1
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2024:10.1007/s11010-024-05091-0. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
2
|
Cognition-Enhancing Vagus Nerve Stimulation Alters the Epigenetic Landscape. J Neurosci 2019; 39:3454-3469. [PMID: 30804093 DOI: 10.1523/jneurosci.2407-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been shown to enhance learning and memory, yet the mechanisms behind these enhancements are unknown. Here, we present evidence that epigenetic modulation underlies VNS-induced improvements in cognition. We show that VNS enhances novelty preference (NP); alters the hippocampal, cortical, and blood epigenetic transcriptomes; and epigenetically modulates neuronal plasticity and stress-response signaling genes in male Sprague Dawley rats. Brain-behavior analysis revealed structure-specific relationships between NP test performance (NPTP) and epigenetic alterations. In the hippocampus, NPTP correlated with decreased histone deacetylase 11 (HDAC11), a transcriptional repressor enriched in CA1 cells important for memory consolidation. In the cortex, the immediate early gene (IEG) ARC was increased in VNS rats and correlated with transcription of plasticity genes and epigenetic regulators, including HDAC3. For rats engaged in NPTP, ARC correlated with performance. Interestingly, blood ARC transcripts decreased in VNS rats performing NPTP, but increased in VNS-only rats. Because DNA double-strand breaks (DSBs) facilitate transcription of IEGs, we investigated phosphorylated H2A.X (γH2A.X), a histone modification known to colocalize with DSBs. In agreement with reduced cortical stress-response transcription factor NF-κB1, chromatin immunoprecipitation revealed reduced γH2A.X in the ARC promoter. Surprisingly, VNS did not significantly reduce transcription of cortical or hippocampal proinflammatory cytokines. However, TNFRSF11B (osteoprotegerin) correlated with NPTP as well as plasticity, stress-response signaling, and epigenetic regulation transcripts in both hippocampus and cortex. Together, our findings provide the first evidence that VNS induces widespread changes in the cognitive epigenetic landscape and specifically affects epigenetic modulators associated with NPTP, stress-response signaling, memory consolidation, and cortical neural remodeling.SIGNIFICANCE STATEMENT Recent studies have implicated vagus nerve stimulation (VNS) in enhanced learning and memory. However, whereas epigenetic modifications are known to play an important role in memory, the particular mechanisms involved in VNS-enhanced cognition are unknown. In this study, we examined brain and behavior changes in VNS and sham rats performing a multiday novelty preference (NP) task. We found that VNS activated specific histone modifications and DNA methylation changes at important stress-response signaling and plasticity genes. Both cortical and hippocampal plasticity changes were predictive of NP test performance. Our results reveal important epigenetic alterations associated with VNS cognitive improvements, as well as new potential pharmacological targets for enhancing cortical and hippocampal plasticity.
Collapse
|
3
|
Leith JT, Mousa SA, Hercbergs A, Lin HY, Davis PJ. Radioresistance of cancer cells, integrin αvβ3 and thyroid hormone. Oncotarget 2018; 9:37069-37075. [PMID: 30651936 PMCID: PMC6319341 DOI: 10.18632/oncotarget.26434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Radioresistance is a substantial barrier to success in cancer management. A number of molecular mechanisms support radioresistance. We have shown experimentally that the thyroid hormone analogue receptor on the extracellular domain of integrin αvβ3 may modulate the state of radiosensitivity of tumor cells. Specifically, tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4), can reduce radioresistance in cancer cells. In this review, we list a number of intrinsic signal transduction molecules and other host factors that have been reported to support/induce radioresistance in cancer cells and that are also subject to control by T4 through actions primarily initiated at integrin αvβ3. Additional preclinical evidence is needed to support these radioresistance-relevant actions of thyroid hormone.
