1
|
Furlano K, Plage H, Hofbauer S, Weinberger S, Ralla B, Fendler A, Roßner F, Schallenberg S, Elezkurtaj S, Kluth M, Lennartz M, Blessin NC, Marx AH, Samtleben H, Fisch M, Rink M, Slojewski M, Kaczmarek K, Ecke T, Koch S, Adamini N, Minner S, Simon R, Sauter G, Weischenfeldt J, Klatte T, Schlomm T, Horst D, Zecha H. Reduced p63 expression is linked to unfavourable prognosis in muscle-invasive urothelial carcinoma of the bladder. BJUI COMPASS 2024; 5:1081-1089. [PMID: 39539567 PMCID: PMC11557268 DOI: 10.1002/bco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/13/2024] [Indexed: 11/16/2024] Open
Abstract
Objective There is a shortage of established prognostic biomarkers in bladder cancer. One candidate is tumour protein 63 (p63), a transcription factor of the p53 gene family that is expressed in the normal urothelium. Recently proposed RNA expression-based molecular classifiers of bladder cancer identified high p63 expression as a component of a basal/squamous subtype linked to poor patient prognosis. Methods In this study, p63 protein expression was analysed by immunohistochemistry on more than 2500 urothelial bladder carcinomas in a tissue microarray format to determine its relationship with clinicopathological parameters of disease progression and patient outcome. Results Nuclear p63 staining was seen in all cells of normal urothelium and at elevated levels in pTaG2 tumours. The rate of p63 positive cases and the staining intensity was lower in pTaG3 tumours (93.2%, p < 0.0001 for pTaG3 vs. pTaG2) and markedly lower in pT2-4 carcinomas (83.5%, p = 0.0120 for pT2-4 vs. pTaG3). Within 1018 pT2-4 carcinomas treated by cystectomy, low p63 expression was linked to nodal metastasis (p = 0.0028) and overall survival (p = 0.0005). The association with survival was independent of pT and pN (p = 0.0081). p63 expression was associated with GATA3 expression (p < 0.0001), a luminal cell type marker associated with favourable disease. A joint analysis of p63 and GATA3 did not suggest that GATA3 could provide additional prognostic information. Conclusion The independent prognostic role of reduced p63 expression in advanced urothelial carcinomas suggests that p63 could be a useful biomarker to distinguish pT2-4 urothelial carcinomas.
Collapse
Affiliation(s)
- Kira Furlano
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Henning Plage
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Sebastian Hofbauer
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Sarah Weinberger
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Bernhard Ralla
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Annika Fendler
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Florian Roßner
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Simon Schallenberg
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Sefer Elezkurtaj
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Martina Kluth
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maximilian Lennartz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Niclas C. Blessin
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andreas H. Marx
- Department of PathologyAcademic Hospital FuerthFuerthGermany
| | | | - Margit Fisch
- Department of UrologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Michael Rink
- Department of UrologyMarienhospital HamburgHamburgGermany
| | - Marcin Slojewski
- Department of Urology and Urological OncologyPomeranian Medical UniversitySzczecinPoland
| | - Krystian Kaczmarek
- Department of Urology and Urological OncologyPomeranian Medical UniversitySzczecinPoland
| | - Thorsten Ecke
- Department of UrologyHelios Hospital Bad SaarowBad SaarowGermany
| | - Stefan Koch
- Department of PathologyHelios Hospital Bad SaarowBad SaarowGermany
| | - Nico Adamini
- Department of UrologyAlbertinen HospitalHamburgGermany
| | - Sarah Minner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guido Sauter
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Joachim Weischenfeldt
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Biotech Research & Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
- Finsen LaboratoryRigshospitaletCopenhagenDenmark
| | - Tobias Klatte
- Department of UrologyHelios Hospital Bad SaarowBad SaarowGermany
| | - Thorsten Schlomm
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - David Horst
- Institute of PathologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Henrik Zecha
- Department of UrologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
- Department of UrologyAlbertinen HospitalHamburgGermany
| |
Collapse
|
2
|
Vasilaki E, Bai Y, Ali MM, Sundqvist A, Moustakas A, Heldin CH. ΔNp63 bookmarks and creates an accessible epigenetic environment for TGFβ-induced cancer cell stemness and invasiveness. Cell Commun Signal 2024; 22:411. [PMID: 39180088 PMCID: PMC11342681 DOI: 10.1186/s12964-024-01794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND p63 is a transcription factor with intrinsic pioneer factor activity and pleiotropic functions. Transforming growth factor β (TGFβ) signaling via activation and cooperative action of canonical, SMAD, and non-canonical, MAP-kinase (MAPK) pathways, elicits both anti- and pro-tumorigenic properties, including cell stemness and invasiveness. TGFβ activates the ΔNp63 transcriptional program in cancer cells; however, the link between TGFβ and p63 in unmasking the epigenetic landscape during tumor progression allowing chromatin accessibility and gene transcription, is not yet reported. METHODS Small molecule inhibitors, including protein kinase inhibitors and RNA-silencing, provided loss of function analyses. Sphere formation assays in cancer cells, chromatin immunoprecipitation and mRNA expression assays were utilized in order to gain mechanistic evidence. Mass spectrometry analysis coupled to co-immunoprecipitation assays revealed novel p63 interactors and their involvement in p63-dependent transcription. RESULTS The sphere-forming capacity of breast cancer cells was enhanced upon TGFβ stimulation and significantly decreased upon ΔNp63 depletion. Activation of TGFβ signaling via p38 MAPK signaling induced ΔNp63 phosphorylation at Ser 66/68 resulting in stabilized ΔNp63 protein with enhanced DNA binding properties. TGFβ stimulation altered the ratio of H3K27ac and H3K27me3 histone modification marks, pointing towards higher H3K27ac and increased p300 acetyltransferase recruitment to chromatin. By silencing the expression of ΔNp63, the TGFβ effect on chromatin remodeling was abrogated. Inhibition of H3K27me3, revealed the important role of TGFβ as the upstream signal for guiding ΔNp63 to the TGFβ/SMAD gene loci, as well as the indispensable role of ΔNp63 in recruiting histone modifying enzymes, such as p300, to these genomic regions, regulating chromatin accessibility and gene transcription. Mechanistically, TGFβ through SMAD activation induced dissociation of ΔNp63 from NURD or NCOR/SMRT histone deacetylation complexes, while promoted the assembly of ΔNp63-p300 complexes, affecting the levels of histone acetylation and the outcome of ΔNp63-dependent transcription. CONCLUSIONS ΔNp63, phosphorylated and recruited by TGFβ to the TGFβ/SMAD/ΔNp63 gene loci, promotes chromatin accessibility and transcription of target genes related to stemness and cell invasion.
Collapse
Affiliation(s)
- Eleftheria Vasilaki
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden.
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden.
| | - Yu Bai
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Mohamad Moustafa Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Anders Sundqvist
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, Uppsala, SE-751 24, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden.
| |
Collapse
|
3
|
Napoli M, Deshpande AA, Chakravarti D, Rajapakshe K, Gunaratne PH, Coarfa C, Flores ER. Genome-wide p63-Target Gene Analyses Reveal TAp63/NRF2-Dependent Oxidative Stress Responses. CANCER RESEARCH COMMUNICATIONS 2024; 4:264-278. [PMID: 38165157 PMCID: PMC10832605 DOI: 10.1158/2767-9764.crc-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The p53 family member TP63 encodes two sets of N-terminal isoforms, TAp63 and ΔNp63 isoforms. They each regulate diverse biological functions in epidermal morphogenesis and in cancer. In the skin, where their activities have been extensively characterized, TAp63 prevents premature aging by regulating the quiescence and genomic stability of stem cells required for wound healing and hair regeneration, while ΔNp63 controls maintenance and terminal differentiation of epidermal basal cells. This functional diversity is surprising given that these isoforms share a high degree of similarity, including an identical sequence for a DNA-binding domain. To understand the mechanisms of the transcriptional programs regulated by each p63 isoform and leading to diverse biological functions, we performed genome-wide analyses using p63 isoform-specific chromatin immunoprecipitation, RNA sequencing, and metabolomics of TAp63-/- and ΔNp63-/- mouse epidermal cells. Our data indicate that TAp63 and ΔNp63 physically and functionally interact with distinct transcription factors for the downstream regulation of their target genes, thus ultimately leading to the regulation of unique transcriptional programs and biological processes. Our findings unveil novel transcriptomes regulated by the p63 isoforms to control diverse biological functions, including the cooperation between TAp63 and NRF2 in the modulation of metabolic pathways and response to oxidative stress providing a mechanistic explanation for the TAp63 knock out phenotypes. SIGNIFICANCE The p63 isoforms, TAp63 and ΔNp63, control epithelial morphogenesis and tumorigenesis through the interaction with distinct transcription factors and the subsequent regulation of unique transcriptional programs.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Avani A. Deshpande
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Kimal Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elsa R. Flores
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
4
|
Aljagthmi AA, Hira A, Zhang J, Cooke M, Kazanietz MG, Kadakia MP. ∆Np63α inhibits Rac1 activation and cancer cell invasion through suppression of PREX1. Cell Death Discov 2024; 10:13. [PMID: 38191532 PMCID: PMC10774331 DOI: 10.1038/s41420-023-01789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
ΔNp63α, a member of the p53 family of transcription factors, plays a critical role in maintaining the proliferative potential of stem cells in the stratified epithelium. Although ΔNp63α is considered an oncogene and is frequently overexpressed in squamous cell carcinoma, loss of ΔNp63α expression is associated with increased tumor cell invasion and metastasis. We recently identified a ΔNp63α/miR-320a/PKCγ signaling axis that regulates cancer cell invasion by inhibiting phosphorylation of the small GTPase Rac1, a master switch of cell motility that positively regulates cell invasion in multiple human cancers. In this study, we identified a novel mechanism by which ΔNp63α negatively regulates Rac1 activity, by inhibiting the expression of the Rac-specific Guanine Exchange Factor PREX1. ΔNp63α knockdown in multiple squamous cell carcinoma cell lines leads to increased Rac1 activation, which is abrogated by treatment with the Rac1 inhibitor NSC23766. Furthermore, ΔNp63α negatively regulates PREX1 transcript and protein levels. Using a Rac-GEF activation assay, we also showed that ΔNp63α reduces the levels of active PREX1. The inhibition of the PREX1-Rac1 signaling axis by ΔNp63α leads to impaired cell invasion, thus establishing the functional relevance of this link. Our results elucidated a novel molecular mechanism by which ΔNp63α negatively affects cancer cell invasion and identifies the ΔNp63α/Rac1 axis as a potential target for metastasis.
