1
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Kumar A, Lunawat AK, Kumar A, Sharma T, Islam MM, Kahlon MS, Mukherjee D, Narang RK, Raikwar S. Recent Trends in Nanocarrier-Based Drug Delivery System for Prostate Cancer. AAPS PharmSciTech 2024; 25:55. [PMID: 38448649 DOI: 10.1208/s12249-024-02765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Prostate cancer remains a significant global health concern, requiring innovative approaches for improved therapeutic outcomes. In recent years, nanoparticle-based drug delivery systems have emerged as promising strategies to address the limitations of conventional cancer chemotherapy. The key trends include utilizing nanoparticles for enhancing drug delivery to prostate cancer cells. Nanoparticles have some advantages such as improved drug solubility, prolonged circulation time, and targeted delivery of drugs. Encapsulation of chemotherapeutic agents within nanoparticles allows for controlled release kinetics, reducing systemic toxicity while maintaining therapeutic efficacy. Additionally, site-specific accumulation within the prostate tumor microenvironment is made possible by the functionalization of nanocarrier with targeted ligands, improving therapeutic effectiveness. This article highlights the basics of prostate cancer, statistics of prostate cancer, mechanism of multidrug resistance, targeting approach, and different types of nanocarrier used for the treatment of prostate cancer. It also includes the applications of nanocarriers for the treatment of prostate cancer and clinical trial studies to validate the safety and efficacy of the innovative drug delivery systems. The article focused on developing nanocarrier-based drug delivery systems, with the goal of translating these advancements into clinical applications in the future.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Akshay Kumar Lunawat
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Tarun Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Milan Singh Kahlon
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Debanjan Mukherjee
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
4
|
Jin KZ, Wu Y, Zheng XX, Li TJ, Liao ZY, Fei QL, Zhang HR, Shi SM, Sha X, Yu XJ, Chen W, Ye LY, Wu WD. Inhibition of epithelial-to-mesenchymal transition augments antitumor efficacy of nanotherapeutics in pancreatic ductal adenocarcinoma. FEBS J 2023; 290:4577-4590. [PMID: 37245155 DOI: 10.1111/febs.16879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023]
Abstract
Intrinsic drug resistance mechanisms of tumor cells often reduce intracellular drug concentration to suboptimal levels. Epithelial-to-mesenchymal transition (EMT) is a pivotal process in tumor progression and metastasis that confers an aggressive phenotype as well as resistance to chemotherapeutics. Therefore, it is imperative to develop novel strategies and identify new targets to improve the overall efficacy of cancer treatment. We developed SN38 (active metabolite of irinotecan)-assembled glycol chitosan nanoparticles (cSN38) for the treatment of pancreatic ductal adenocarcinoma (PDAC). Furthermore, cSN38 and the TGF-β1 inhibitor LY364947 formed composite nanoparticles upon self-assembly (cSN38 + LY), which obviated the poor aqueous solubility of LY364947 and enhanced drug sensitivity. The therapeutic efficacy of cSN38 + LY nanotherapeutics was studied in vitro and in vivo using suitable models. The cSN38 nanoparticles exhibited an antitumor effect that was significantly attenuated by TGF-β-induced EMT. The cellular uptake of SN38 was impeded during EMT, which affected the therapeutic efficacy. The combination of LY364947 and cSN38 markedly enhanced the cellular uptake of SN38, increased cytotoxic effects, and inhibited EMT in PDAC cells in vitro. Furthermore, cSN38 + LY significantly inhibited PDAC xenograft growth in vivo. The cSN38 + LY nanoparticles increased the therapeutic efficacy of cSN38 via repressing the EMT of PDAC cells. Our findings provide a rationale for designing nanoscale therapeutics to combat PDAC.
Collapse
Affiliation(s)
- Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ying Wu
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Xiao-Xiao Zheng
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhen-Yu Liao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Lin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Sai-Meng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Sha
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Poly(amidoamine) Dendrimer/Camptothecin Complex: From Synthesis to In Vitro Cancer Cell Line Studies. Molecules 2023; 28:molecules28062696. [PMID: 36985668 PMCID: PMC10052527 DOI: 10.3390/molecules28062696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Camptothecin (CPT), an alkaloid with potent anticancer activity, is still not used in clinical practice due to its high hydrophobicity, toxicity, and poor active-form stability. To address these shortcomings, our research focuses on the encapsulation of this drug in the poly(amidoamine) (PAMAM) dendrimer macromolecule. The PAMAM dendrimer/CPT complex was synthesized and thoroughly characterized. The in vitro drug release study revealed that the drug was released in a slow and controlled manner in acidic and physiological conditions and that more than 80% of the drug was released after 168 h of incubation. Furthermore, it was demonstrated that CPT was released with first-order kinetics and non-Fickian transport. The studies on the hemolytic activity of the synthesized complex indicated that it is hemocompatible for potential intravenous administration at a concentration ≤ 5 µg/mL. Additionally, the developed product was shown to reduce the viability of non-small-cell lung cancer cells (A549) in a concentration- and time-dependent manner, and cancer cells were more susceptible to the complex than normal fibroblasts. Lastly, molecular modeling studies revealed that the lactone or carboxylic forms of CPT had a significant impact on the shape and stability of the complex and that its formation with the lactone form of CPT was more energetically favorable for each subsequent molecule than the carboxylic form. The report represents a systematic and structured approach to develop a PAMAM dendrimer/CPT complex that can be used as an effective drug delivery system (DDS) for the potential treatment of non-small-cell lung cancer.