Collapse
Affiliation(s)
- John T Leith
- Rhode Island Nuclear Science Center, Narragansett, RI, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.,Department of Medicine, Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Geradts J, Groth J, Wu Y, Jin G. Validation of an oligo-gene signature for the prognostic stratification of ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 2016; 157:447-59. [DOI: 10.1007/s10549-016-3838-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022]
|
5
|
Lopez SM, Agoulnik AI, Zhang M, Peterson LE, Suarez E, Gandarillas GA, Frolov A, Li R, Rajapakshe K, Coarfa C, Ittmann MM, Weigel NL, Agoulnik IU. Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression. Clin Cancer Res 2016; 22:3937-49. [PMID: 26968201 DOI: 10.1158/1078-0432.ccr-15-1983] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Castration therapy in advanced prostate cancer eventually fails and leads to the development of castration-resistant prostate cancer (CRPC), which has no cure. Characteristic features of CRPC can be increased androgen receptor (AR) expression and altered transcriptional output. We investigated the expression of nuclear receptor corepressor 1 (NCOR1) in human prostate and prostate cancer and the role of NCOR1 in response to antiandrogens. EXPERIMENTAL DESIGN NCOR1 protein levels were compared between matched normal prostate and prostate cancer in 409 patient samples. NCOR1 knockdown was used to investigate its effect on bicalutamide response in androgen-dependent prostate cancer cell lines and transcriptional changes associated with the loss of NCOR1. NCOR1 transcriptional signature was also examined in prostate cancer gene expression datasets. RESULTS NCOR1 protein was detected in cytoplasm and nuclei of secretory epithelial cells in normal prostate. Both cytoplasmic and nuclear NCOR1 protein levels were lower in prostate cancer than in normal prostate. Prostate cancer metastases show significant decrease in NCOR1 transcriptional output. Inhibition of LNCaP cellular proliferation by bicalutamide requires NCOR1. NCOR1-regulated genes suppress cellular proliferation and mediate bicalutamide resistance. In the mouse, NCOR1 is required for bicalutamide-dependent regulation of a subset of the AR target genes. CONCLUSIONS In summary, we demonstrated that NCOR1 function declines with prostate cancer progression. Reduction in NCOR1 levels causes bicalutamide resistance in LNCaP cells and compromises response to bicalutamide in mouse prostate in vivo Clin Cancer Res; 22(15); 3937-49. ©2016 AACR.
Collapse
Affiliation(s)
- Sandra M Lopez
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Manqi Zhang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas
| | - Egla Suarez
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Gregory A Gandarillas
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Anna Frolov
- Dan L. Duncan Cancer Center-Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Rile Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Christian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas. Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Irina U Agoulnik
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas. Biomolecular Sciences Institute, School of Integrated Science and Humanity, Florida international University, Miami, Florida.
| |
Collapse
|
6
|
Goodwin JF, Kothari V, Drake JM, Zhao S, Dylgjeri E, Dean JL, Schiewer MJ, McNair C, Jones JK, Aytes A, Magee MS, Snook AE, Zhu Z, Den RB, Birbe RC, Gomella LG, Graham NA, Vashisht AA, Wohlschlegel JA, Graeber TG, Karnes RJ, Takhar M, Davicioni E, Tomlins SA, Abate-Shen C, Sharifi N, Witte ON, Feng FY, Knudsen KE. DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis. Cancer Cell 2015; 28:97-113. [PMID: 26175416 PMCID: PMC4531387 DOI: 10.1016/j.ccell.2015.06.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/02/2015] [Accepted: 06/12/2015] [Indexed: 01/06/2023]
Abstract
Emerging evidence demonstrates that the DNA repair kinase DNA-PKcs exerts divergent roles in transcriptional regulation of unsolved consequence. Here, in vitro and in vivo interrogation demonstrate that DNA-PKcs functions as a selective modulator of transcriptional networks that induce cell migration, invasion, and metastasis. Accordingly, suppression of DNA-PKcs inhibits tumor metastases. Clinical assessment revealed that DNA-PKcs is significantly elevated in advanced disease and independently predicts for metastases, recurrence, and reduced overall survival. Further investigation demonstrated that DNA-PKcs in advanced tumors is highly activated, independent of DNA damage indicators. Combined, these findings reveal unexpected DNA-PKcs functions, identify DNA-PKcs as a potent driver of tumor progression and metastases, and nominate DNA-PKcs as a therapeutic target for advanced malignancies.