Collapse
Affiliation(s)
- Amjad A Aljagthmi
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Akshay Hira
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
5
|
Mourtada J, Lony C, Nicol A, De Azevedo J, Bour C, Macabre C, Roncarati P, Ledrappier S, Schultz P, Borel C, Burgy M, Wasylyk B, Mellitzer G, Herfs M, Gaiddon C, Jung AC. A novel ΔNp63-dependent immune mechanism improves prognosis of HPV-related head and neck cancer. Front Immunol 2023; 14:1264093. [PMID: 38022675 PMCID: PMC10630910 DOI: 10.3389/fimmu.2023.1264093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Deconvoluting the heterogenous prognosis of Human Papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OSCC) is crucial for enhancing patient care, given its rapidly increasing incidence in western countries and the adverse side effects of OSCC treatments. Methods Transcriptomic data from HPV-positive OSCC samples were analyzed using unsupervised hierarchical clustering, and clinical relevance was evaluated using Kaplan-Meier analysis. HPV-positive OSCC cell line models were used in functional analyses and phenotypic assays to assess cell migration and invasion, response to cisplatin, and phagocytosis by macrophages in vitro. Results We found, by transcriptomic analysis of HPV-positive OSCC samples, a ΔNp63 dependent molecular signature that is associated with patient prognosis. ΔNp63 was found to act as a tumor suppressor in HPV-positive OSCC at multiple levels. It inhibits cell migration and invasion, and favors response to chemotherapy. RNA-Seq analysis uncovered an unexpected regulation of genes, such as DKK3, which are involved in immune response-signalling pathways. In agreement with these observations, we found that ΔNp63 expression levels correlate with an enhanced anti-tumor immune environment in OSCC, and ΔNp63 promotes cancer cell phagocytosis by macrophages through a DKK3/NF-κB-dependent pathway. Conclusion Our findings are the first comprehensive identification of molecular mechanisms involved in the heterogeneous prognosis of HPV-positive OSCC, paving the way for much-needed biomarkers and targeted treatment.
Collapse
Affiliation(s)
- Jana Mourtada
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christelle Lony
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Anaïs Nicol
- Laboratoire de Radiobiologie, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Justine De Azevedo
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Cyril Bour
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Sonia Ledrappier
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| | - Philippe Schultz
- Hôpitaux Universitaires de Strasbourg, Department of Otorhinolaryngology and Head and Neck Surgery, Strasbourg, France
| | - Christian Borel
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Mickaël Burgy
- Department of Medical Oncology, Institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - Bohdan Wasylyk
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1258, Illkirch-Graffenstaden, France
- Centre Nationale de la Recherche Scientifique (CNRS) UMR 7104, Illkirch-Graffenstaden, France
- Université de Strasbourg, Strasbourg, France
| | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Michaël Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Institut de cancérologie Strasbourg Europe, Strasbourg, France
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, Laboratory « Streinth », Strasbourg, France
- Tumorothèque du Centre Paul Strauss, Centre Paul Strauss, Strasbourg, France
| |
Collapse
|
6
|
Mundhe D, Mishra R, Basu S, Dalal S, Kumar S, Teni T. ΔNp63 overexpression promotes oral cancer cell migration through hyperactivated Activin A signaling. Exp Cell Res 2023; 431:113739. [PMID: 37567436 DOI: 10.1016/j.yexcr.2023.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Oral cancer is a common malignant tumor of the oral cavity that affects many countries with a prevalent distribution in the Indian subcontinent, with poor prognosis rate on account of locoregional metastases. Gain-of-function mutations in p53 and overexpression of its related transcription factor, p63 are both widely reported events in oral cancers. However, targeting these alterations remains a far-achieved aim due to lack of knowledge on their downstream signaling pathways. In the present study, we characterize the isoforms of p63 and using knockdown strategy, decipher the functions and oncogenic signaling of p63 in oral cancers. Using Microarray and Chromatin Immunoprecipitation experiments, we decipher a novel transcriptional regulatory axis between p63 and Activin A and establish its functional significance in migration of oral cancer cells. Using an orally bioavailable inhibitor of the Activin A pathway to attenuate oral cancer cell migration and invasion, we further demonstrate the targetability of this signaling axis. Our study highlights the oncogenic role of ΔNp63 - Activin A - SMAD2/3 signaling and provides a basis for targeting this oncogenic pathway in oral cancers.
Collapse
Affiliation(s)
- Dhanashree Mundhe
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Rupa Mishra
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Srikanta Basu
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Sorab Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, 2nd Floor, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India
| | - Sanjeev Kumar
- BioCOS Life Sciences Private Limited, AECS Layout, B-Block, Singasandra, Hosur Road, 851/A, Bengaluru, 560068, Karnataka, India; Department of AIML- Computer Science, School of Engineering, Dayananda Sagar University, Bengaluru, 560068, Karnataka, India
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Plot No. 1 & 2, Sector 22, Kharghar, Navi Mumbai, 410210, Maharashtra, India.
| |
Collapse
|
7
|
Fisher ML, Balinth S, Mills AA. ΔNp63α in cancer: importance and therapeutic opportunities. Trends Cell Biol 2023; 33:280-292. [PMID: 36115734 PMCID: PMC10011024 DOI: 10.1016/j.tcb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Our understanding of cancer and the key pathways that drive cancer survival has expanded rapidly over the past several decades. However, there are still important challenges that continue to impair patient survival, including our inability to target cancer stem cells (CSCs), metastasis, and drug resistance. The transcription factor p63 is a p53 family member with multiple isoforms that carry out a wide array of functions. Here, we discuss the critical importance of the ΔNp63α isoform in cancer and potential therapeutic strategies to target ΔNp63α expression to impair the CSC population, as well as to prevent metastasis and drug resistance to improve patient survival.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
8
|
Glathar AR, Oyelakin A, Nayak KB, Sosa J, Romano RA, Sinha S. A Systemic and Integrated Analysis of p63-Driven Regulatory Networks in Mouse Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:446. [PMID: 36672394 PMCID: PMC9856320 DOI: 10.3390/cancers15020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and is linked to tobacco exposure, alcohol consumption, and human papillomavirus infection. Despite therapeutic advances, a lack of molecular understanding of disease etiology, and delayed diagnoses continue to negatively affect survival. The identification of oncogenic drivers and prognostic biomarkers by leveraging bulk and single-cell RNA-sequencing datasets of OSCC can lead to more targeted therapies and improved patient outcomes. However, the generation, analysis, and continued utilization of additional genetic and genomic tools are warranted. Tobacco-induced OSCC can be modeled in mice via 4-nitroquinoline 1-oxide (4NQO), which generates a spectrum of neoplastic lesions mimicking human OSCC and upregulates the oncogenic master transcription factor p63. Here, we molecularly characterized established mouse 4NQO treatment-derived OSCC cell lines and utilized RNA and chromatin immunoprecipitation-sequencing to uncover the global p63 gene regulatory and signaling network. We integrated our p63 datasets with published bulk and single-cell RNA-sequencing of mouse 4NQO-treated tongue and esophageal tumors, respectively, to generate a p63-driven gene signature that sheds new light on the role of p63 in murine OSCC. Our analyses reveal known and novel players, such as COTL1, that are regulated by p63 and influence various oncogenic processes, including metastasis. The identification of new sets of potential biomarkers and pathways, some of which are functionally conserved in human OSCC and can prognosticate patient survival, offers new avenues for future mechanistic studies.
Collapse
Affiliation(s)
- Alexandra Ruth Glathar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Akinsola Oyelakin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Kasturi Bala Nayak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jennifer Sosa
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
9
|
Logotheti S, Pavlopoulou A, Marquardt S, Takan I, Georgakilas AG, Stiewe T. p73 isoforms meet evolution of metastasis. Cancer Metastasis Rev 2022; 41:853-869. [PMID: 35948758 DOI: 10.1007/s10555-022-10057-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/30/2022] [Indexed: 01/25/2023]
Abstract
Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197, Berlin, Germany
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.,Institute of Lung Health, Giessen, Germany.,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| |
Collapse
|
10
|
[Artículo traducido] Perfil de expresión de CD10, BCL-2, p63 y EMA en los carcinomas normales de piel y de células basales: Revaloración inmunohistoquímica. ACTAS DERMO-SIFILIOGRAFICAS 2022. [DOI: 10.1016/j.ad.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Chen H, Hu K, Xie Y, Qi Y, Li W, He Y, Fan S, Liu W, Li C. CDK1 Promotes Epithelial–Mesenchymal Transition and Migration of Head and Neck Squamous Carcinoma Cells by Repressing ∆Np63α-Mediated Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23137385. [PMID: 35806389 PMCID: PMC9266818 DOI: 10.3390/ijms23137385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
∆Np63α is a key transcription factor overexpressed in types of squamous cell carcinomas (SCCs), which represses epithelial–mesenchymal transition (EMT) and cell migration. In this study, we found that CDK1 phosphorylates ∆Np63α at the T123 site, impairing its affinity to the target promoters of its downstream genes and its regulation of them in turn. Database analysis revealed that CDK1 is overexpressed in head and neck squamous cell carcinomas (HNSCCs), especially the metastatic HNSCCs, and is negatively correlated with overall survival. We further found that CDK1 promotes the EMT and migration of HNSCC cells by inhibiting ∆Np63α. Altogether, our study identified CDK1 as a novel regulator of ΔNp63α, which can modulate EMT and cell migration in HNSCCs. Our findings will help to elucidate the migration mechanism of HNSCC cells.