Collapse
|
6
|
Dendrimer-Mediated Delivery of Anticancer Drugs for Colon Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15030801. [PMID: 36986662 PMCID: PMC10059812 DOI: 10.3390/pharmaceutics15030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
The third most common cancer worldwide is colon cancer (CC). Every year, there more cases are reported, yet there are not enough effective treatments. This emphasizes the need for new drug delivery strategies to increase the success rate and reduce side effects. Recently, a lot of trials have been done for developing natural and synthetic medicines for CC, among which the nanoparticle-based approach is the most trending. Dendrimers are one of the most utilized nanomaterials that are accessible and offer several benefits in the chemotherapy-based treatment of CC by improving the stability, solubility, and bioavailability of drugs. They are highly branched polymers, making it simple to conjugate and encapsulate medicines. Dendrimers have nanoscale features that enable the differentiation of inherent metabolic disparities between cancer cells and healthy cells, enabling the passive targeting of CC. Moreover, dendrimer surfaces can be easily functionalized to improve the specificity and enable active targeting of colon cancer. Therefore, dendrimers can be explored as smart nanocarriers for CC chemotherapy.
Collapse
|
7
|
Castillo‐Rodríguez IO, Hernández‐Alducin PA, Pedro‐Hernández LD, Barajas‐Mendoza I, Ramírez‐Ápan T, Martínez‐García M. Antileukemia and Anticolorectal Cancer Activity of Janus Dendrimer Conjugates with Naproxen and Ibuprofen. ChemistrySelect 2023. [DOI: 10.1002/slct.202204220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Irving Osiel Castillo‐Rodríguez
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Pablo Abraham Hernández‐Alducin
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Luis Daniel Pedro‐Hernández
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Israel Barajas‐Mendoza
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Teresa Ramírez‐Ápan
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Marcos Martínez‐García
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| |
Collapse
|
8
|
Sadi KS, Mahmoudi A, Jaafari MR, Moosavian SA, Malaekeh-Nikouei B. The effect of AS1411 aptamer on anti-tumor effects of dendrimers containing SN38. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Li Y, Deng G, Hu X, Li C, Wang X, Zhu Q, Zheng K, Xiong W, Wu H. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine (Lond) 2022; 17:1253-1279. [PMID: 36250937 DOI: 10.2217/nnm-2022-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted drug-delivery systems are a growing research topic in tumor treatment. In recent years, mesoporous silica nanoparticles (MSNs) have been extensively studied and applied in noninvasive and biocompatible drug-delivery systems for tumor therapy due to their outstanding advantages, which include high surface area, large pore volume, tunable pore size, easy surface modification and stable framework. The advances in the application of MSNs for anticancer drug targeting are covered and highlighted in this review, and the challenges and prospects of MSN-based targeted drug-delivery systems are discussed. This review provides new insights for researchers interested in targeted drug-delivery systems against cancer.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guoxing Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.,School of Pharmacy, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianlong Hu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| |
Collapse
|
10
|
Cho CF, Farquhar CE, Fadzen CM, Scott B, Zhuang P, von Spreckelsen N, Loas A, Hartrampf N, Pentelute BL, Lawler SE. A Tumor-Homing Peptide Platform Enhances Drug Solubility, Improves Blood-Brain Barrier Permeability and Targets Glioblastoma. Cancers (Basel) 2022; 14:cancers14092207. [PMID: 35565337 PMCID: PMC9103942 DOI: 10.3390/cancers14092207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is a fatal and incurable brain cancer, and current treatment options have demonstrated limited success. Here, we describe the use of a dg-Bcan-Targeting-Peptide (BTP-7) that has BBB-penetrating properties and targets GBM. Conjugation of BTP-7 to an insoluble anti-cancer drug, camptothecin (CPT), improves drug solubility in aqueous solution, retains drug efficacy against patient-derived GBM stem cells (GSC), enhances BBB permeability, and enables therapeutic targeting to intracranial patient-derived GBM xenograft in mice, leading to higher toxicity in GBM cells compared to normal brain tissues and prolonged animal survival. This work demonstrates a proof-of-concept for BTP-7 as a tumor-targeting peptide for therapeutic delivery to GBM. Abstract Background: Glioblastoma (GBM) is the most common and deadliest malignant primary brain tumor, contributing significant morbidity and mortality among patients. As current