology, Gynecological Pathology and Cytopathology Unit, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Shan Naidu
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - John J Wallbillich
- Division of Gynecologic Oncology, Department of OB/GYN, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Kristin Bixel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ross A Wanner
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jason Bice
- Pathology Core Lab, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raleigh D Kladney
- Pathology Core Lab, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jenny Lester
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Beth Y Karlan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Paul J Goodfellow
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
47
|
Zhou Y, Ding BZ, Lin YP, Wang HB. MiR-34a, as a suppressor, enhance the susceptibility of gastric cancer cell to luteolin by directly targeting HK1. Gene 2017; 644:56-65. [PMID: 29054762 DOI: 10.1016/j.gene.2017.10.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022]
Abstract
Luteolin is a flavonoid compound derived from Lonicera japonica Thunb, which has been reported to exert anticancer effects on different types of tumors. miRNAs are a kind of endogenous non-coding small RNAs, which involved in occurrence and development of multi cancer, including miR-34a. However, the relationship between miR-34a and luteolin's susceptibility to cancer cells still remains unclear. In this study, we explored the roles of miR-34a and the effects of luteolin on GC cells as well as the underlying mechanism of miR-34a in mediating the susceptibility of GC cell to luteolin. Retrospectively study revealed that miR-34a expression was downregulated in human primary GC tissues compared with non-tumor tissues and low miR-34a expression was associated with a significantly shorter overall survival and disease-free survival. MiR-34a overexpression could inhibit GC cells and induce G1 phase arrest via p53/p21 and MAPK /ERK pathways. Luteolin decreased viability of GC cells in a dose-dependent manner. Meanwhile, miR-34a was found to be markedly upregulated in GC cells induced by luteolin and decreased miR-34a level was found in the artificial luteolin-resistant GC cells. Upregulation of miR-34a in luteolin-resistant GC cell could enhance the sensibility of GC cells to luteolin. On the other hand, miR-34a inhibitor could partly counter the anticancer effect of luteolin. In a further assay, we also found that targeting miR-34a could mediate the susceptibility of mouse xenografts to luteolin. Subsequent study found that HK1 was a direct target of miR-34a and downregulated HK1 mRNA or protein levels were presented after miRNA-34a overexpression in GC cells. Moreover, HK1 protein levels was decreased after luteolin treatment and partly restored when co-treated with luteolin and miR-34a inhibitor. Downregulation of HK1 in luteolin-resistant GC cell could increase the cell's sensitivity to luteolin. Therefore, our findings firstly suggested that miR-34a could modulate the susceptibility of gastric cancer cell to luteolin via targeting HK1, potentially benefiting GC patients' treatment in the future.
Collapse
Affiliation(s)
- Yan Zhou
- Department of General Surgery, Yantai Mountain Hospital, Yantai, PR China
| | - Bao-Zhong Ding
- Department of General Surgery, Binzhou People's Hospital, Binzhou, PR China
| | - Yun-Peng Lin
- Department of General Surgery, Qixia Hospital of Traditional Chinese Medicine, Yantai, PR China
| | - Hai-Bo Wang
- Department of Gastrointestinal Surgery, The 107th Hospital of PLA, Yantai, PR China.
