1
|
Bukhari M, Patel N, Fontana R, Santiago-Medina M, Jiang Y, Li D, Pestonjamasp K, Christiansen VJ, Jackson KW, McKee PA, Yang J. Fibroblast activation protein drives tumor metastasis via a protease-independent role in invadopodia stabilization. Cell Rep 2023; 42:113302. [PMID: 37862167 PMCID: PMC10742343 DOI: 10.1016/j.celrep.2023.113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung. Mechanistically, FAP is localized at invadopodia and required for invadopodia-mediated extracellular matrix degradation independent of its proteolytic activity. Live cell imaging shows that association of invadopodia precursors with FAP at the cell membrane promotes the stabilization and growth of invadopodia precursors into mature invadopodia. Together, our study identified FAP as a functional target of TWIST1 in driving tumor metastasis via promoting invadopodia-mediated matrix degradation and uncovered a proteolytic activity-independent role of FAP in stabilizing invadopodia precursors for maturation.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Navneeta Patel
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rosa Fontana
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Miguel Santiago-Medina
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Yike Jiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Dongmei Li
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Kersi Pestonjamasp
- Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Victoria J Christiansen
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kenneth W Jackson
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick A McKee
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Li B, Ding Z, Calbay O, Li Y, Li T, Jin L, Huang S. FAP is critical for ovarian cancer cell survival by sustaining NF-κB activation through recruitment of PRKDC in lipid rafts. Cancer Gene Ther 2023; 30:608-621. [PMID: 36494579 PMCID: PMC10498436 DOI: 10.1038/s41417-022-00575-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fibroblast activation protein (FAP) is tumor-specific and plays an important role in tumorigenecity. However, agents against its enzymatic activity or extracellular presence were unsuccessful in the clinic for undefined reasons. Here we show that FAP expression is higher in advanced ovarian cancer and is only detected in invasive ovarian cancer cells. Silencing FAP induces apoptosis and FAP's enzymatic activity is dispensable for cell survival. To elucidate the cause of apoptosis, we find that NF-κB activity is diminished when FAP is depleted and BIRC5 (survivin) acts downstream of FAP-NF-κB axis to promote cell survival. To uncover the link between FAP and NF-κB activation, we reveal that PRKDC (DNA-PK, DNA-dependent protein kinase) forms complex with FAP and is required for NF-κB activation and cell survival. Remarkably, FAP-PRKDC interaction occurs only in lipid rafts, and depleting FAP prevents lipid raft localization of PRKDC. Given the known ability of PRKDC to direct NF-κB activation, these results suggest that FAP recruits PRKDC in lipid rafts for NF-κB activation. FAP's non-enzymatic role and functioning from lipid rafts for cell survival also offer an explanation on the failure of past FAP-targeted therapies. Finally, we demonstrate that EpCAM aptamer-delivered FAP siRNA impeded intraperitoneal xenograft development of ovary tumors.
Collapse
Affiliation(s)
- Bin Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Zuo Ding
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ozlem Calbay
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Yue Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Tao Li
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Lingtao Jin
- Deparment of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, USA
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Dong H, Tulley S, Zhao Q, Cho L, Chen D, Pearl ML, Chen W. The propensity of invasive circulating tumor cells (iCTCs) in metastatic progression and therapeutic responsiveness. Cancer Med 2019; 8:3864-3874. [PMID: 31115187 PMCID: PMC6639176 DOI: 10.1002/cam4.2218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
Circulating tumor cells (CTCs) are important clinical indicators of metastatic progression and treatment efficacy. However, because of their low number and heterogeneity, reliable patient-derived CTC models are not readily available. We report here the isolation and characterization of the invasive population of CTCs, iCTCs, from blood of 10 patients with epithelial ovarian cancer (EOC) and one pancreatic cancer patient based on the avidity of tumor cells toward an artificial collagen-based adhesion matrix (CAM), in comparison with tumor progenitor (TP) cells isolated from tumor cell lines, tumors and ascites from EOC patients. CAM-avid cells identified to be iCTCs were indistinguishable with TP cells using either functional CAM uptake or surface markers (seprase and CD44). In addition, iCTCs were characterized using peritoneal and spontaneous metastasis models in vivo to evaluate their metastatic propensity and therapeutic response. TP cells and iCTCs had a doubling time of about 34-42 hours. TP cells were rare (<3.5%) in most patient-derived specimens, however, iCTCs emigrated into blood, at a high frequency, 64.2% (n = 49). Approximately 500 patient-derived iCTCs recapitulated formation of iCTCs in mouse blood and formed micrometastases in the liver and/or lung, a degree of metastatic spread equivalent to the inoculation of 5 × 105 bulk tumor cells isolated from ascites and tumors. iCTCs were shown to be novel therapeutic targets for blocking metastasis using the reduced formation of iCTCs and micrometastases by RNAi, peptides, and monoclonal antibodies against seprase.