Collapse
Affiliation(s)
- Huimin Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ke Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ying Xie
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Yucheng Qi
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wenjuan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Yaohui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
- Correspondence:
| |
Collapse
|
12
|
Hussein M, Ahmed A. Expression Profile of CD10, BCL-2, p63, and EMA in the Normal Skin and Basal Cell Carcinomas: An Immunohistochemical Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:848-855. [DOI: 10.1016/j.ad.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022] Open
|
13
|
Chalmers FE, Dusold JE, Shaik JA, Walsh HA, Glick AB. Targeted deletion of TGFβ1 in basal keratinocytes causes profound defects in stratified squamous epithelia and aberrant melanocyte migration. Dev Biol 2022; 485:9-23. [PMID: 35227671 PMCID: PMC8969113 DOI: 10.1016/j.ydbio.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Transforming Growth Factor Beta 1 (TGFβ1) is a multifunctional cytokine that regulates proliferation, apoptosis, and epithelial-mesenchymal transition of epithelial cells. While its role in cancer is well studied, less is known about TGFβ1 and regulation of epithelial development. To address this, we deleted TGFβ1 in basal keratinocytes of stratified squamous epithelia. Newborn mice with a homozygous TGFβ1 deletion had significant defects in proliferation and differentiation of the epidermis and oral mucosa, and died shortly after birth. Hair follicles were sparse in TGFβ1 depleted skin and had delayed development. Additionally, the Wnt pathway transcription factor LEF1 was reduced in hair follicle bulbs and nearly absent from the basal epithelial layer. Hemizygous knockout mice survived to adulthood but were runted and had sparse coats. The skin of these mice had irregular hair follicle morphology and aberrant hair cycle progression, as well as abnormally high melanin expression and delayed melanocyte migration. In contrast to newborn TGFβ1 null mice, the epidermis was hyperproliferative, acanthotic and inflamed. Expression of p63, a master regulator of stratified epithelial identity, proliferation and differentiation, was reduced in TGFβ1 null newborn epidermis but expanded in the postnatal acanthotic epidermis of TGFβ1 hemizygous mice. Thus, TGFβ1 is both essential and haploinsufficient with context dependent roles in stratified squamous epithelial development and homeostasis.
Collapse
Affiliation(s)
- Fiona E Chalmers
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Justyn E Dusold
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Javed A Shaik
- Dermatology Department, University of Minnesota, USA
| | - Hailey A Walsh
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA.
| |
Collapse
|
14
|
Smyth EC, Gambardella V, Cervantes A, Fleitas T. Checkpoint inhibitors for gastroesophageal cancers: dissecting heterogeneity to better understand their role in first-line and adjuvant therapy. Ann Oncol 2021; 32:590-599. [PMID: 33609722 DOI: 10.1016/j.annonc.2021.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Gastroesophageal adenocarcinoma (GEA) and squamous esophageal cancer (ESCC) are responsible for >1 million deaths annually globally. Until now, patients with metastatic GEA and ESCC could anticipate survival of <1 year. Anti- programmed cell death protein 1 (anti-PD-1) monotherapy has demonstrated modest efficacy in previously treated GEA and ESCC. In 2020, four pivotal trials have established anti-PD-1 therapy as a new standard of care for selected GEA and ESCC patients as first-line advanced and adjuvant therapy. In this review, we discuss the recent results of the CheckMate 649, ATTRACTION-4, KEYNOTE-590 and CheckMate 577 trials. We consider these results in the context of current standards of care and historical trials of immune checkpoint blockade in GEA and ESCC. We explore biomarker selection for anti-PD-1 therapy and appraise the future of combination therapies. In CheckMate 649, treatment with oxaliplatin-fluoropyrimidine chemotherapy plus nivolumab in patients with combined positive score ≥5 GEA tumors provided a clinically meaningful and statistically significant improvement in overall survival. The ATTRACTION-4 trial did not see a similar overall survival benefit, despite a clear improvement in progression-free survival. We review potential explanations for this result. KEYNOTE-590 showed profoundly improved survival when pembrolizumab was added to cisplatin-fluoropyrimidine chemotherapy in ESCC patients with combined positive score ≥10 tumors; this benefit was less convincing in unselected ESCC. Finally, CheckMate 577 provides proof-of-concept for the improvement in disease-free survival with adjuvant nivolumab in high-risk resected GEA and ESCC following trimodality therapy. Immune checkpoint blockade has come of age in GEA and ESCC, and will now be integrated into first-line and earlier lines of therapy, providing benefit for a larger proportion of patients. Biomarker standardization will be critical to select the patients most likely to benefit from treatment. For patients with immune evasive tumors, novel combinations under development show promise; however, global trials are needed.
Collapse
Affiliation(s)
- E C Smyth
- Cambridge University Hospitals National Health Service Foundation Trust, Department of Oncology, Cambridge, UK
| | - V Gambardella
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - A Cervantes
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - T Fleitas
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Alshammari ES, Aljagthmi AA, Stacy AJ, Bottomley M, Shamma HN, Kadakia MP, Long W. ERK3 is transcriptionally upregulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in non-melanoma skin cancers. BMC Cancer 2021; 21:155. [PMID: 33579235 PMCID: PMC7881562 DOI: 10.1186/s12885-021-07866-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND p63, a member of the p53 gene family, is an important regulator for epithelial tissue growth and development. ∆Np63α is the main isoform of p63 and highly expressed in Non-melanoma skin cancer (NMSC). Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose biochemical features and cellular regulation are distinct from those of conventional MAPKs such as ERK1/2. While ERK3 has been shown to be upregulated in lung cancers and head and neck cancers, in which it promotes cancer cell migration and invasion, little is known about the implication of ERK3 in NMSCs. METHODS Fluorescent immunohistochemistry was performed to evaluate the expression levels of ΔNp63α and ERK3 in normal and NMSC specimens. Dunnett's test was performed to compare mean fluorescence intensity (MFI, indicator of expression levels) of p63 or ERK3 between normal cutaneous samples and NMSC samples. A mixed effects (ANOVA) test was used to determine the correlation between ΔNp63α and ERK3 expression levels (MFI). The regulation of ERK3 by ΔNp63α was studied by qRT-PCR, Western blot and luciferase assay. The effect of ERK3 regulation by ΔNp63α on cell migration was measured by performing trans-well migration assay. RESULTS The expression level of ∆Np63α is upregulated in NMSCs compared to normal tissue. ERK3 level is significantly upregulated in AK and SCC in comparison to normal tissue and there is a strong positive correlation between ∆Np63α and ERK3 expression in normal skin and skin specimens of patients with AK, SCC or BCC. Further, we found that ∆Np63α positively regulates ERK3 transcript and protein levels in A431 and HaCaT skin cells, underlying the upregulation of ERK3 expression and its positive correlation with ∆Np63α in NMSCs. Moreover, similar to the effect of ∆Np63α depletion, silencing ERK3 greatly enhanced A431 cell migration. Restoration of ERK3 expression under the condition of silencing ∆Np63α counteracted the increase in cell migration induced by the depletion of ∆Np63α. Mechanistically, ERK3 inhibits the phosphorylation of Rac1 G-protein and the formation of filopodia of A431 skin SCC cells. CONCLUSIONS ERK3 is positively regulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in NMSC.
Collapse
Affiliation(s)
- Eid S Alshammari
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, 72388, Saudi Arabia
| | - Amjad A Aljagthmi
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Andrew J Stacy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Mike Bottomley
- Department of Math and Microbiology, College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - H Nicholas Shamma
- Department of Dermatology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
16
|
Li MY, Fan LN, Han DH, Yu Z, Ma J, Liu YX, Li PF, Zhao DH, Chai J, Jiang L, Li SL, Xiao JJ, Duan QH, Ye J, Shi M, Nie YZ, Wu KC, Liao DJ, Shi Y, Wang Y, Yan QG, Guo SP, Bian XW, Zhu F, Zhang J, Wang Z. Ribosomal S6 protein kinase 4 promotes radioresistance in esophageal squamous cell carcinoma. J Clin Invest 2021; 130:4301-4319. [PMID: 32396532 DOI: 10.1172/jci134930] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers and is highly resistant to current treatments. ESCC harbors a subpopulation of cells exhibiting cancer stem-like cell (CSC) properties that contribute to therapeutic resistance including radioresistance, but the molecular mechanisms in ESCC CSCs are currently unknown. Here, we report that ribosomal S6 protein kinase 4 (RSK4) plays a pivotal role in promoting CSC properties and radioresistance in ESCC. RSK4 was highly expressed in ESCC CSCs and associated with radioresistance and poor survival in patients with ESCC. RSK4 was found to be a direct downstream transcriptional target of ΔNp63α, the main p63 isoform, which is frequently amplified in ESCC. RSK4 activated the β-catenin signaling pathway through direct phosphorylation of GSK-3β at Ser9. Pharmacologic inhibition of RSK4 effectively reduced CSC properties and improved radiosensitivity in both nude mouse and patient-derived xenograft models. Collectively, our results strongly suggest that the ΔNp63α/RSK4/GSK-3β axis plays a key role in driving CSC properties and radioresistance in ESCC, indicating that RSK4 is a promising therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Ming-Yang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lin-Ni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Yu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Xiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Pei-Feng Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Dan-Hui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lei Jiang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shi-Liang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Juan-Juan Xiao
- Cancer Research Institute, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiu-Hong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Ye
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mei Shi
- Department of Radiation Oncology and
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai-Chun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dezhong Joshua Liao
- Department of Pathology, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qing-Guo Yan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuang-Ping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feng Zhu
- Cancer Research Institute, Affiliated Hospital of Guilin Medical University, Guilin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, and.,Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Niu M, He Y, Xu J, Ding L, He T, Yi Y, Fu M, Guo R, Li F, Chen H, Chen YG, Xiao ZXJ. Noncanonical TGF-β signaling leads to FBXO3-mediated degradation of ΔNp63α promoting breast cancer metastasis and poor clinical prognosis. PLoS Biol 2021; 19:e3001113. [PMID: 33626035 PMCID: PMC7939357 DOI: 10.1371/journal.pbio.3001113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/08/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a critical role in promoting epithelial-to-mesenchymal transition (EMT), cell migration, invasion, and tumor metastasis. ΔNp63α, the major isoform of p63 protein expressed in epithelial cells, is a key transcriptional regulator of cell adhesion program and functions as a critical metastasis suppressor. It has been documented that the expression of ΔNp63α is tightly controlled by oncogenic signaling and is frequently reduced in advanced cancers. However, whether TGF-β signaling regulates ΔNp63α expression in promoting metastasis is largely unclear. In this study, we demonstrate that activation of TGF-β signaling leads to stabilization of E3 ubiquitin ligase FBXO3, which, in turn, targets ΔNp63α for proteasomal degradation in a Smad-independent but Erk-dependent manner. Knockdown of FBXO3 or restoration of ΔNp63α expression effectively rescues TGF-β-induced EMT, cell motility, and tumor metastasis in vitro and in vivo. Furthermore, clinical analyses reveal a significant correlation among TGF-β receptor I (TβRI), FBXO3, and p63 protein expression and that high expression of TβRI/FBXO3 and low expression of p63 are associated with poor recurrence-free survival (RFS). Together, these results demonstrate that FBXO3 facilitates ΔNp63α degradation to empower TGF-β signaling in promoting tumor metastasis and that the TβRI-FBXO3-ΔNp63α axis is critically important in breast cancer development and clinical prognosis. This study suggests that FBXO3 may be a potential therapeutic target for advanced breast cancer treatment.