standard-of-care demonstrates limited success, the development of new efficacious GBM therapeutics is urgently needed. Major challenges in advancing GBM chemotherapy include poor bioavailability, lack of tumor selectivity leading to undesired side effects, poor permeability across the blood–brain barrier (BBB), and extensive intratumoral heterogeneity. Methods: We have previously identified a small, soluble peptide (BTP-7) that is able to cross the BBB and target the human GBM extracellular matrix (ECM). Here, we covalently attached BTP-7 to an insoluble anti-cancer drug, camptothecin (CPT). Results: We demonstrate that conjugation of BTP-7 to CPT improves drug solubility in aqueous solution, retains drug efficacy against patient-derived GBM stem cells (GSC), enhances BBB permeability, and enables therapeutic targeting to intracranial GBM, leading to higher toxicity in GBM cells compared to normal brain tissues, and ultimately prolongs survival in mice bearing intracranial patient-derived GBM xenograft. Conclusion: BTP-7 is a new modality that opens the door to possibilities for GBM-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Choi-Fong Cho
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Correspondence:
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
| | - Colin M. Fadzen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
| | - Benjamin Scott
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
| | - Pei Zhuang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
| | - Niklas von Spreckelsen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
- Department of General Neurosurgery, Centre of Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50937 Cologne, Germany
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
| | - Nina Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bradley L. Pentelute
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
- Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
11
|
Nguyen-Trinh QN, Trinh KXT, Trinh NT, Vo VT, Li N, Nagasaki Y, Vong LB. A silica-based antioxidant nanoparticle for oral delivery of Camptothecin which reduces intestinal side effects while improving drug efficacy for colon cancer treatment. Acta Biomater 2022; 143:459-470. [PMID: 35235866 DOI: 10.1016/j.actbio.2022.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Camptothecin (CPT) is a potent anticancer agent for the treatment of colorectal cancer; however, it exhibits some limitations, including poor solubility, low stability, and low bioavailability via oral administration, which restrict its usability in clinical treatments. In addition, overproduction of reactive oxygen species (ROS) during chemotherapy induces drug resistance and severe intestinal side effects. In this study, silica-installed ROS scavenging nanoparticles (siRNP) with 50-60 nm in diameter were employed to overcome the aforementioned drawbacks of CPT. The solubility of CPT was significantly improved by incorporating it into the core of the nanoparticle, forming CPT-loaded siRNP (CPT@siRNP). The anticancer activity of CPT@siRNP against colorectal cancer cells (C-26) in vitro was significantly improved as compared to free CPT through higher efficiency of intracellular internalization and induction of apoptosis. Owing to its antioxidant properties, CPT@siRNP reduced cytotoxicity to normal endothelial cells, which was in sharp contrast to the high toxicity of free CPT. Oral administration of CPT and CPT@siRNP to the C-26 tumor-bearing mice exhibited antitumor activity, accompanied by effective suppression of tumor growth. Although CPT treatment suppressed tumor progression, it caused severe side effects, including intestinal damage and significant bodyweight loss. Interestingly, such noticeable side effects were not observed in the mice treated with CPT@siRNP, and the effect of tumor growth inhibition tended to be similar to or higher than that of CPT treatment. The results obtained in this study indicate that CPT@siRNP is a potential therapeutic nanomedicine for the treatment of colon cancer. STATEMENT OF SIGNIFICANCE: Here we employed silica-containing antioxidant nanoparticle (siRNP) as promising oral delivery nanocarrier of campothecin (CPT) to treat colon cancer. The design of siRNP via covalent conjugation of antioxidant nitroxide radicals and the silanol groups in the polymer backbone contributes to a significant increase in the absorption of hydrophobic drug molecules inside the core and enhances the stability of nanoparticles in the gastrointestinal environment for oral drug delivery. CPT-loaded siRNP (CPT@siRNP) significantly improved solubility of CPT. As compared to free CTP, the CPT@siRNP treatment showed a significantly higher toxicity to colon cancer cell, inhibition of cancer cell migration, and induction of apopotosis. With the antioxidant feature, siRNP also significantly suppressed the intestinal side effects caused by CPT treatment in tumor-bearing mouse model.