Collapse
Affiliation(s)
- Huan Dong
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Shaun Tulley
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Qiang Zhao
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| | - Leong Cho
- Stony Brook MedicineStony BrookNew York
| | | | | | - Wen‐Tien Chen
- Stony Brook MedicineStony BrookNew York
- Vitatex IncStony BrookNew York
| |
Collapse
|
4
|
Golyan FF, Moghaddassian M, Forghanifard MM, Talebi S, Farshchian M, Mahmoudian RA, Abbaszadegan MR. Whole Exome Sequencing Reveals a Novel Damaging Mutation in Human Fibroblast Activation Protein in a Family with Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2019; 51:179-188. [DOI: 10.1007/s12029-019-00224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Liao Y, Xing S, Xu B, Liu W, Zhang G. Evaluation of the circulating level of fibroblast activation protein α for diagnosis of esophageal squamous cell carcinoma. Oncotarget 2018; 8:30050-30062. [PMID: 28415791 PMCID: PMC5444725 DOI: 10.18632/oncotarget.16274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/09/2017] [Indexed: 01/01/2023] Open
Abstract
To evaluate whether circulating fibroblast activation protein α (FAPα) could serve as a biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), enzyme-linked immunosorbent assay (ELISA) was used to detect plasma FAPα in 556 participants including ESCC group, benign esophageal disease group, healthy controls and other cancer controls group. The levels of plasma FAPα were significantly decreased in ESCC patients (P < 0.001) and showed a positive correlation with HDL-C levels (R = 0.372, P < 0.001). The sensitivity and specificity of plasma FAPα were 56.1% and 85.6% based on the optimal cut-off (49.04 ng/ml, AUC = 0.714). The combination of FAPα and the traditional biomarkers (CEA, CYFR211 and SCCA) improved the sensitivity (41.5%) without compromising the specificity (95.0%). Contradictorily, the immunohistochemical staining revealed the overexpression of FAPα in stroma of ESCC tissues. So the source of soluble FAPα was further explored by qRT-PCR, Western blotting, ELISA and immunoprecipitation in fibroblast cell lines and mouse xenograft models. We found that the plasma FAPα was not correlated with the FAPα expressed in tumor, and the multi-organ might contribute to the circulating levels of FAPα including skeletal muscle, liver and bone marrow. These results indicated that the low plasma FAPα level might due to the systemic reaction to the presence of tumor and circulating FAPα level might be a potential indicator for diagnosing ESCC.
Collapse
Affiliation(s)
- Yuehua Liao
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| | - Shan Xing
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Banglao Xu
- Department of Clinical Laboratory Medicine, Guangzhou First Municipal People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanli Liu
- Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, China
| |
Collapse
|
6
|
Matrasova I, Busek P, Balaziova E, Sedo A. Heterogeneity of molecular forms of dipeptidyl peptidase-IV and fibroblast activation protein in human glioblastomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:252-260. [PMID: 28452380 DOI: 10.5507/bp.2017.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND AIMS Proteolytic enzymes contribute to the progression of various cancers. We previously reported increased expression of the proline specific peptidases dipeptidyl peptidase-IV (DPP-IV) and its closest paralogue fibroblast activation protein (FAP) in human glioblastomas. Here we analyze the molecular heterogeneity of DPP-IV and FAP in glioblastomas. METHODS ELISA, isoelectric focusing, 1D and 2D electrophoresis followed by WB or enzyme overlay assay were utilized to analyze DPP-IV and FAP isoforms. Cell fractionation using a Percoll gradient and deglycosylation with PNGase F were performed to analyze the possible basis of DPP-IV and FAP microheterogeneity. RESULTS Molecular forms of DPP-IV with an estimated molecular weight of 140-160 kDa and a pI predominantly 5.8 were detected in human glioblastoma; in some tumors additional isoforms with a more acidic (3.5-5.5) as well as alkaline (8.1) pI were revealed. Using 2D electrophoresis, two to three molecular forms of FAP with an alkaline (7.0-8.5) pI and an estimated MW of 120-140 kDa were identified in glioblastoma tissues. In glioma cell lines in vitro, several isoforms of both enzymes were expressed, however the alkalic forms present in glioblastoma tissues were not detected. Removal of N-linked oligosaccharides decreased the estimated molecular weight of both enzymes; the overall pattern of molecular forms nevertheless remained unchanged. CONCLUSION Several isoforms of DPP-IV and FAP are present in glioblastoma tissue. The absence of alkaline isoforms of both enzymes in glioma cell lines however suggests that isoforms from other, most likely stromal, cell types contribute to the overall pattern seen in glioblastoma tissues.