Collapse
Affiliation(s)
- Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liangping Ding
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengyuan Fu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Construction and validation of an immunity-related prognostic signature for breast cancer. Aging (Albany NY) 2020; 12:21597-21612. [PMID: 33216733 PMCID: PMC7695418 DOI: 10.18632/aging.103952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is one of the most lethal malignancies among women, and understanding the effects of host immunity on disease progression offers the potential to improve immunotherapies against it. Here, we constructed an immunity-related gene (IRG)-based prognostic signature to stratify breast cancer patients and predict their survival. We identified differentially-expressed genes by analyzing the breast cancer transcriptome data from The Cancer Genome Atlas. Univariate Cox regression revealed 179 survival-correlated IRGs, 12 of which we used to construct an immunity-based prognostic signature that stratified breast cancer patients into high- and low-risk groups. The signature was an independent predictor for survival and was validated in an independent dataset. We also investigated the correlations between our prognostic signature and immune infiltrates and found that signature-derived risk scores correlated negatively with infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils and dendritic cells. Our results show that the proposed prognostic signature reflects the tumor immune microenvironment, which makes it a potential indicator for survival that warrants further research to assess its clinical utility.
Collapse
|
20
|
Elie-Caille C, Lascombe I, Péchery A, Bittard H, Fauconnet S. Molecular and nanoscale evaluation of N-cadherin expression in invasive bladder cancer cells under control conditions or GW501516 exposure. Mol Cell Biochem 2020; 471:113-127. [PMID: 32519230 PMCID: PMC7370938 DOI: 10.1007/s11010-020-03771-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
N-cadherin is a transmembrane glycoprotein expressed by mesenchymal origin cells and is located at the adherens junctions. It regulates also cell motility and contributes to cell signaling. In previous studies, we identified that its anomalous expression in bladder carcinoma was a tumor progression marker. A pharmacological approach to inhibit N-cadherin expression or to block its function could be relevant to prevent disease progression and metastasis development. The morphological exploration of T24 invasive bladder cancer cells by atomic force microscopy (AFM) revealed a spindle-like shape with fibrous structures. By engaging force spectroscopy with AFM tip functionalized with anti-E or anti-N-cadherin antibodies, results showed that T24 cells expressed only N-cadherin as also demonstrated by Western blotting and confocal microscopy. For the first time, we demonstrated by RTqPCR and Western blotting analyses that the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 significantly decreased N-cadherin expression in T24 cells. Moreover, high non-cytotoxic doses of GW501516 inhibited confluent T24 cell wound healing closure. By using AFM, a more sensitive nanoanalytical method, we showed that the treatment modified the cellular morphology and diminished N-cadherin cell surface coverage through the decreasing of these adhesion molecule-mediated interaction forces. We observed a greater decrease of N-cadherin upon GW501516 exposure with AFM than that detected with molecular biology techniques. AFM was a complementary tool to biochemical techniques to perform measurements on living cells at the nanometer resolution level. Taken together, our data suggest that GW501516 could be an interesting therapeutic strategy to avoid bladder cancer cell spreading through N-cadherin decrease.
Collapse
Affiliation(s)
- Céline Elie-Caille
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, ENSMM, UTBM, Besançon, France.
| | - Isabelle Lascombe
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France
| | - Adeline Péchery
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France
| | - Hugues Bittard
- Service Urologie et Andrologie, CHU Besançon, 25000, Besançon, France
| | - Sylvie Fauconnet
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France.
- Service Urologie et Andrologie, CHU Besançon, 25000, Besançon, France.
| |
Collapse
|
21
|
Bui NHB, Napoli M, Davis AJ, Abbas HA, Rajapakshe K, Coarfa C, Flores ER. Spatiotemporal Regulation of ΔNp63 by TGFβ-Regulated miRNAs Is Essential for Cancer Metastasis. Cancer Res 2020; 80:2833-2847. [PMID: 32312834 DOI: 10.1158/0008-5472.can-19-2733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/18/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
ΔNp63 is a transcription factor of the p53 family and has crucial functions in normal development and disease. The expression pattern of ΔNp63 in human cancer suggests dynamic regulation of this isoform during cancer progression and metastasis. Many primary and metastatic tumors express high levels of ΔNp63, while ΔNp63 loss is crucial for tumor dissemination, indicating an oscillatory expression of ΔNp63 during cancer progression. Here, we use genetically engineered orthotopic mouse models of breast cancer to show that while depletion of ΔNp63 inhibits primary mammary adenocarcinoma development, oscillatory expression of ΔNp63 in established tumors is crucial for metastatic dissemination in breast cancer. A TGFβ-regulated miRNA network acted as upstream regulators of this oscillatory expression of ΔNp63 during cancer progression. This work sheds light on the pleiotropic roles of ΔNp63 in cancer and unveils critical functions of TGFβ in the metastatic process. SIGNIFICANCE: This study unveils TGFβ signaling and a network of four miRNAs as upstream regulators of ΔNp63, providing key information for the development of therapeutic strategies to treat cancers that commonly overexpress ΔNp63.
Collapse
Affiliation(s)
- Ngoc H B Bui
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Andrew John Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Hussein A Abbas
- Hematology/Oncology Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida. .,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
22
|
Okada Y, Zhang Y, Zhang L, Yeh LK, Wang YC, Saika S, Liu CY. Shp2-mediated MAPK pathway regulates ΔNp63 in epithelium to promote corneal innervation and homeostasis. J Transl Med 2020; 100:630-642. [PMID: 31653968 PMCID: PMC7102931 DOI: 10.1038/s41374-019-0338-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Corneal nerve fibers serving sensory, reflex, and neurotrophic functions sustain corneal homeostasis and transparency to promote normal visual function. It is not known whether corneal epithelium is also important for the corneal innervation. Herein, we generated a compound transgenic mouse strain, K14rtTA;tetO-Cre (TC);Shp2flox/flox, in which Shp2 was conditionally knocked out from K14-positive cells including corneal epithelium (Shp2K14ce-cko) upon doxycycline (dox) administration. Our data reveal that Shp2K14ce-cko caused corneal denervation. More specifically, corneal epithelium thickness and corneal sensitivity reduced dramatically in Shp2K14ce-cko mice. In addition, corneal epithelial wound healing after debridement was delayed substantially in the mutant mice. These defects manifested in Shp2K14ce-cko mice resemble the symptoms of human neurotrophic keratopathy. Our in vitro study shows that neurite outgrowth of the mouse primary trigeminal ganglion cells (TGCs) was inhibited when as cocultured with mouse corneal epithelial cells (TKE2) transfected by Shp2-, Mek1/2-, or ∆Np63-targeted siRNA but not by Akt1/2-targeted siRNA. Furthermore, ∆Np63 RNA interference downregulated Ngf expression in TKE2 cells. Cotransfection experiments reveal that Shp2 tightly monitored ΔNp63 protein levels in HEK293 and TKE2 cells. Taken together, our data suggest that the Shp2-mediated MAPK pathway regulated ΔNp63, which in turn positively regulated Ngf in epithelium to promote corneal innervation and epithelial homeostasis.
Collapse
Affiliation(s)
- Yuka Okada
- Indiana University School of Optometry, Bloomington, IN, USA.
- Department of Ophthalmology, Wakayama Medical University, School of Medicine, Wakayama, Japan.
| | - Yujin Zhang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Lingling Zhang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Linko, Taiwan
| | - Yen-Chiao Wang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Chia-Yang Liu
- Indiana University School of Optometry, Bloomington, IN, USA.
| |
Collapse
|
23
|
PABPN1, a Target of p63, Modulates Keratinocyte Differentiation through Regulation of p63α mRNA Translation. J Invest Dermatol 2020; 140:2166-2177.e6. [PMID: 32243883 DOI: 10.1016/j.jid.2020.03.942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023]
Abstract
p63 is expressed from two promoters and produces two N-terminal isoforms, TAp63 and ΔNp63. Alternative splicing creates three C-terminal isoforms p63α, p63β, and p63δ, whereas alternative polyadenylation (APA) in coding sequence creates two more C-terminal isoforms p63γ and p63ε. Although several transcription factors have been identified to differentially regulate the N-terminal p63 isoforms, it is unclear how the C-terminal p63 isoforms are regulated. Thus, we determined whether PABPN1, a key regulator of APA, may differentially regulate the C-terminal p63 isoforms. We found that PABPN1 deficiency increases p63γ mRNA through APA in coding sequence. We also found that PABPN1 is necessary for p63α translation by modulating the binding of translation initiation factors eIF4E and eIF4G to p63α mRNA. Moreover, we found that the p53 family, especially p63α, regulates PABPN1 transcription, suggesting that the mutual regulation between p63 and PABPN1 forms a feedback loop. Furthermore, we found that PABPN1 deficiency inhibits keratinocyte cell growth, which can be rescued by ectopic ΔNp63α. Finally, we found that PABPN1 controls the terminal differentiation of HaCaT keratinocytes by modulating ΔNp63α expression. Taken together, our findings suggest that PABPN1 is a key regulator of the C-terminal p63 isoforms through APA in coding sequence and mRNA translation and that the p63-PABPN1 loop modulates p63 activity and the APA landscape.