Collapse
Affiliation(s)
- Jonathan F Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Vishal Kothari
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin M Drake
- Departments of Microbiology, Immunology, & Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Shuang Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffry L Dean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jennifer K Jones
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alvaro Aytes
- Departments of Urology, Pathology & Cell Biology, Systems Biology, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael S Magee
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ziqi Zhu
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert B Den
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruth C Birbe
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Leonard G Gomella
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicholas A Graham
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | | | - Thomas G Graeber
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cory Abate-Shen
- Departments of Urology, Pathology & Cell Biology, Systems Biology, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Nima Sharifi
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA; Solid Tumor Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Owen N Witte
- Departments of Microbiology, Immunology, & Molecular Genetics, UCLA, Los Angeles, CA 90095, USA; Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Felix Y Feng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Adikesavan AK, Karmakar S, Pardo P, Wang L, Liu S, Li W, Smith CL. Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor. Mol Cell Biol 2014; 34:1246-61. [PMID: 24449765 PMCID: PMC3993559 DOI: 10.1128/mcb.01216-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression.
Collapse
Affiliation(s)
| | - Sudipan Karmakar
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Patricia Pardo
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liguo Wang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shuang Liu
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn L. Smith
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, Barry WT, Geradts J. Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer 2012; 51:1067-78. [PMID: 22887771 DOI: 10.1002/gcc.21991] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/06/2012] [Indexed: 12/21/2022] Open
Abstract
Only a minority of intraductal carcinomas of the breast give rise to stromally invasive disease. We microdissected 206 paraffin blocks representing 116 different cases of low-grade ductal carcinoma in situ (DCIS). Fifty-five were pure DCIS (PD) cases without progression to invasive carcinoma. Sixty-one cases had a small invasive component. DNA was extracted from microdissected sections and hybridized to high-density bacterial artificial chromosome arrays. Array comparative genomic hybridization analysis of 118 hybridized DNA samples yielded data on 69 samples that were suitable for further statistical analysis. This cohort included 20 pure DCIS cases, 25 mixed DCIS (MD), and 24 mixed invasive carcinoma samples. PD cases had a higher frequency of DNA copy number changes than MD cases, and the latter had similar DNA profiles compared to paired invasive carcinomas. Copy number changes on 13 chromosomal arms occurred at different rates in PD versus MD lesions. Eight of 19 candidate genes residing at those loci were confirmed to have differential copy number changes by quantitative PCR. NCOR2/SMRT and NR4A1 (both on 12q), DYNLRB2 (16q), CELSR1, UPK3A, and ST13 (all on 22q) were more frequently amplified in PD. Moreover, NCOR2, NR4A1, and DYNLRB2 showed more frequent copy number losses in MD. GRAP2 (22q) was more often amplified in MD, whereas TAF1C (16q) was more commonly deleted in PD. A multigene model comprising these candidate genes discriminated between PD and MD lesions with high accuracy. These findings suggest that the propensity to invade the stroma may be encoded in the genome of intraductal carcinomas.
Collapse
Affiliation(s)
- Shaoxi Liao
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers AR, Wells CE, Kaiser JF, Washington MK, Zhao Z, Wagner FF, Sun ZW, Xia F, Holson EB, Khabele D, Hiebert SW. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010; 18:436-47. [PMID: 21075309 PMCID: PMC3004468 DOI: 10.1016/j.ccr.2010.10.022] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/16/2010] [Accepted: 08/23/2010] [Indexed: 01/10/2023]
Abstract
Hdac3 is essential for efficient DNA replication and DNA damage control. Deletion of Hdac3 impaired DNA repair and greatly reduced chromatin compaction and heterochromatin content. These defects corresponded to increases in histone H3K9,K14ac; H4K5ac; and H4K12ac in late S phase of the cell cycle, and histone deposition marks were retained in quiescent Hdac3-null cells. Liver-specific deletion of Hdac3 culminated in hepatocellular carcinoma. Whereas HDAC3 expression was downregulated in only a small number of human liver cancers, the mRNA levels of the HDAC3 cofactor NCOR1 were reduced in one-third of these cases. siRNA targeting of NCOR1 and SMRT (NCOR2) increased H4K5ac and caused DNA damage, indicating that the HDAC3/NCOR/SMRT axis is critical for maintaining chromatin structure and genomic stability.