| |
Collapse
|
48
|
Aryappalli P, Al-Qubaisi SS, Attoub S, George JA, Arafat K, Ramadi KB, Mohamed YA, Al-Dhaheri MM, Al-Sbiei A, Fernandez-Cabezudo MJ, Al-Ramadi BK. The IL-6/STAT3 Signaling Pathway Is an Early Target of Manuka Honey-Induced Suppression of Human Breast Cancer Cells. Front Oncol 2017; 7:167. [PMID: 28856117 PMCID: PMC5557744 DOI: 10.3389/fonc.2017.00167] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
There is renewed interest in the potential use of natural compounds in cancer therapy. Previously, we demonstrated the anti-tumor properties of manuka honey (MH) against several cancers. However, the underlying mechanism and molecular targets of this activity remain unknown. For this study, the early targets of MH and its modulatory effects on proliferation, invasiveness, and angiogenic potential were investigated using two human breast cancer cell lines, the triple-negative MDA-MB-231 cells and estrogen receptor-positive MCF-7 cells, and the non-neoplastic breast epithelial MCF-10A cell line. Exposure to MH at concentrations of 0.3-1.25% (w/v) induced a dose-dependent inhibition of the proliferation of MDA-MB-231 and MCF-7, but not MCF-10A, cells. This inhibition was independent of the sugar content of MH as a solution containing equivalent concentrations of its three major sugars failed to inhibit cell proliferation. At higher concentrations (>2.5%), MH was found to be generally deleterious to the growth of all three cell lines. MH induced apoptosis of MDA-MB-231 cells through activation of caspases 8, 9, 6, and 3/7 and this correlated with a loss of Bcl-2 and increased Bax protein expression in MH-treated cells. Incubation with MH induced a time-dependent translocation of cytochrome c from mitochondria to the cytosol and Bax translocation from the cytosol into the mitochondria. MH also induced apoptosis of MCF-7 cells via the activation of caspases 9 and 6. Low concentrations of MH (0.03-1.25% w/v) induced a rapid reduction in tyrosine-phosphorylated STAT3 (pY-STAT3) in MDA-MB-231 and MCF-7 cells. Maximum inhibition of pY-STAT3 was observed at 1 h with a loss of >80% and coincided with decreased interleukin-6 (IL-6) production. Moreover, MH inhibited the migration and invasion of MDA-MB-231 cells as well as the angiogenic capacity of human umbilical vein endothelial cells. Our findings identify multiple functional pathways affected by MH in human breast cancer and highlight the IL-6/STAT3 signaling pathway as one of the earliest potential targets in this process.
Collapse
Affiliation(s)
- Priyanka Aryappalli
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sarah S Al-Qubaisi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Junu A George
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khalil B Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mezoon M Al-Dhaheri
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
49
|
Bixel K, Saini U, Kumar Bid H, Fowler J, Riley M, Wanner R, Deepa Priya Dorayappan K, Rajendran S, Konishi I, Matsumura N, Cohn DE, Selvendiran K. Targeting STAT3 by HO3867 induces apoptosis in ovarian clear cell carcinoma. Int J Cancer 2017. [PMID: 28646535 DOI: 10.1002/ijc.30847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advanced ovarian clear cell carcinoma (OCCC) carries a very poor prognosis in large part secondary to the extremely high rate of resistance to standard platinum and taxane chemotherapy. Signal transducer and activator of transcription 3(STAT3) expression and activation has been shown to regulate tumor progression in various human cancers, though has not been well studied in OCCC. Preliminary work in our lab has demonstrated constitutive activation of STAT3 (pSTAT3Tyr705 or pSTAT3727) in OCCC cell lines as well as human OCCC tumor tissue samples. Significantly, pSTAT3 is expressed in the absence of other forms of activated STAT (pSTAT1, 2, 6). Therefore, this work was planned to investigate the role of STAT3 and examine the efficacy of a novel anti-cancer compound -HO-3867, which is an inhibitor of STAT3, using known OCCC cell lines. Results demonstrate that treatment with HO-3867 decreased expression of pSTAT3 Tyr705 as well pSTAT3 Ser727, while total STAT3 remained constant. STAT3 overexpression increased the migration capability in OVTOKO cells in vitro and led to an increased tumor size when injected in vivo. The inhibitory effect of HO-3867 on cell proliferation and cell survival was accompanied by increased apoptosis, within 24 h post treatment. Treatment with HO-3867 resulted in a decrease in Bcl-2 and increase of cleavage of caspase 3, caspase 7, and PARP, confirming induction of apoptosis after treatment with HO-3867. In addition, HO-3867 significantly inhibited formation of human umbilical vein endothelial cells capillary-like structures and invasion at both 5 and 10 µM concentrations. STAT3 expression plays an important role in the spread of OCCC in vitro as well as in vivo. Thus, we can exploit the STAT3 pathway for targeted drug therapy. Inhibition of pSTAT3 using HO-3867in OCCC cell lines appears to be a promising therapy. This is of utmost importance given the poor response of OCCC to standard chemotherapy regimens.