Collapse
|
24
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
25
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
26
|
ΔNp63 transcript loss in bladder cancer constitutes an independent molecular predictor of TaT1 patients post-treatment relapse and progression. J Cancer Res Clin Oncol 2019; 145:3075-3087. [PMID: 31595333 DOI: 10.1007/s00432-019-03028-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Bladder cancer represents a major cause of malignancy-related morbidity and the most expensive per-patient-to-treat cancer, due to the lifelong surveillance of the patients. Accurate disease prognosis is essential in establishing personalized treatment decisions; yet optimum tools for precise risk stratification remain a competing task. In the present study, we have performed the complete evaluation of TP63 clinical significance in improving disease prognosis. METHODS The levels of ΔNp63 and TAp63 transcripts of TP63 were quantified in 342 bladder tissue specimens of our screening cohort (n = 182). Hedegaard et al. (Cancer Cell 30:27-42. doi:10.1016/j.ccell.2016.05.004, 2016) (n = 476) and TCGA provisional (n = 413) were used as validation cohorts for NMIBC and MIBC, respectively. Survival analysis was performed using recurrence and progression for NMIBC or mortality for MIBC as endpoint events. Bootstrap analysis was performed for internal validation, while decision curve analysis was used for the evaluation of the clinical net benefit on disease prognosis. RESULTS ΔNp63 was significantly expressed in bladder tissues, and was found to be over-expressed in bladder tumors. Interestingly, reduced ΔNp63 levels were correlated with muscle-invasive disease, high-grade tumors and high-EORTC-risk NMIBC patients. Moreover, ΔNp63 loss was independently associated with higher risk for NMIBC relapse (HR = 2.730; p = 0.007) and progression (HR = 7.757; p = 0.016). Hedegaard et al. and TCGA validation cohorts confirmed our findings. Finally, multivariate models combining ΔΝp63 loss with established prognostic markers led to a superior clinical benefit for NMIBC prognosis and risk stratification. CONCLUSIONS ΔΝp63 loss is associated with adverse outcome of NMIBC resulting in superior prediction of NMIBC early relapse and progression.
Collapse
|
27
|
Finnegan A, Cho RJ, Luu A, Harirchian P, Lee J, Cheng JB, Song JS. Single-Cell Transcriptomics Reveals Spatial and Temporal Turnover of Keratinocyte Differentiation Regulators. Front Genet 2019; 10:775. [PMID: 31552090 PMCID: PMC6733986 DOI: 10.3389/fgene.2019.00775] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
Keratinocyte differentiation requires intricately coordinated spatiotemporal expression changes that specify epidermis structure and function. This article utilizes single-cell RNA-seq data from 22,338 human foreskin keratinocytes to reconstruct the transcriptional regulation of skin development and homeostasis genes, organizing them by differentiation stage and also into transcription factor (TF)–associated modules. We identify groups of TFs characterized by coordinate expression changes during progression from the undifferentiated basal to the differentiated state and show that these TFs also have concordant differential predicted binding enrichment in the super-enhancers previously reported to turn over between the two states. The identified TFs form a core subset of the regulators controlling gene modules essential for basal and differentiated keratinocyte functions, supporting their nomination as master coordinators of keratinocyte differentiation. Experimental depletion of the TFs ZBED2 and ETV4, both predicted to promote the basal state, induces differentiation. Furthermore, our single-cell RNA expression analysis reveals preferential expression of antioxidant genes in the basal state, suggesting keratinocytes actively suppress reactive oxygen species to maintain the undifferentiated state. Overall, our work demonstrates diverse computational methods to advance our understanding of dynamic gene regulation in development.
Collapse
Affiliation(s)
- Alex Finnegan
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Alan Luu
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jerry Lee
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jun S Song
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
28
|
Epigenetic Regulation of iASPP-p63 Feedback Loop in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:1658-1671.e8. [DOI: 10.1016/j.jid.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/09/2023]
|
29
|
Wang Y, Li J, Gao Y, Luo Y, Luo H, Wang L, Yi Y, Yuan Z, Jim Xiao ZX. Hippo kinases regulate cell junctions to inhibit tumor metastasis in response to oxidative stress. Redox Biol 2019; 26:101233. [PMID: 31212215 PMCID: PMC6582208 DOI: 10.1016/j.redox.2019.101233] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are key regulators in cell proliferation, survival, tumor initiation and development. However, the role of ROS in tumor metastasis is less clear. Here, we show that oxidative stress inhibited tumor metastasis via activation of Hippo kinase MST1/2, which led to the phosphorylation and nuclear accumulation of FoxO3a, resulting in upregulation of ΔNp63α expression and suppression of cell migration independent of YAP. Strikingly, while loss of MST1 led to and disruption of cell-cell junction exemplified by reduced E-cadherin expression, resulting in scattered cell growth, loss of MST2 led to disruption of cell-matrix adhesion as evidenced by reduced integrin β4, resulting in increased cell migration and tumor metastasis. Furthermore, expression of MST1 and MST2 was down-regulated in human breast carcinoma. Furthermore, oxidative stress inhibited HER2-or PI3K-mediated tumor metastasis via the MST2-FoxO3a-ΔNp63α pathway. Together, these results that this noncanonical Hippo MST2-FoxO3a-ΔNp63α pathway may play a critical role in ROS-mediated regulation of cell migration and tumor metastasis.
Collapse
Affiliation(s)
- Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Juan Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ya Gao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yue Luo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hong Luo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Liang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zengqiang Yuan
- Institute of Basic Medical Sciences, AMMS, Beijing, 100850, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
30
|
Gatti V, Bongiorno-Borbone L, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. p63 at the Crossroads between Stemness and Metastasis in Breast Cancer. Int J Mol Sci 2019; 20:E2683. [PMID: 31159154 PMCID: PMC6600246 DOI: 10.3390/ijms20112683] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
After lung cancer, breast cancer (BC) is the most frequent cause of cancer death among women, worldwide. Although advances in screening approaches and targeted therapeutic agents have decreased BC incidence and mortality, over the past five years, triple-negative breast cancer (TNBC) remains the breast cancer subtype that displays the worst prognosis, mainly due to the lack of clinically actionable targets. Genetic and molecular profiling has unveiled the high intrinsic heterogeneity of TNBC, with the basal-like molecular subtypes representing the most diffuse TNBC subtypes, characterized by the expression of basal epithelial markers, such as the transcription factor p63. In this review, we will provide a broad picture on the physiological role of p63, in maintaining the basal epithelial identity, as well as its involvement in breast cancer progression, emphasizing its relevance in tumor cell invasion and stemness.
Collapse
Affiliation(s)
- Veronica Gatti
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | - Claudia Fierro
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
- Medical Research Council, Toxicology Unit, University of Cambridge, Cambridge CB2 1PZ, UK.
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy.
| |
Collapse
|
31
|
Lakshmanachetty S, Balaiya V, High WA, Koster MI. Loss of TP63 Promotes the Metastasis of Head and Neck Squamous Cell Carcinoma by Activating MAPK and STAT3 Signaling. Mol Cancer Res 2019; 17:1279-1293. [PMID: 30910837 DOI: 10.1158/1541-7786.mcr-18-1355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 01/02/2023]
Abstract
TP63 is frequently amplified or overexpressed in primary head and neck squamous cell carcinomas (HNSCC). Nevertheless, the role of TP63 in the initiation and progression of HNSCCs is not known. Using archival HNSCC tissue sections, we found that TP63 expression is often downregulated in late-stage human HNSCCs. To establish a causal link between TP63 loss and HNSCC tumorigenesis, we developed a genetically engineered mouse model in which Trp63 (the mouse homolog of human TP63) was ablated from head and neck epithelia. Upon exposure of the mice to a chemical carcinogen, we found that Trp63 ablation accelerated HNSCC initiation and progression. To determine whether these findings are relevant for human HNSCCs, we generated TP63 knockdown HNSCC cell lines. These cells were implanted into the tongue of athymic nude mice to generate orthotopic xenografts. We found that loss of TP63 promoted HNSCC progression and metastasis. Furthermore, we determined that tumor metastasis is dependent on MAPK activation in TP63 knockdown HNSCCs. The significance of these findings is underscored by our finding that pharmacologic inhibition of MAPK activity by trametinib drastically impaired HNSCC metastasis mediated by TP63 loss. In conclusion, our data provide novel mechanistic insights into the role of TP63 loss in HNSCC initiation and progression, and provide a rationale for the development of new therapeutic approaches specifically targeting TP63-dependent tumor pathways. IMPLICATIONS: Our findings uncover a novel functional role for TP63 loss in HNSCC metastasis and identify MAPK signaling as a potential therapeutic target for treating HNSCCs with low TP63 expression.
Collapse
Affiliation(s)
- Senthilnath Lakshmanachetty
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Velmurugan Balaiya
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Whitney A High
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Maranke I Koster
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado. .,Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
32
|
Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Mol Oncol 2019; 13:981-1001. [PMID: 30845357 PMCID: PMC6487733 DOI: 10.1002/1878-0261.12473] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is a treatment‐refractory tumour which arises from the epithelium of diverse anatomical sites such as oesophagus, head and neck, lung and skin. Accumulating evidence has revealed a number of genomic, clinical and molecular features commonly observed in SCC of distinct origins. Some of these genetic events culminate in fostering the activity of ΔNp63, a potent oncogene which exerts its pro‐tumourigenic effects by regulating specific transcriptional programmes to sustain malignant cell proliferation and survival. In this review, we will describe the genetic and epigenetic determinants underlying ΔNp63 oncogenic activities in SCC, and discuss some relevant transcriptional effectors of ΔNp63, emphasizing their impact in modulating the crosstalk between tumour cells and tumour microenvironment (TME).