Collapse
Affiliation(s)
- Srividya Bhaskara
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Sarah K. Knutson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | - Guochun Jiang
- Department of Radiation Oncology Vanderbilt University Medical Center, Nashville, TN 37212
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37212
| | | | - Andrew J. Wilson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37212
| | - Siyuan Zheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Bioinformatics Resource Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | - Jia-ling Yuan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
| | | | | | | | - M. Kay Washington
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Zhongming Zhao
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Bioinformatics Resource Center, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Florence F. Wagner
- The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142
| | - Zu-Wen Sun
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Fen Xia
- Department of Radiation Oncology Vanderbilt University Medical Center, Nashville, TN 37212
| | - Edward B. Holson
- The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142
| | - Dineo Khabele
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37212
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37212
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
- To whom correspondence should be sent: Department of Biochemistry, 512 Preston Research Building, Vanderbilt University School of Medicine, 23rd and Pierce Ave., Nashville Tennessee, 37232, Phone: (615) 936-3582; Fax: (615) 936-1790;
| |
Collapse
|
10
|
Sutanto MM, Ferguson KK, Sakuma H, Ye H, Brady MJ, Cohen RN. The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo. J Biol Chem 2010; 285:18485-95. [PMID: 20371609 DOI: 10.1074/jbc.m110.107680] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The silencing mediator of retinoid and thyroid hormone receptors (SMRT) serves as a corepressor for nuclear receptors and other factors. Recent evidence suggests that SMRT is an important regulator of metabolism, but its role in adipocyte function in vivo remains unclear. We generated heterozygous SMRT knock-out (SMRT(+/-)) mice to investigate the function of SMRT in the adipocyte and the regulation of adipocyte insulin sensitivity. We show that SMRT(+/-) mice are normal weight on a regular diet, but develop increased adiposity on a high-fat diet (HFD). The mechanisms underlying this phenotype are complex, but appear to be due to a combination of an increased number of smaller subcutaneous adipocytes as well as decreased leptin expression, resulting in greater caloric intake. In addition, adipogenesis of mouse embryonic fibroblasts (MEFs) derived from these mice was increased. However, adipocyte insulin sensitivity, measured by insulin-induced Akt phosphorylation and insulin-mediated suppression of lipolysis, was enhanced in SMRT(+/-) adipocytes. These finding suggest that SMRT regulates leptin expression and limits the ability of fat mass to expand with increased caloric intake, but that SMRT also negatively regulates adipocyte insulin sensitivity.
Collapse
Affiliation(s)
- Maria M Sutanto
- Committee on Molecular Metabolism and Nutrition, Division of the Biological Sciences, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
11
|
McKenna NJ, Cooney AJ, DeMayo FJ, Downes M, Glass CK, Lanz RB, Lazar MA, Mangelsdorf DJ, Moore DD, Qin J, Steffen DL, Tsai MJ, Tsai SY, Yu R, Margolis RN, Evans RM, O'Malley BW. Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Mol Endocrinol 2009; 23:740-6. [PMID: 19423650 DOI: 10.1210/me.2009-0135] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nuclear receptors and coregulators are multifaceted players in normal metabolic and homeostatic processes in addition to a variety of disease states including cancer, inflammation, diabetes, obesity, and atherosclerosis. Over the past 7 yr, the Nuclear Receptor Signaling Atlas (NURSA) research consortium has worked toward establishing a discovery-driven platform designed to address key questions concerning the expression, organization, and function of these molecules in a variety of experimental model systems. By applying powerful technologies such as quantitative PCR, high-throughput mass spectrometry, and embryonic stem cell manipulation, we are pursuing these questions in a series of transcriptomics-, proteomics-, and metabolomics-based research projects and resources. The consortium's web site (www.nursa.org) integrates NURSA datasets and existing public datasets with the ultimate goal of furnishing the bench scientist with a comprehensive framework for hypothesis generation, modeling, and testing. We place a strong emphasis on community input into the development of this resource and to this end have published datasets from academic and industrial laboratories, established strategic alliances with Endocrine Society journals, and are developing tools to allow web site users to act as data curators. With the ongoing support of the nuclear receptor and coregulator signaling communities, we believe that NURSA can make a lasting contribution to research in this dynamic field.