Collapse
Affiliation(s)
- Ivana Matrasova
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| | - Petr Busek
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| | - Eva Balaziova
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| | - Aleksi Sedo
- Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 12853 Prague 2, Czech Republic
| |
Collapse
|
7
|
Proteolytic Enzymes Clustered in Specialized Plasma-Membrane Domains Drive Endothelial Cells' Migration. PLoS One 2016; 11:e0154709. [PMID: 27152413 PMCID: PMC4859482 DOI: 10.1371/journal.pone.0154709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
In vitro cultured endothelial cells forming a continuous monolayer establish stable cell-cell contacts and acquire a “resting” phenotype; on the other hand, when growing in sparse conditions these cells acquire a migratory phenotype and invade the empty area of the culture. Culturing cells in different conditions, we compared expression and clustering of proteolytic enzymes in cells having migratory versus stationary behavior. In order to observe resting and migrating cells in the same microscopic field, a continuous cell monolayer was wounded. Increased expression of proteolytic enzymes was evident in cell membranes of migrating cells especially at sprouting sites and in shed membrane vesicles. Gelatin zymography and western blotting analyses confirmed that in migrating cells, expression of membrane-bound and of vesicle-associated proteolytic enzymes are increased. The enzymes concerned include MMP-2, MMP-9, MT1-MMP, seprase, DPP4 (DiPeptidyl Peptidase 4) and uPA. Shed membrane vesicles were shown to exert degradative activity on ECM components and produce substrates facilitating cell migration. Vesicles shed by migrating cells degraded ECM components at an increased rate; as a result their effect on cell migration was amplified. Inhibiting either Matrix Metallo Proteases (MMPs) or Serine Integral Membrane Peptidases (SIMPs) caused a decrease in the stimulatory effect of vesicles, inhibiting the spontaneous migratory activity of cells; a similar result was also obtained when a monoclonal antibody acting on DPP4 was tested. We conclude that proteolytic enzymes have a synergistic stimulatory effect on cell migration and that their clustering probably facilitates the proteolytic activation cascades needed to produce maximal degradative activity on cell substrates during the angiogenic process.
Collapse
|
8
|
Treatment monitoring of patients with epithelial ovarian cancer using invasive circulating tumor cells (iCTCs). Gynecol Oncol 2015; 137:229-38. [PMID: 25769657 DOI: 10.1016/j.ygyno.2015.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/04/2015] [Indexed: 01/24/2023]
Abstract
GOALS Contemporary management of epithelial ovarian cancer (EOC) uses biomarkers to monitor response to therapy. This study evaluates the role of invasive circulating tumor cells (iCTCs) in monitoring EOC treatment in comparison with serum cancer antigen 125 (CA125). METHODS Molecular and microscopic analyses were used to identify seprase and CD44 as tumor progenitor (TP) markers. The iCTC flow cytometry assay was optimized using blood donated by 64 healthy donors, 49 patients with benign abdominal diseases and 123 EOC patients. Serial changes in iCTCs and CA125 were measured in 129 blood and 169 serum samples, respectively, from 31 EOC patients to assess their concordance during therapy and their relationship with risk of progressive disease (PD). RESULTS The assay had 97% specificity and 83% sensitivity for detecting iCTCs in blood of EOC patients. iCTCs were detected in each monitoring patient (31/31, 100%) and in 110 of the 129 blood samples (85.3%). The concordance between changes in iCTCs/CA125 levels and changes in the intervals associated with no evidence of disease (NED) were markedly stronger (specificity: CA125 93.8%; iCTCs 90.6%), whereas increases in iCTCs (79.5%) were more sensitive than increases in CA125 (67.6%) to predict PD or relapse. Among the six patients who had greater than 6 measurements, iCTCs but not CA125 antedated changes in clinical status from PD to NED during and after chemotherapy and predated relapse. CONCLUSION Serial measurements of iCTCs could predict therapeutic responsiveness in 31 EOC patients who underwent standard taxol/carboplatin therapy.
Collapse
|
9
|
Zhang H, Chen Y, Wadham C, McCaughan GW, Keane FM, Gorrell MD. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:470-80. [PMID: 25486458 DOI: 10.1016/j.bbamcr.2014.11.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed member of the DPP4 gene and protease family. Deciphering the biological functions of DPP9 and its roles in pathogenesis has implicated DPP9 in tumor biology, the immune response, apoptosis, intracellular epidermal growth factor-dependent signaling and cell adhesion and migration. We investigated the intracellular distribution of DPP9 chimeric fluorescent proteins and consequent functions of DPP9. We showed that while some DPP9 is associated with mitochondria, the strongest co-localization was with microtubules. Under steady state conditions, DPP9 was not seen at the plasma membrane, but upon stimulation with either phorbol 12-myristate 13-acetate or epidermal growth factor, some DPP9 re-distributed towards the ruffling membrane. DPP9 was seen at the leading edge of the migrating cell and co-localized with the focal adhesion proteins, integrin-β1 and talin. DPP9 gene silencing and treatment with a DPP8/DPP9 specific inhibitor both reduced cell adhesion and migration. Expression of integrin-β1 and talin was decreased in DPP9-deficient and DPP9-enzyme-inactive cells. There was a concomitant decrease in the phosphorylation of focal adhesion kinase and paxillin, indicating that DPP9 knockdown or enzyme inhibition suppressed the associated adhesion signaling pathway, causing impaired cell movement. These novel findings provide mechanistic insights into the regulatory role of DPP9 in cell movement, and may thus implicate DPP9 in tissue and tumor growth and metastasis.