Collapse
Affiliation(s)
- Veronica Gatti
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome, Tor Vergata, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, UK
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| |
Collapse
|
33
|
Axin2 overexpression promotes the early epithelial disintegration and fusion of facial prominences during avian lip development. Dev Genes Evol 2018; 228:197-211. [PMID: 30043120 DOI: 10.1007/s00427-018-0617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
The epithelial disintegration and the mesenchymal bridging are critical steps in the fusion of facial prominences during the upper lip development. These processes of epithelial-mesenchymal transition and programmed cell death are mainly influenced by Wnt signals. Axis inhibition protein2 (Axin2), a major component of the Wnt pathway, has been reported to be involved in lip development and cleft pathogenesis. We wanted to study the involvement of Axin2 in the lip development, especially during the epithelial disintegration of facial prominences. Our results show that Axin2 was expressed mainly in the epithelium of facial prominences and decreased when the prominences were about to contact each other between Hamburger-Hamilton stages 27 and 28 of chicken embryos. The epithelial integrity was destructed or kept intact by the local gain or loss of Axin2 expression, resulting in morphological changes in the facial processes and their skeletal derivatives including the maxilla, nasal, premaxilla bone, and their junctions without cleft formation. These changes were related to expression changes in nuclear β-catenin, pGSK3β, Slug, Smad3, E-cadherin, and p63. All these data indicate that Axin2 participates in the regulation of epithelial integrity and fusion by promoting epithelial disassociation, basement membrane breakdown, and seam loss during the fusion of facial prominences in lip development.
Collapse
|
34
|
Monitoring changing cellular characteristics during the development of a fin cell line from Cyprinus carpio. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:1-12. [PMID: 29960082 DOI: 10.1016/j.cbpb.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
Abstract
The establishment and in-depth characterization of a novel continuous cell line derived from fin tissue of common carp (Cyprinus carpio), CCApin, is reported. The cells of the cell line could be propagated in Leibovitz's L-15 medium containing 15% foetal calf serum and 0.5% carp serum for >150 passages during the last 24 months, with a stable fast growth. Furthermore, antibody staining indicated that cell types obtained in primary cultures, containing the epithelial stem-cell marker tumorprotein 63, were different from cells in long-term cell cultures, containing tight junction protein zona occludens 1 and cytokeratin 7. These observations suggest a switch of dominant cell types. Molecular analysis of gene expression profiles of caudal fin tissue and CCApin cells showed that genes relevant in epithelial cells but also in mesenchymal cells were expressed. However, during cultivation of CCApin a set of very steadily expressed, primarily mesenchymal genes like collagen 1 alpha 1, fibronectin or cadherin 2 was found. In summary, the long-term cell culture could be described as a stably growing epithelial population with some mesenchymal features. There are several application possibilities, especially for virus susceptibility studies, e.g. cyprinid herpesvirus-3 (CyHV-3). The study leads to a better understanding of molecular and physiological mechanisms of in vitro fish cell cultures.
Collapse
|
35
|
The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol 2018; 21:126-144. [DOI: 10.1007/s12094-018-1910-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/18/2018] [Indexed: 01/27/2023]
|
36
|
STXBP4 regulates APC/C-mediated p63 turnover and drives squamous cell carcinogenesis. Proc Natl Acad Sci U S A 2018; 115:E4806-E4814. [PMID: 29735662 DOI: 10.1073/pnas.1718546115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Levels of the N-terminally truncated isoform of p63 (ΔN p63), well documented to play a pivotal role in basal epidermal gene expression and epithelial maintenance, need to be strictly regulated. We demonstrate here that the anaphase-promoting complex/cyclosome (APC/C) complex plays an essential role in the ubiquitin-mediated turnover of ΔNp63α through the M-G1 phase. In addition, syntaxin-binding protein 4 (Stxbp4), which we previously discovered to bind to ΔNp63, can suppress the APC/C-mediated proteolysis of ΔNp63. Supporting the physiological relevance, of these interactions, both Stxbp4 and an APC/C-resistant version of ΔNp63α (RL7-ΔNp63α) inhibit the terminal differentiation process in 3D organotypic cultures. In line with this, both the stable RL7-ΔNp63α variant and Stxbp4 have oncogenic activity in soft agar and xenograft tumor assays. Notably as well, higher levels of Stxbp4 expression are correlated with the accumulation of ΔNp63 in human squamous cell carcinoma (SCC). Our study reveals that Stxbp4 drives the oncogenic potential of ΔNp63α and may provide a relevant therapeutic target for SCC.
Collapse
|
37
|
Chen Y, Peng Y, Fan S, Li Y, Xiao ZX, Li C. A double dealing tale of p63: an oncogene or a tumor suppressor. Cell Mol Life Sci 2018; 75:965-973. [PMID: 28975366 PMCID: PMC11105324 DOI: 10.1007/s00018-017-2666-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
As a member of tumor suppressor p53 family, p63, a gene encoding versatile protein variant, has been documented to correlate with cancer formation and progression, though it is rarely mutated in cancer patients. However, it has long been controversial on whether p63 is an oncogene or a tumor suppressor. Here, we comprehensively reviewed reports on roles of p63 in development, tumorigenesis and tumor progression. According to data from molecular cell biology, genetic models and clinic research, we conclude that p63 may act as either an oncogene or a tumor suppressor gene in different scenarios: TA isoforms of p63 gene are generally tumor-suppressive through repressing cell proliferation, survival and metastasis; ΔN isoforms, however, may initiate tumorigenesis via promoting cell proliferation and survival, but inhibit tumor metastasis and progression; effects of p63 on tumor formation and progression depend on the context of the whole p53 family, and either amplification or loss of p63 gene locus can break the balance to cause tumorigenesis.
Collapse
Affiliation(s)
- Yonglong Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yougong Peng
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, 448000, China
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yimin Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
38
|
de Melo Maia B, Rodrigues IS, Akagi EM, Soares do Amaral N, Ling H, Monroig P, Soares FA, Calin GA, Rocha RM. MiR-223-5p works as an oncomiR in vulvar carcinoma by TP63 suppression. Oncotarget 2018; 7:49217-49231. [PMID: 27359057 PMCID: PMC5226502 DOI: 10.18632/oncotarget.10247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/08/2016] [Indexed: 01/21/2023] Open
Abstract
MiR-223-5p has been previously mentioned to be associated with tumor metastasis in HPV negative vulvar carcinomas, such as in several other tumor types. In the present study, we hypothesized that this microRNA would be important in vulvar cancer carcinogenesis and progression. To investigate this, we artificially mimicked miR-223-5p expression in a cell line derived from lymph node metastasis of vulvar carcinoma (SW962) and performed in vitro assays. As results, lower cell proliferation (p < 0.01) and migration (p < 0.001) were observed when miR-223-5p was overexpressed. In contrast, increased invasive potential of these cells was verified (p < 0.004). In silico search indicated that miR-223-5p targets TP63, member of the TP53 family of proteins, largely described with importance in vulvar cancer. We experimentally demonstrated that this microRNA is capable to decrease levels of p63 at both mRNA and protein levels (p < 0.001, and p < 0.0001; respectively). Also, a significant inverse correlation was observed between miR-223-5p and p63 expressions in tumors from patients (p = 0.0365). Furthermore, low p63 protein expression was correlated with deeper tumor invasion (p = 0.0491) and lower patient overall survival (p = 0.0494). Our study points out miR-223-5p overexpression as a putative pathological mechanism of tumor invasion and a promising therapeutic target and highlights the importance of both miR-223-5p and p63 as prognostic factors in vulvar cancer. Also, it is plausible that the evaluation of p63 expression in vulvar cancer at the biopsy level may bring important contribution on prognostic establishment and in elaborating better surgical approaches for vulvar cancer patients.
Collapse
Affiliation(s)
- Beatriz de Melo Maia
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil.,Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Iara Santana Rodrigues
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Erica Mie Akagi
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Nayra Soares do Amaral
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Paloma Monroig
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando Augusto Soares
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Malagoli Rocha
- Gynecology Laboratory, Gynecologic Department Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Abbas HA, Bui NHB, Rajapakshe K, Wong J, Gunaratne P, Tsai KY, Coarfa C, Flores ER. Distinct TP63 Isoform-Driven Transcriptional Signatures Predict Tumor Progression and Clinical Outcomes. Cancer Res 2018; 78:451-462. [PMID: 29180475 PMCID: PMC5771893 DOI: 10.1158/0008-5472.can-17-1803] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 02/04/2023]
Abstract
TP63 is required to maintain stem cell pluripotency and suppresses the metastatic potential of cancer cells through multiple mechanisms. These functions are differentially regulated by individual isoforms, necessitating a deeper understanding of how the distinct transcriptional programs controlled by these isoforms affect cancer progression and outcomes. In this study, we conducted a pan-cancer analysis of The Cancer Genome Atlas to identify transcriptional networks regulated by TAp63 and ΔNp63 using transcriptomes derived from epidermal cells of TAp63-/- and ΔNp63-/- mice. Analysis of 17 cancer developmental and 27 cancer progression signatures revealed a consistent tumor suppressive pattern for TAp63. In contrast, we identified pleiotropic roles for ΔNp63 in tumor development and found that its regulation of Lef1 was crucial for its oncogenic role. ΔNp63 performed a distinctive role as suppressor of tumor progression by cooperating with TAp63 to modulate key biological pathways, principally cell-cycle regulation, extracellular matrix remodeling, epithelial-to-mesenchymal transition, and the enrichment of pluripotent stem cells. Importantly, these TAp63 and ΔNp63 signatures prognosticated progression and survival, even within specific stages, in bladder and renal carcinomas as well as low-grade gliomas. These data describe a novel approach for understanding transcriptional activities of TP63 isoforms across a large number of cancer types, potentially enabling identification of patient subsets most likely to benefit from therapies predicated on manipulating specific TP63 isoforms.Significance: Transcriptomic analyses of patient samples and murine knockout models highlight the prognostic role of several critical mechanisms of tumor suppression that are regulated by TP63. Cancer Res; 78(2); 451-62. ©2017 AACR.