Collapse
Affiliation(s)
- Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
New insights into the functions and regulation of the transcriptional corepressors SMRT and N-CoR. Cell Div 2009; 4:7. [PMID: 19383165 PMCID: PMC2678994 DOI: 10.1186/1747-1028-4-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/21/2009] [Indexed: 11/10/2022] Open
Abstract
Corepressors are large proteins that facilitate transcriptional repression through recruitment of histone-modifying enzymes. Two major corepressors, SMRT (silencing mediator for retinoid and thyroid hormone receptors) and N-CoR (nuclear receptor corepressor), have been shown to mediate repression associated with nuclear receptors and a myriad of other transcription factors. This review will focus on recent studies on these proteins, including newly discovered physiological roles of the corepressors, their modes of regulation, their roles in antiestrogen-resistant breast cancer and their functions during the cell cycle.
Collapse
|
13
|
Stanya KJ, Liu Y, Means AR, Kao HY. Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. ACTA ACUST UNITED AC 2008; 183:49-61. [PMID: 18838553 PMCID: PMC2557042 DOI: 10.1083/jcb.200806172] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Silencing mediator for retinoic acid and thyroid hormone receptor (SMRT) is a transcriptional corepressor that participates in diverse signaling pathways and human diseases. However, regulation of SMRT stability remains largely unexplored. We show that the peptidyl-prolyl isomerase Pin1 interacts with SMRT both in vitro and in mammalian cells. This interaction requires the WW domain of Pin1 and SMRT phosphorylation. Pin1 regulates SMRT protein stability, thereby affecting SMRT-dependent transcriptional repression. SMRT phosphorylation at multiple sites is required for Pin1 interaction, and these sites can be phosphorylated by Cdk2, which interacts with SMRT. Cdk2-mediated phosphorylation of SMRT is required for Pin1 binding and decreases SMRT stability, whereas mutation of these phosphorylation sites abrogates Pin1 binding and stabilizes SMRT. Finally, decreases in SMRT stability occur in response to the activation of Her2/Neu/ErbB2, and this receptor functions upstream of both Pin1 and Cdk2 in the signaling cascade that regulates SMRT stability and cellular response to tamoxifen.
Collapse
Affiliation(s)
- Kristopher J Stanya
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Research Institute of University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
14
|
Margolis RN. The Nuclear Receptor Signaling Atlas: catalyzing understanding of thyroid hormone signaling and metabolic control. Thyroid 2008; 18:113-22. [PMID: 18279012 DOI: 10.1089/thy.2007.0247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Nuclear Receptor Signaling Atlas (NURSA) was established as a trans-National Institutes of Health resource to develop, accrue, and communicate information about the nuclear receptor (NR) superfamily of ligand-dependent and -independent transcription factors. NRs have broad involvement in the regulation of development, reproduction, and metabolism. Receptors for thyroid hormones represent important members of the NR superfamily with key roles in development and homeostasis. NURSA has attempted to create a resource for information on NRs, associated coregulators, and ligands. The Web portal (www.NURSA.org) creates a window through which the general research community can gain access to data generated by NURSA investigators and linked from other sources. The molecule pages provide detailed curated information about the NR superfamily and allow the user to search for information useful to their own specific research problems. With the application of bioinformatics solutions, analyses of large amounts of data can be utilized to validate and/or create hypotheses that will ultimately lead to translational opportunities to take information about NRs, in general, and thyroid receptors, in particular to potential clinical applications.