Collapse
Affiliation(s)
- Hui Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Yiqian Chen
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Carol Wadham
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Fiona M Keane
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Paz H, Pathak N, Yang J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene 2014; 33:4193-202. [PMID: 24077283 PMCID: PMC3969876 DOI: 10.1038/onc.2013.393] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022]
Abstract
The ability to degrade extracellular matrix is critical for tumor cells to invade and metastasize. Recent studies show that tumor cells use specialized actin-based membrane protrusions termed invadopodia to perform matrix degradation. Invadopodia provide an elegant way for tumor cells to precisely couple focal matrix degradation with directional movement. Here we discuss several key components and regulators of invadopodia that have been uniquely implicated in tumor invasion and metastasis. Furthermore, we discuss existing and new therapeutic opportunities to target invadopodia for anti-metastasis treatment.
Collapse
Affiliation(s)
- Helicia Paz
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Navneeta Pathak
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Jia J, Martin TA, Ye L, Jiang WG. FAP-α (Fibroblast activation protein-α) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway. BMC Cell Biol 2014; 15:16. [PMID: 24885257 PMCID: PMC4062507 DOI: 10.1186/1471-2121-15-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibroblast Activation Protein alpha (FAP-α) or seprase is an integral membrane serine peptidase. Previous work has not satisfactorily explained both the suppression and promotion effects that have been observed in cancer. The purpose of this work was to investigate the role of FAP-α in human breast cancer. Expression of FAP-α was characterized in primary tumour samples and in cell lines, along with the effects of FAP-α expression on in vitro growth, invasion, attachment and migration. Furthermore the potential interaction of FAP-α with other signalling pathways was investigated. RESULTS FAP-α was significantly increased in patients with poor outcome and survival. In vitro results showed that breast cancer cells over expressing FAP-α had increased growth ability and impaired migratory ability. The growth of MDA-MB-231 cells and the adhesion and invasion ability of both MCF-7 cells and MDA-MB-231 cells were not dramatically influenced by FAP-α expression. Over-expression of FAP-α resulted in a reduction of phosphorylated focal adhesion kinase (FAK) level in both cells cultured in normal media and serum-free media. An inhibitor to FAK restored the reduced motility ability of both MCF-7exp cells and MDA-MB-231exp cells and prevented the change in phosphorylated FAK levels. However, inhibitors to PI3K, ERK, PLCΥ, NWASP, ARP2/3, and ROCK had no influence this. CONCLUSIONS FAP-α in significantly associated with poor outcome in patients with breast cancer. In vitro, FAP-α promotes proliferation and inhibits migration of breast cancer cells, potentially by regulating the FAK pathway. These results suggest FAP-α could be a target for future therapies.
Collapse
Affiliation(s)
- Jun Jia
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff CF14 4XNWales, UK.
| | | | | | | |
Collapse
|
12
|
Tulley S, Chen WT. Transcriptional regulation of seprase in invasive melanoma cells by transforming growth factor-β signaling. J Biol Chem 2014; 289:15280-96. [PMID: 24727589 DOI: 10.1074/jbc.m114.568501] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor invasive phenotype driven by seprase expression/activity has been widely examined in an array of malignant tumor cell types; however, very little is known about the transcriptional regulation of this critical protease. Seprase (also named fibroblast activation protein-α, antiplasmin-cleaving enzyme, and dipeptidyl prolyl peptidase 5) is expressed at high levels by stromal fibroblast, endothelial, and tumor cells in a variety of invasive tumors but is undetectable in the majority of normal adult tissues. To examine the transcriptional regulation of the gene, we cloned the human seprase promoter and demonstrated that endogenous seprase expression and exogenous seprase promoter activity are high in invasive melanoma cells but not in non-invasive melanoma cells/primary melanocytes. In addition, we identified a crucial TGF-β-responsive cis-regulatory element in the proximal seprase promoter region that enabled robust transcriptional activation of the gene. Treatment of metastatic but not normal/non-invasive cells with TGF-β1 caused a rapid and profound up-regulation of endogenous seprase mRNA, which coincided with an abolishment of the negative regulator c-Ski, and an increase in binding of Smad3/4 to the seprase promoter in vivo. Blocking TGF-β signaling in invasive melanoma cells through overexpression of c-Ski, chemically using SB-431542, or with a neutralizing antibody against TGF-β significantly reduced seprase mRNA levels. Strikingly, RNAi of seprase in invasive cells greatly diminished their invasive potential in vitro as did blocking TGF-β signaling using SB-431542. Altogether, we found that seprase is transcriptionally up-regulated in invasive melanoma cells via the canonical TGF-β signaling pathway, supporting the roles of both TGF-β and seprase in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Shaun Tulley