Collapse
Affiliation(s)
- Hussein A Abbas
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Ngoc Hoang Bao Bui
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Justin Wong
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Texas
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Kenneth Y Tsai
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
40
|
p63 expression is a prognostic factor in colorectal cancer. Int J Biol Markers 2018; 27:e212-8. [PMID: 23015401 DOI: 10.5301/jbm.2012.9581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 01/20/2023]
Abstract
p63 is highly expressed in some malignant tumors and is associated with tumorigenesis, invasion and metastasis. The aim of our study was to evaluate the clinical significance of p63 in colorectal cancer (CRC). p63 expression was detected by immunohistochemistry in 66 CRC patients. Correlations between p63 expression and clinicopathological factors, progression-free survival (PFS) and overall survival (OS) were analyzed. Among the 66 CRC cases, 31 cases (47%) exhibited a high score of p63 expression, while 35 cases (53%) were marked with a low score. The p63 level correlated with peritumoral deposits (p=0.021). The 5-year OS rates in the low p63 score and high p63 score groups were, respectively, 49% and 74% (p<0.001). The 5-year PFS rates in the low p63 score and high p63 score groups were, respectively, 44% and 71% (p<0.001). Univariate analysis revealed that p63 expression was correlated with OS and PFS. Multivariate analysis suggested that p63 expression was an independent prognostic factor for OS (p=0.035). In conclusion, p63 was negatively correlated with peritumoral deposits and positively associated with OS and PFS in CRC. The data suggest that p63 is a potential prognostic factor for CRC.
Collapse
|
41
|
Furth N, Aylon Y, Oren M. p53 shades of Hippo. Cell Death Differ 2018; 25:81-92. [PMID: 28984872 PMCID: PMC5729527 DOI: 10.1038/cdd.2017.163] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
The three p53 family members, p53, p63 and p73, are structurally similar and share many biochemical activities. Yet, along with their common fundamental role in protecting genomic fidelity, each has acquired distinct functions related to diverse cell autonomous and non-autonomous processes. Similar to the p53 family, the Hippo signaling pathway impacts a multitude of cellular processes, spanning from cell cycle and metabolism to development and tumor suppression. The core Hippo module consists of the tumor-suppressive MST-LATS kinases and oncogenic transcriptional co-effectors YAP and TAZ. A wealth of accumulated data suggests a complex and delicate regulatory network connecting the p53 and Hippo pathways, in a highly context-specific manner. This generates multiple layers of interaction, ranging from interdependent and collaborative signaling to apparent antagonistic activity. Furthermore, genetic and epigenetic alterations can disrupt this homeostatic network, paving the way to genomic instability and cancer. This strengthens the need to better understand the nuances that control the molecular function of each component and the cross-talk between the different components. Here, we review interactions between the p53 and Hippo pathways within a subset of physiological contexts, focusing on normal stem cells and development, as well as regulation of apoptosis, senescence and metabolism in transformed cells.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute, POB 26, 234 Herzl Street, Rehovot 7610001, Israel. Tel: +972 89342358; Fax: +972 89346004; E-mail: or
| |
Collapse
|
42
|
Vaughan CA, Pearsall I, Singh S, Windle B, Deb SP, Grossman SR, Yeudall WA, Deb S. Addiction of lung cancer cells to GOF p53 is promoted by up-regulation of epidermal growth factor receptor through multiple contacts with p53 transactivation domain and promoter. Oncotarget 2017; 7:12426-46. [PMID: 26820293 PMCID: PMC4914296 DOI: 10.18632/oncotarget.6998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/16/2016] [Indexed: 12/20/2022] Open
Abstract
Human lung cancers harboring gain-of-function (GOF) p53 alleles express higher levels of the epidermal growth factor receptor (EGFR). We demonstrate that a number of GOF p53 alleles directly upregulate EGFR. Knock-down of p53 in lung cancer cells lowers EGFR expression and reduces tumorigenicity and other GOF p53 properties. However, addiction of lung cancer cells to GOF p53 can be compensated by overexpressing EGFR, suggesting that EGFR plays a critical role in addiction. Chromatin immunoprecipitation (ChIP) using lung cancer cells expressing GOF p53 alleles showed that GOF p53 localized to the EGFR promoter. The sequence where GOF p53 is found to interact by ChIP seq can act as a GOF p53 response element. The presence of GOF p53 on the EGFR promoter increased histone H3 acetylation, indicating a mechanism whereby GOF p53 enhances chromatin opening for improved access to transcription factors (TFs). ChIP and ChIP-re-ChIP with p53, Sp1 and CBP histone acetylase (HAT) antibodies revealed docking of GOF p53 on Sp1, leading to increased binding of Sp1 and CBP to the EGFR promoter. Up-regulation of EGFR can occur via GOF p53 contact at other novel sites in the EGFR promoter even when TAD-I is inactivated; these sites are used by both intact and TAD-I mutated GOF p53 and might reflect redundancy in GOF p53 mechanisms for EGFR transactivation. Thus, the oncogenic action of GOF p53 in lung cancer is highly dependent on transactivation of the EGFR promoter via a novel transcriptional mechanism involving coordinated interactions of TFs, HATs and GOF p53.
Collapse
Affiliation(s)
- Catherine A Vaughan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Isabella Pearsall
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Shilpa Singh
- Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA
| | - Brad Windle
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Swati P Deb
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven R Grossman
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - W Andrew Yeudall
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Philips Institute, Virginia Commonwealth University, Richmond, VA, USA.,Department of Oral Biology, Augusta University, Augusta, GA, USA
| | - Sumitra Deb
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
43
|
Fichter CD, Przypadlo CM, Buck A, Herbener N, Riedel B, Schäfer L, Nakagawa H, Walch A, Reinheckel T, Werner M, Lassmann S. A new model system identifies epidermal growth factor receptor-human epidermal growth factor receptor 2 (HER2) and HER2-human epidermal growth factor receptor 3 heterodimers as potent inducers of oesophageal epithelial cell invasion. J Pathol 2017; 243:481-495. [PMID: 28940194 DOI: 10.1002/path.4987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Oesophageal squamous cell carcinomas and oesophageal adenocarcinomas show distinct patterns of ErbB expression and dimers. The functional effects of specific ErbB homodimers or heterodimers on oesophageal (cancer) cell behaviour, particularly invasion during early carcinogenesis, remain unknown. Here, a new cellular model system for controlled activation of epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2) and EGFR-HER2 or HER2-human epidermal growth factor receptor 3 (HER3) homodimers and heterodimers was studied in non-neoplastic squamous oesophageal epithelial Het-1A cells. EGFR, HER2 and HER3 intracellular domains (ICDs) were fused to dimerization domains (DmrA/DmrA and DmrC), and transduced into Het-1A cells lacking ErbB expression. Dimerization of EGFR, HER2 or EGFR-HER2 and HER2-HER3 ICDs was induced by synthetic ligands (A/A or A/C dimerizers). This was accompanied by phosphorylation of the respective EGFR, HER2 and HER3 ICDs and activation of distinct downstream signalling pathways, such as phospholipase Cγ1, Akt, STAT and Src family kinases. Phenotypically, ErbB dimers caused cell rounding and non-apoptotic blebbing, specifically in EGFR-HER2 and HER2-HER3 heterodimer cells. In a Transwell assay, cell migration velocity was elevated in HER2 dimer cells as compared with empty vector cells. In addition, HER2 dimer cells showed in increased cell invasion, reaching significance for induced HER2-HER3 heterodimers (P = 0.015). Importantly, in three-dimensional organotypic cultures, empty vector cells grew as a superficial cell layer, resembling oesophageal squamous epithelium. In contrast, induced HER2 homodimer cells were highly invasive into the matrix and formed cell clusters. This was associated with partial loss of cytokeratin 7 (when HER2 homodimers were modelled) and p63 (when EGFR-HER2 heterodimers were modelled), which suggests a change or loss of squamous cell differentiation. Controlled activation of specific EGFR, HER2 and HER3 homodimers and heterodimers caused oesophageal squamous epithelial cell migration and/or invasion, especially in a three-dimensional microenvironment, thereby functionally identifying ErbB homodimers and heterodimers as important drivers of oesophageal carcinogenesis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christiane Daniela Fichter
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Camilla Maria Przypadlo
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nicola Herbener
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bianca Riedel
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Schäfer
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Reinheckel
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Kumakura Y, Rokudai S, Iijima M, Altan B, Yoshida T, Bao H, Yokobori T, Sakai M, Sohda M, Miyazaki T, Nishiyama M, Kuwano H. Elevated expression of ΔNp63 in advanced esophageal squamous cell carcinoma. Cancer Sci 2017; 108:2149-2155. [PMID: 28892579 PMCID: PMC5666030 DOI: 10.1111/cas.13394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
This study aims to explore the expression level of ΔNp63 in esophageal squamous cell carcinoma (ESCC). To investigate the association between ΔNp63 (p40) expression and ESCC biology, we compared the levels of ΔNp63 expression in normal and tumor tissues, with a specific focus on the diagnostic value of ΔNp63 in ESCC. We analyzed 160 consecutive patients with ESCC who underwent surgical resection without neoadjuvant chemotherapy at Gunma University Hospital (Maebashi, Japan) between September 2000 and January 2010. The clinicopathological characteristics and survival of patients were subclassified based on the expression of ΔNp63 as determined by immunohistochemistry, indicating that ΔNp63 was highly expressed in 75.6% (121/160) of ESCC patients. Clinicopathological analysis of ΔNp63 expression showed that ΔNp63‐positive tumors significantly correlated with two important clinical parameters: T factor (P = 0.0316) and venous invasion (P = 0.0195). The 5‐year overall survival rates of advanced ESCC patients with positive and negative expression of ΔNp63 were 35.6% and 71.7%, respectively. Multivariate analysis revealed that the expression of ΔNp63 was identified as an independent prognostic factor (P = 0.0049) in advanced ESCC. In line with this, ΔNp63α‐transduced ESCC cell lines increased tumor growth in a soft agar colony formation assay. We report here for the first time that ΔNp63 expression increases the oncogenic potential of ESCC and is an independent marker for predicting poor outcome in advanced ESCC. Our findings suggest that ΔNp63 could serve as a new diagnostic marker for ESCC and might be a relevant therapeutic target for the treatment of patients with this disease.