Collapse
Affiliation(s)
- Ronald N Margolis
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland 20892-5460, USA.
| |
Collapse
|
15
|
Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 2007; 27:149-62. [PMID: 17612497 PMCID: PMC2679807 DOI: 10.1016/j.molcel.2007.05.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/22/2007] [Accepted: 05/25/2007] [Indexed: 01/21/2023]
Abstract
MRE11-RAD50-NBS1 (MRN) is a conserved nuclease complex that exhibits properties of a DNA damage sensor and is critical in regulating cellular responses to DNA double-strand breaks. NBS1, which is mutated in the human genetic disease Nijmegen breakage syndrome, serves as the regulatory subunit of MRN. Phosphorylation of NBS1 by the ATM kinase is necessary for both activation of the S phase checkpoint and for efficient DNA damage repair response. Here, we report that NBS1 is an acetylated protein and that the acetylation level is tightly regulated by the SIRT1 deacetylase. SIRT1 associates with the MRN complex and, importantly, maintains NBS1 in a hypoacetylated state, which is required for ionizing radiation-induced NBS1 Ser343 phosphorylation. Our results demonstrate the presence of crosstalk between two different posttranslational modifications in NBS1 and strongly suggest that deacetylation of NBS1 by SIRT1 plays a key role in the dynamic regulation of the DNA damage response and in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Zhigang Yuan
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
| | - Xiaohong Zhang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
| | - Nilanjan Sengupta
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
| | - William S. Lane
- Microchemistry and Proteomics Analysis Facility, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Edward Seto
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
- Correspondence:
| |
Collapse
|
16
|
Peterson TJ, Karmakar S, Pace MC, Gao T, Smith CL. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full estrogen receptor alpha transcriptional activity. Mol Cell Biol 2007; 27:5933-48. [PMID: 17591692 PMCID: PMC1952168 DOI: 10.1128/mcb.00237-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple factors influence estrogen receptor alpha (ERalpha) transcriptional activity. Current models suggest that the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor functions within a histone deactylase-containing protein complex that binds to antiestrogen-bound ERalpha and contributes to negative regulation of gene expression. In this report, we demonstrate that SMRT is required for full agonist-dependent ERalpha activation. Chromatin immunoprecipitation assays demonstrate that SMRT, like ERalpha and the SRC-3 coactivator, is recruited to an estrogen-responsive promoter in estrogen-treated MCF-7 cells. Depletion of SMRT, but not histone deacetylases 1 or 3, negatively impacts estradiol-stimulated ERalpha transcriptional activity, while exogenous expression of SMRT's receptor interaction domains blocks ERalpha activity, indicating a functional interaction between this corepressor and agonist-bound ERalpha. Stimulation of estradiol-induced ERalpha activity by SMRT overexpression occurred in HeLa and MCF-7 cells, but not HepG2 cells, indicating that these positive effects are cell type specific. Similarly, the ability of SMRT depletion to promote the agonist activity of tamoxifen was observed for HeLa but not MCF-7 cells. Furthermore, impairment of agonist-stimulated activity by SMRT depletion is specific to ERalpha and not observed for receptors for vitamin D, androgen, or thyroid hormone. Nuclear receptor corepressor (N-CoR) depletion increased the transcriptional activity of all four tested receptors. SMRT is required for full expression of the ERalpha target genes cyclin D1, BCL-2, and progesterone receptor but not pS2, and its depletion significantly attenuated estrogen-dependent proliferation of MCF-7 cells. Taken together, these data indicate that SMRT, in conjunction with gene-specific and cell-dependent factors, is required for positively regulating agonist-dependent ERalpha transcriptional activity.
Collapse
Affiliation(s)
- Theresa J Peterson
- Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|