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| | - Wen-Tien Chen
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| |
Collapse
|
13
|
Friedlander TW, Ngo VT, Dong H, Premasekharan G, Weinberg V, Doty S, Zhao Q, Gilbert EG, Ryan CJ, Chen WT, Paris PL. Detection and characterization of invasive circulating tumor cells derived from men with metastatic castration-resistant prostate cancer. Int J Cancer 2014; 134:2284-93. [PMID: 24166007 DOI: 10.1002/ijc.28561] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/27/2013] [Indexed: 12/19/2022]
Abstract
The Vitatex cell-adhesion matrix (CAM) platform allows for isolation of invasive circulating tumor cells (iCTCs). Here we sought to determine the utility of prostate-specific membrane antigen (PSMA) as a metastatic castration-resistant prostate cancer (mCRPC) iCTC biomarker, to identify solitary cells and clusters of iCTCs expressing either epithelial, mesenchymal, or stem cell markers, and to explore the feasibility of iCTC epigenomic analysis. CTCs were isolated and enumerated simultaneously using the Vitatex and CellSearch platforms in 23 men with mCRPC. CAM-avid iCTCs were identified as nucleated cells capable of CAM uptake, but without detectable expression of hematopoietic lineage (HL) markers including CD45. iCTCs were enumerated immunocytochemically (ICC) and by flow cytometry. Whole-genome methylation status was determined for iCTCs using the Illumina HumanMethylation27 BeadChip. Thirty-four samples were collected for iCTC analysis. A median of 27 (range 0-800) and 23 (range 2-390) iCTCs/mL were detected by ICC and flow, respectively. In a subset of 20 samples, a median of seven CTCs/mL (range 0-85) were detected by the CellSearch platform compared to 26 by the CAM platform. iCTC clusters were observed in 17% of samples. iCTCs expressing PSMA as well as markers of EMT and stemness were detectable. The iCTC methylation profile highly resembled mCRPC. More CTCs were recovered using the CAM platform than the CellSearch platform, and the CAM platform allowed for the detection of iCTC clusters, iCTCs expressing EMT and stem-cell markers, and characterization of the iCTC methylome. Correlation with clinical data in future studies may yield further insight into the functional significance of these findings.
Collapse
Affiliation(s)
- Terence W Friedlander
- Division of Genitourinary Medical Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tillmanns J, Widera C, Habbaba Y, Galuppo P, Kempf T, Wollert KC, Bauersachs J. Circulating concentrations of fibroblast activation protein α in apparently healthy individuals and patients with acute coronary syndrome as assessed by sandwich ELISA. Int J Cardiol 2013; 168:3926-31. [DOI: 10.1016/j.ijcard.2013.06.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 06/03/2013] [Accepted: 06/29/2013] [Indexed: 11/26/2022]
|
15
|
Wilson CH, Abbott CA. Expression profiling of dipeptidyl peptidase 8 and 9 in breast and ovarian carcinoma cell lines. Int J Oncol 2012; 41:919-32. [PMID: 22736146 DOI: 10.3892/ijo.2012.1522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/04/2012] [Indexed: 12/16/2022] Open
Abstract
Proteases, particularly serine proteases like dipeptidyl peptidase 4 (DP4) and fibroblast activation protein (FAP), play an important role in cancer invasion and angiogenesis. Aberrant expression of DP4 and FAP is associated with numerous cancers, including breast and epithelial ovarian carcinoma. We investigated the mRNA levels, protein expression and enzyme activity of the structural homologs DP8 and DP9, in addition to DP4 and FAP, in three breast carcinoma (MDA-MB-231, MDA-MB-453, MCF-7), three epithelial ovarian carcinoma (EOC) (OVCA-432, OVCA-429, SKOV3), 293T and HeLa cell lines. In addition, DP2 and prolyl endopeptidase (PEP) mRNA and enzyme levels were measured and compared in each cell line. Ubiquitous but differential expression of DP8 and DP9 mRNA and protein was observed across all cell lines. Relative to EOC, DP8 protein was lower in the breast carcinoma cell lines (p=0.057), suggesting that DP8 may play differing roles in different cancer cell types. A strong, negative, non-reciprocal relationship was identified between DP9 protein and DP4 mRNA (r=-0.903, p=0.002) and protein (r=-0.810, p=0.015). This suggests that DP4 expression plays an important role in the post-transcriptional regulation of DP9 in breast and ovarian cancer cell lines. Overall, this study suggests a potential role for DP8 and DP9 in breast and ovarian cancer and further investigations in this area are required.