Collapse
Affiliation(s)
- Yuji Kumakura
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University, Maebashi, Japan
| | - Misaki Iijima
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| | - Bolag Altan
- Department of Oncology Clinical Development, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tomonori Yoshida
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| | - Halin Bao
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| | - Takehiko Yokobori
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University, Maebashi, Japan
| |
Collapse
|
45
|
Park GB, Kim D. TLR5/7-mediated PI3K activation triggers epithelial-mesenchymal transition of ovarian cancer cells through WAVE3-dependent mesothelin or OCT4/SOX2 expression. Oncol Rep 2017; 38:3167-3176. [PMID: 28901470 DOI: 10.3892/or.2017.5941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor (TLR)-mediated signaling induces cell migration or invasion in several tumors and various stages of cancer. Interactions of mesothelin, a 40-kDa cell surface glycoprotein, with cancer antigen 125 (CA125) is associated with drug resistance, metastasis, and poor clinical outcome of ovarian cancer patients. In this study, we examined the role of TLR5 and TLR7 in the metastasis of ovarian cancer through the induction of mesothelin/CA125 expression and investigated its underlying mechanism. TLR5 agonist (flagellin) and TLR7 agonist (imiquimod) upregulated mesenchymal phenotypes and produced epithelial-mesenchymal transition (EMT)-related cytokines in the SKOV3 cells; however, TLR7 expressing CaOV3 cells had no response to the specific ligand, imiquimod, for enhancing its EMT processes. Stimulation of the SKOV3 cells with flagellin or imiquimod activated Wiskott-Aldrich syndrome protein verprolin-homologous 3 (WAVE3) and mesothelin/CA125, whereas it suppressed the expression of TAp63. Moreover, knockdown of TLR5 or TLR7 in SKOV3 cells profoundly impaired the TLR5- or TLR7-intiated downstream signaling pathway. Loss of WAVE3 in SKOV3 cells led to the inhibition of invasion, suppression of mesenchymal characteristics, prevention of OCT4/SOX2 secretion, and attenuation of mesothelin/CA125 expression after stimulation with flagellin or imiquimod. Although the disruption of mesothelin decreased the migratory activity of the TLR5/7-activated SKOV3 cells, knockdown of mesothelin failed to reduce the expression of mesenchymal markers, OCT4, and SOX2. In addition, targeting OCT4 or SOX2 with siRNA had no effect on the expression of mesothelin and the suppression of transcriptionally active p63 (TAp63) in the TLR5/7-stimulated SKOV3 cells. Our results suggest that TLR5/7-mediated WAVE3 activation not only controls the mesothelin-related EMT processes but also modulates OCT4/SOX2-mediated mesenchymal marker expression. Taken together, both TLR5 and TLR7 expression are critical for the TLR5/7-induced metastasis of ovarian cancer and the inhibition of WAVE3 might be a new therapeutic target to control ovarian cancer metastasis.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
46
|
ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A 2017; 114:E3964-E3973. [PMID: 28468801 DOI: 10.1073/pnas.1617816114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation of phosphatidylinositol 3 kinase (PI3K), Ras, and Her2 signaling plays a critical role in cancer development. Hotspot constitutive activating mutations in oncogenes, such as PIK3CA encoding the p110α catalytic subunit or RAS, as well as overexpression of Her2, are frequently found in human tumors and cancers. It has been well established that activation of these oncogenes profoundly promotes tumor metastasis, whereas decreased expression of ΔNp63α, the major protein isoform of the p53-related p63 expressed in epithelial cells, has been associated with cancer metastasis. In this study, we demonstrate that hotspot oncogenic mutations on PIK3CA and RAS, including p110αH1047R, K-RasG12V, and H-RasG12V, as well as activation of Her2, all led to suppression of ΔNp63α expression via Akt-fork-head transcription factor 3a (Akt-FOXO3a) signaling, resulting in increased cell motility and tumor metastasis. Expression of ΔNp63α effectively reversed p110αH1047R-, K-RasG12V-, H-RasG12V-, or Her2-induced cell motility in vitro and tumor metastasis in mouse models. We show that ΔNp63α was a direct FOXO3a transcriptional target and that expression of FOXO3a and ΔNp63α was correlated in human cancer biopsy samples. Together, these results demonstrate that ΔNp63α is a common inhibitory target of oncogenic PI3K, Ras, and Her2, and that ΔNp63α may function as a critical integrator of oncogenic signaling in cancer metastasis.
Collapse
|
47
|
Johnson NM, Holliday AC, Luyimbazi DT, Phillips MA, Collins GR, Grider DJ. Metastatic basal cell carcinoma with loss of p63 and mismatch repair proteins. JAAD Case Rep 2017; 3:222-224. [PMID: 28443315 PMCID: PMC5394203 DOI: 10.1016/j.jdcr.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nathan M. Johnson
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
- Correspondence to: Nathan M. Johnson, MS, 2 Riverside Cir, Roanoke, VA 24016.2 Riverside CirRoanokeVA24016
| | - Alex C. Holliday
- Department of Internal Medicine, Dermatology Section, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - David T. Luyimbazi
- Department of Internal Medicine, Dermatology Section, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Mariana A. Phillips
- Department of Internal Medicine, Dermatology Section, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - George R. Collins
- Department of Internal Medicine, Dermatology Section, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Douglas J. Grider
- Department of Internal Medicine, Dermatology Section, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
48
|
Di Giacomo V, Tian TV, Mas A, Pecoraro M, Batlle-Morera L, Noya L, Martín-Caballero J, Ruberte J, Keyes WM. ΔNp63α promotes adhesion of metastatic prostate cancer cells to the bone through regulation of CD82. Oncogene 2017; 36:4381-4392. [PMID: 28368419 PMCID: PMC5543260 DOI: 10.1038/onc.2017.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/01/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
ΔNp63α is a critical mediator of epithelial development and stem cell function in a variety of tissues including the skin and breast, while overexpression of ΔNp63α acts as an oncogene to drive tumor formation and cancer stem cell properties in squamous cell carcinoma. However, with regards to the prostate, while ΔNp63α is expressed in the basal stem cells of the mature gland, during adenocarcinoma development, its expression is lost and its absence is used to clinically diagnose the malignant state. Surprisingly, here we identify a sub-population of bone metastatic prostate cancer cells in the PC3 cell line that express ΔNp63α. Interestingly, we discovered that ΔNp63α favors adhesion and stem-like growth of these cells in the bone microenvironment. In addition, we show that these properties require expression of the target gene CD82. Together, this work uncovers a population of bone metastatic prostate cancer cells that express ΔNp63α, and provides important information about the mechanisms of bone metastatic colonization. Finally, we identify metastasis-promoting properties for the tetraspanin family member CD82.
Collapse
Affiliation(s)
- V Di Giacomo
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - T V Tian
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A Mas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Pecoraro
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Batlle-Morera
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Noya
- Department of Animal Health and Anatomy and Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - J Ruberte
- Department of Animal Health and Anatomy and Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - W M Keyes
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Development and Stem Cells program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
49
|
ΔNp63 activates EGFR signaling to induce loss of adhesion in triple-negative basal-like breast cancer cells. Breast Cancer Res Treat 2017; 163:475-484. [DOI: 10.1007/s10549-017-4216-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
50
|
Mezzomo LC, Pesce FG, Marçal JMB, Haag T, Ferreira NP, Lima JFSP, Leães CGS, Oliveira MC, da Fonte Kohek MB. Decreased TAp63 and ΔNp63 mRNA Levels in Most Human Pituitary Adenomas Are Correlated with Notch3/Jagged1 Relative Expression. Endocr Pathol 2017; 28:13-21. [PMID: 28078618 DOI: 10.1007/s12022-016-9463-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite recent advances in molecular genetics, the pituitary adenoma initiation, development, progress, and the molecular basis of their unique features are still poorly understood. In this sense, it is proposed that stem cell could be involved in pituitary adenoma tumorigenesis. It is suggested that TP63 has important functions in stem cells, and it may have interplay of TP63 and Notch and its ligand Jagged in this process. This study aimed to evaluate the distinct expression of TP63 isoforms (TAp63 and ΔNp63), as well as its correlation with Notch3 receptor and its ligand Jagged1 in human pituitary adenomas at the messenger RNA (mRNA) level. We included 77 pituitary adenoma tumor samples from patients who underwent surgical resection. The expression levels of TP63 isoforms (TAp63 and ΔNp63) and Notch3 and its ligand Jagged1 were evaluated by qRT-PCR using isoform-specific primers. We also evaluated proliferation index immunohistochemically using KI-67 antibody. The expression levels were associated with clinical outcomes, as age, gender, tumor size, and tumor subtype. In summary, we found that mRNA expression of both TP63 isoforms decreased in pituitary adenomas compared with normal pituitary control. On the other hand, there was an increase of relative Notch3 and Jagged1 mRNA expression in the majority of examined samples. The mRNA expression of three genes evaluated was correlated and statistically significantly. There was no significant association between gene expression and the analyzed clinical data. The current study has provided the first time evidence that Tap63 and ΔNp63 isoforms are underexpressed in most pituitary adenomas. These results are correlated with Notch3 and its ligand Jagged1 overexpression, corroborating previous studies pointing its antagonistic interactions.
Collapse
Affiliation(s)
- Lisiane Cervieri Mezzomo
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Frederico Giacomoni Pesce
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Josenel Maria Barcelos Marçal
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Taiana Haag
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Julia Fernanda Semmelmann Pereira Lima
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Neuroendocrinology Center of Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
| | | | - Miriam Costa Oliveira
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Neuroendocrinology Center of Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
| | - Maria Beatriz da Fonte Kohek
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|