Collapse
Affiliation(s)
- Kristin Bixel
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Uksha Saini
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Hemant Kumar Bid
- Cancer Therapeutics, Life Sciences Institute University of Michigan campus, Ann Arbor, MI
| | - John Fowler
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Maria Riley
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ross Wanner
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kalpana Deepa Priya Dorayappan
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sneha Rajendran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Ikuo Konishi
- Division of GYN/ONC, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Division of GYN/ONC, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David E Cohn
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
50
|
ElNaggar AC, Saini U, Naidu S, Wanner R, Sudhakar M, Fowler J, Nagane M, Kuppusamy P, Cohn DE, Selvendiran K. Anticancer potential of diarylidenyl piperidone derivatives, HO-4200 and H-4318, in cisplatin resistant primary ovarian cancer. Cancer Biol Ther 2017; 17:1107-1115. [PMID: 27415751 DOI: 10.1080/15384047.2016.1210733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have previously developed a novel class of bi-functional compounds based on a diarylidenyl-piperidone (DAP) backbone conjugated to an N-hydroxypyrroline (-NOH; a nitroxide precursor) group capable of selectively inhibiting STAT3 activation, translocation, and DNA binding activity. HO-4200 and H-4318 are 2 such derivatives capable of inducing apoptosis in ovarian cancer cells through this mechanism and demonstrated efficacy in platinum resistant primary ovarian cancer cell populations and tumor tissues. The improved absorption and cellular uptake of HO-4200 by cancer cells was determined using optical and electron paramagnetic resonance spectrometry. Treatment of ovarian cancer cells with HO-4200 and H-4318 resulted in cleavage of caspase proteins 3, 7, and 9, as well as PARP and inhibition of the pro-survival protein, Bcl-xL, resulting in significantly decreased cell survival and increased apoptosis. HO-4200 and H-4318 significantly inhibit fatty acid synthase (FAS) and pSTAT3 and decreased the expression of STAT3 target proteins: Survivin, c-myc, Bcl-xl, Bcl-2, cyclin D1/D2, and VEGF were suppressed as analyzed using quantitative real time PCR. In addition, HO-4200 and H-4318 significantly inhibited migration/invasion, in primary ovarian cancer cell populations isolated from primary and recurrent ovarian cancer patients. Treatment of freshly collected human ovarian tumor sections with HO-4200 demonstrated significant suppression of pSTAT3 Tyr 705, angiogenesis (VEFG), and markers of proliferation (Ki-67) in ex vivo models. We have shown, for the first time, that the DAP compounds, HO-4200 and H-4318, inhibit cell migration/invasion and induce apoptosis by targeting FAS/STAT3 in human ovarian cancer cells, including primary ovarian cancer cell populations and tumor tissues. Therefore, our results highlight the clinical anti-cancer potential of HO-4200 and H-4318.
Collapse
Affiliation(s)
- Adam C ElNaggar
- a Division of Gynecologic Oncology , The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solve Research Institute , Columbus , OH , USA
| | - Uksha Saini
- b Division of Gynecologic Oncology , Comprehensive Cancer Center and Solid Tumor Biology Program, The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Shan Naidu
- b Division of Gynecologic Oncology , Comprehensive Cancer Center and Solid Tumor Biology Program, The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Ross Wanner
- b Division of Gynecologic Oncology , Comprehensive Cancer Center and Solid Tumor Biology Program, The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Millie Sudhakar
- b Division of Gynecologic Oncology , Comprehensive Cancer Center and Solid Tumor Biology Program, The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | | | - Masaki Nagane
- c Department of Radiology , Dartmouth College Geisel School of Medicine , Hanover , NH , USA
| | - Periannan Kuppusamy
- c Department of Radiology , Dartmouth College Geisel School of Medicine , Hanover , NH , USA
| | - David E Cohn
- a Division of Gynecologic Oncology , The Ohio State University Comprehensive Cancer Center- Arthur G. James Cancer Hospital and Richard J. Solve Research Institute , Columbus , OH , USA
| | - Karuppaiyah Selvendiran
- b Division of Gynecologic Oncology , Comprehensive Cancer Center and Solid Tumor Biology Program, The Ohio State University Wexner Medical Center , Columbus , OH , USA
| |
Collapse
|