Collapse
Affiliation(s)
- Claire H Wilson
- School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia.
| | | |
Collapse
|
16
|
Transmigration of melanoma cells through the blood-brain barrier: role of endothelial tight junctions and melanoma-released serine proteases. PLoS One 2011; 6:e20758. [PMID: 21674054 PMCID: PMC3107231 DOI: 10.1371/journal.pone.0020758] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/08/2011] [Indexed: 11/19/2022] Open
Abstract
Malignant melanoma represents the third common cause of brain metastasis, having the highest propensity to metastasize to the brain of all primary neoplasms in adults. Since the central nervous system lacks a lymphatic system, the only possibility for melanoma cells to reach the brain is via the blood stream and the blood-brain barrier. Despite the great clinical importance, mechanisms of transmigration of melanoma cells through the blood-brain barrier are incompletely understood. In order to investigate this question we have used an in vitro experimental setup based on the culture of cerebral endothelial cells (CECs) and the A2058 and B16/F10 melanoma cell lines, respectively. Melanoma cells were able to adhere to confluent brain endothelial cells, a process followed by elimination of protrusions and transmigration from the luminal to the basolateral side of the endothelial monolayers. The transmigration process of certain cells was accelerated when they were able to use the routes preformed by previously transmigrated melanoma cells. After migrating through the endothelial monolayer several melanoma cells continued their movement beneath the endothelial cell layer. Melanoma cells coming in contact with brain endothelial cells disrupted the tight and adherens junctions of CECs and used (at least partially) the paracellular transmigration pathway. During this process melanoma cells produced and released large amounts of proteolytic enzymes, mainly gelatinolytic serine proteases, including seprase. The serine protease inhibitor Pefabloc® was able to decrease to 44–55% the number of melanoma cells migrating through CECs. Our results suggest that release of serine proteases by melanoma cells and disintegration of the interendothelial junctional complex are main steps in the formation of brain metastases in malignant melanoma.
Collapse
|
17
|
Wild N, Andres H, Rollinger W, Krause F, Dilba P, Tacke M, Karl J. A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res 2010; 16:6111-21. [PMID: 20798228 DOI: 10.1158/1078-0432.ccr-10-0119] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Fecal occult blood testing is recommended as first-line screening to detect colorectal cancer (CRC). We evaluated markers and marker combinations in serum as an alternative to improve the detection of CRC. EXPERIMENTAL DESIGN Using penalized logistic regression, 6 markers were selected for evaluation in 1,027 samples (301 CRC patients, 143 patients with adenoma, 266 controls, 141 disease controls, and 176 patients with other cancer). The diagnostic performance of each marker and of marker combinations was assessed. RESULTS To detect CRC from serum samples, we tested 22 biomarkers. Six markers were selected for a marker combination, including the known tumor markers CEA (carcinoembryonic antigen) and CYFRA 21-1 as well as novel markers or markers that are less routinely used for the detection of CRC: ferritin, osteopontin (OPN), anti-p53, and seprase. CEA showed the best sensitivity at 95% specificity with 43.9%, followed by seprase (42.4%), CYFRA 21-1 (35.5%), OPN (30.2%), ferritin (23.9%), and anti-p53 (20.0%). A combination of these markers gave 69.6% sensitivity at 95% specificity and 58.7% at 98% specificity. Focusing on International Union against Cancer (UICC) stages 0-III reduced the sensitivity slightly to 68.0% and 53.3%, respectively. In a subcollective, with matched stool samples (75 CRC cases and 234 controls), the sensitivity of the marker combination was comparable with fecal immunochemical testing (FIT) with 82.4% and 68.9% versus 81.8% and 72.7% at 95% and 98% specificity, respectively. CONCLUSIONS The performance of the serum marker combination is comparable with FIT. This provides a novel tool for CRC screening to trigger a follow-up colonoscopy for a final diagnosis.
Collapse
Affiliation(s)
- Norbert Wild
- Department of New Technologies, Roche Diagnostics GmbH, Penzberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother 2009; 58:1723-47. [PMID: 19557413 PMCID: PMC11031058 DOI: 10.1007/s00262-009-0728-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/02/2009] [Indexed: 12/23/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV), assigned to the CD26 cluster, is expressed on epithelial cells and lymphocytes and is a multifunctional or pleiotropic protein. Its peptidase activity causes degradation of many biologically active peptides, e.g. some incretins secreted by the enteroendocrine system. DPP-IV has, therefore, become a novel therapeutic target for inhibitors that extend endogenously produced insulin half-life in diabetics, and several reviews have appeared in recent months concerning the clinical significance of CD26/DPP-IV. Biological fluids contain relatively high levels of soluble CD26 (sCD26). The physiological role of sCD26 and its relation, if any, to CD26 functions, remain poorly understood because whether the process for CD26 secretion and/or shedding from cell membranes is regulated or not is not known. Liver epithelium and lymphocytes are often cited as the most likely source of sCD26. It is important to establish which tissue or organ is the protein source as well as the circumstances that can provoke an abnormal presence/absence or altered levels in many diseases including cancer, so that sCD26 can be validated as a clinical marker or a therapeutic target. For example, we have previously reported low levels of sCD26 in the blood of colorectal cancer patients, which indicated the potential usefulness of the protein as a biomarker for this cancer in early diagnosis, monitoring and prognosis. Through this review, we envisage a role for sCD26 and the alteration of normal peptidase capacity (in clipping enteroendocrine or other peptides) in the complex crosstalk between the lymphoid lineage and, at least, some malignant tumours.
Collapse
Affiliation(s)
- Oscar J Cordero
- Department of Biochemistry and Molecular Biology, CIBUS, University of Santiago de Compostela, r/Lopez de Marzoa s/n, Campus Sur, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
19
|
Lee KN, Jackson KW, Terzyan S, Christiansen VJ, McKee PA. Using substrate specificity of antiplasmin-cleaving enzyme for fibroblast activation protein inhibitor design. Biochemistry 2009; 48:5149-58. [PMID: 19402713 DOI: 10.1021/bi900257m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Circulating antiplasmin-cleaving enzyme (APCE), a prolyl-specific serine proteinase, is essentially identical to membrane-inserted fibroblast activation protein (FAP) that is transiently expressed during epithelial-derived cancer growth. Human precursive alpha(2)-antiplasmin (Met-alpha(2)AP), the only known physiologic substrate for APCE, is cleaved N-terminally to Asn-alpha(2)AP that is rapidly cross-linked to fibrin and protects it from digestion by plasmin. Identifying a specific inhibitor of APCE/FAP continues to be intensely pursued. Recombinant FAP cleavage of peptide libraries of short amino acid sequences surrounding the scissile bond, -Pro(12)-Asn(13)-, indicated that P2 Gly and P1 Pro are required, just as we found for APCE. We examined cleavage of P4-P4' peptides, using 19 amino acid substitutions at each position and selected ones in P8-P5. K(m) values determined for peptide substrates showed that P7 Arg has the highest affinity for APCE. Peptide cleavage rate increased with Arg in P6 rather than P5 or native P7. Placing Arg in P4 or P8 reduced cleavage rates dramatically. Cleavage of substrates with extended peptide sequences before or after the scissile bond showed endopeptidase to be superior to dipeptidase activity for APCE. A substrate analogue inhibitor, Phe-Arg-(8-amino-3,6-dioxaoctanoic acid)-Gly-[r]-fluoropyrrolidide, inhibited APCE with a K(i) of 54 microM but not dipeptidyl peptidase IV even at 2 mM. The inhibitor also blocked cleavage of Met-alpha(2)AP with an IC(50) of 91 microM. Replacing Arg with Gly at the same distance from fluoropyrrolidide as P7 Arg is from P1 Pro reduced its inhibition of APCE approximately 10-fold. Results indicate that Arg at P5, P6, or P7 distances from P1 enhances affinity and efficiency of substrates or inhibitors toward APCE or FAP.
Collapse
Affiliation(s)
- Kyung N Lee
- William K. Warren Research Center and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Stromal cells have a central function in the regulation of tumor angiogenesis. Recent studies have shown that stromal myofibroblasts (cancer-associated fibroblasts) actively promote tumor growth and enhance tumor angiogenesis in many types of adult carcinomas. To evaluate the function cancer-associated fibroblasts have in neuroblastoma angiogenesis and investigate their relationship to stromal Schwann cells, we quantified cancer-associated fibroblasts in 60 primary neuroblastoma tumors and in a novel neuroblastoma xenograft model in which murine Schwann cells were induced to infiltrate into the tumor stroma. Tumor sections were examined for presence of microvascular proliferation, a hallmark of tumor angiogenesis. Cancer-associated fibroblasts were characterized by positive immunostaining for alpha-smooth muscle actin (alpha-SMA) and were distinguished from pericytes by staining negatively for high-molecular-weight caldesmon. alpha-SMA-positive cells were quantified and their number was defined as high when >1.0% of the area was positive. Associations between high cancer-associated fibroblast number, microvascular proliferation and established prognosticators were analyzed. High numbers of cancer-associated fibroblasts were associated with Schwannian stroma-poor histopathology and microvascular proliferation. Thirty-seven (80%) of the 46 Schwannian stroma-poor tumors had high numbers of cancer-associated fibroblasts in the tumor stroma compared to only 2 (14%) of the 14 Schwannian stroma-rich/dominant tumors (P<0.001). Thirty-three (89%) of 37 tumors with microvascular proliferation had high numbers of cancer-associated fibroblasts compared to 9 (40%) of 22 tumors without microvascular proliferation (P<0.001). In the xenografts with infiltrating Schwann cells (n=10), the number of cancer-associated fibroblasts per mm(2) was approximately sevenfold less than in the control xenografts without stromal Schwann cells (n=9) (mean of 51+/-30 vs 368+/-105, respectively; P<0.001). Thus, cancer-associated fibroblasts were inversely associated with presence of Schwann cells, suggesting that Schwann cells may prevent the activation of fibroblasts. A deeper understanding of the function cancer-associated fibroblasts have in neuroblastoma angiogenesis may guide future development of stroma-directed therapeutic strategies.
Collapse
|
21
|
Kennedy A, Dong H, Chen D, Chen WT. Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int J Cancer 2009; 124:27-35. [PMID: 18823010 DOI: 10.1002/ijc.23871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor cells do not constitutively exhibit invasive activity, but rather, can be transiently induced to adhere and form lesions. We report here that the expression of seprase, a dominant EDTA-resistant gelatinase in malignant tumors, is dependent on tumor cell exposure to type I collagen gel (TICg). The induced seprase expression of ovarian tumor cells influences their collagen contraction and invasion capability. Importantly, tumor cells with reduced seprase expression, due to manipulation by RNA interference, showed a reduction of TICg contraction in the gel contractility assay, inhibition of tumor cell invasion through TICg as shown by a transwell migration assay and inhibition of peritoneal membrane tumor lesion in a mouse model. In addition, mAb C27, an antibody against beta1 integrin, which blocks cellular avidity to TICg, can induce seprase RNA expression and promote the invasive phenotype and metastatic potential of ovarian tumor cells. Thus, collagenous matrices in the tumor cell niche induce the expression of seprase and initiate tumor invasion and metastatic cascades.
Collapse
Affiliation(s)
- Alanna Kennedy
- Department of Medicine, State University of New York, Stony Brook, NY 11794-8154, USA
| | | | | | | |
Collapse
|
22
|
Goscinski MA, Suo Z, Flørenes VA, Vlatkovic L, Nesland JM, Giercksky KE. FAP-alpha and uPA show different expression patterns in premalignant and malignant esophageal lesions. Ultrastruct Pathol 2008; 32:89-96. [PMID: 18570153 DOI: 10.1080/01913120802034934] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fibroblast activation protein-alpha (FAP-alpha) and urokinase-type plasminogen activator (uPA) are serine proteases involved in cancer invasion and metastasis. The authors examined FAP-alpha and uPA expression in premalignant and malignant stages of esophageal adenocarcinoma by immunohistochemistry. Additionally, Western blotting was performed on fresh-frozen tissue samples. FAP-alpha and uPA were detected in metaplastic, dysplastic, and carcinoma cells, as well as in adjacent stroma. Stromal FAP-alpha expression was associated with depth of tumor invasion, while stromal uPA expression correlated with lymph node metastases in adenocarcinomas. Stromal uPA expression in cells with premalignant changes correlated with histological grading. Immunoblotting showed higher protease expression in carcinoma tissues than in normal esophageal epithelium. These results suggest that FAP-alpha and uPA expression in metaplastic, dysplastic, and esophageal cancer tissue is associated with neoplastic progression of esophageal lesions.
Collapse
Affiliation(s)
- Mariusz Adam Goscinski
- Department of Surgery, Rikshospitalet-Radiumhospitalet Medical Centre and Medical Faculty, University of Oslo, Oslo, Montebello, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
23
|
Šedo A, Stremenová J, Bušek P, Duke-Cohan JS. Dipeptidyl peptidase-IV and related molecules: markers of malignancy? ACTA ACUST UNITED AC 2008; 2:677-89. [DOI: 10.1517/17530059.2.6.677] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
O'Brien P, O'Connor BF. Seprase: an overview of an important matrix serine protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1130-45. [PMID: 18262497 DOI: 10.1016/j.bbapap.2008.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 01/03/2023]
Abstract
Seprase or Fibroblast Activation Protein (FAP) is an integral membrane serine peptidase, which has been shown to have gelatinase activity. Seprase has a dual function in tumour progression. The proteolytic activity of Seprase has been shown to promote cell invasiveness towards the ECM and also to support tumour growth and proliferation. Seprase appears to act as a proteolytically active 170-kDa dimer, consisting of two 97-kDa subunits. It is a member of the group type II integral serine proteases, which includes dipeptidyl peptidase IV (DPPIV/CD26) and related type II transmembrane prolyl serine peptidases, which exert their mechanisms of action on the cell surface. DPPIV and Seprase exhibit multiple functions due to their abilities to form complexes with each other and to interact with other membrane-associated molecules. Localisation of these protease complexes at cell surface protrusions, called invadopodia, may have a prominent role in processing soluble factors and in the degradation of extracellular matrix components that are essential to the cellular migration and matrix invasion that occur during tumour invasion, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Pamela O'Brien
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | |
Collapse
|