Collapse
|
12
|
Trital A, Xue W, Wang L, Chen S. Development of an Integrated High Serum Stability Zwitterionic Polypeptide-Based Nanodrug with Both Rapid Internalization and Endocellular Drug Releasing for Efficient Targeted Chemotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14015-14025. [PMID: 34812041 DOI: 10.1021/acs.langmuir.1c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic nanodrugs have to penetrate through many biological barriers before reaching the tumor cells. Thus, high stability of the nanocarrier before reaching tumor cells and fast release of the carried drugs in targeted tumor cells are required. In this work, inspired by the intrinsic zwitterionic surface property, mainly formed by glutamic acid and lysine residues, of the plasma protein surface, the zwitterionic poly(glutamyl lysine-co-aspartic acid-co-cysteine) peptide (P(EK-D-C)) was synthesized for conjugating n-mercaptoalkanoic acid (MA) with different chain lengths on cysteine residues through a disulfide linkage to load hydrophobic doxorubicin (DOX). The results showed that the slightly negative-biased zwitterionic nanodrugs were very stable in both resistance to nonspecific plasma protein adsorption and prevention of premature DOX release at physiological pH 7.4 due to the zwitterionic polypeptide shell and the sharp contrast in polarity between the shell and DOX-loaded core, while they can quickly release the loaded DOX through responding to both low pH values in the endosome/lysosome and high glutathione concentrations in the tumor cell cytoplasm. Furthermore, the enhanced internalization of these nanodrugs led to about 60% higher in vitro cytotoxicity against MCF-7 cells at pH 6.7 than at pH 7.4, whereas the in vitro cytotoxicity of DOX·HCl at pH 6.7 was only 75% of the value at pH 7.4. In vivo results revealed that the stable nanodrugs conjugated with the long hydrophobic 12-mercaptododecanoic acid had higher tumor inhibition rate and lower systematic toxicity on MCF-7 tumor-bearing mice than the less stable nanodrugs conjugated with the short 8-mercaptooctaoic acid and were significantly superior to DOX·HCl. These results indicate that the combination of high stability in circulation and fast release in tumor cells of nanodrugs can enhance high efficacy targeted chemotherapy. This pH/redox-sensitive zwitterionic polypeptide nanocarrier might provide an excellent vehicle for solid tumor treatment.
Collapse
Affiliation(s)
- Ashish Trital
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Weili Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China
| |
Collapse
|
13
|
Motta S, Siani P, Levy A, Di Valentin C. Exploring the drug loading mechanism of photoactive inorganic nanocarriers through molecular dynamics simulations. NANOSCALE 2021; 13:13000-13013. [PMID: 34477783 PMCID: PMC8341096 DOI: 10.1039/d1nr01972d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023]
Abstract
Inorganic nanoparticles are gaining increasing attention as drug carriers because they respond to external physical stimuli, allowing therapy to be combined with diagnosis. Their drawback is low drug loading capacity, which can be improved by proper and efficacious functionalization. In this computational study, we take TiO2 spherical nanoparticles as prototype photoresponsive inorganic nanoparticles and we fully decorate them with two different types of bifunctional ligands: TETTs and DOPACs, which present different surface anchoring groups (silanol or catechol) but the same drug tethering COOH group, although in different concentrations (3 vs. 1), thus causing different steric hindrances. Then, we put these two types of nanocarriers in bulk water and in the presence of several DOX molecules and let the systems evolve through molecular dynamics (MD) simulations, clearly observing drug loading on the nanocarriers. This comparative MD study allows the investigation of the loading mechanism, performance of a conformational analysis and establishment of the guiding interactions through an energy decomposition analysis. We learn that DOX mostly interacts with the functionalized NPs through electrostatics, as a consequence of the protonated amino group, although several H-bonds are also established both with the ligands and with the oxide surface. Different ligands induce a different electrostatic potential around the NP; therefore, those which lead to the formation of more negative hotspots (here TETTs) are found to favour DOX binding. The leading role of electrostatics can provide a rational explanation for a pH-dependent drug release mechanism that is often invoked for DOX when reaching diseased cells because under anomalous acidic conditions both the NP surface and the carboxylate groups of the ligands are expected to get protonated, which of course would weaken, if not totally quench, the interaction of the nanocarrier with protonated DOX.
Collapse
Affiliation(s)
- Stefano Motta
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano BicoccaPiazza della Scienza 120126 MilanoItaly
| | - Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano Bicoccavia R. Cozzi 552015 MilanoItaly
| | - Andrea Levy
- Dipartimento di Scienza dei Materiali, Università di Milano Bicoccavia R. Cozzi 552015 MilanoItaly
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano Bicoccavia R. Cozzi 552015 MilanoItaly
| |
Collapse
|
14
|
Shirazi AS, Varshochian R, Rezaei M, Ardakani YH, Dinarvand R. SN38 loaded nanostructured lipid carriers (NLCs); preparation and in vitro evaluations against glioblastoma. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:78. [PMID: 34191134 PMCID: PMC8245372 DOI: 10.1007/s10856-021-06538-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
SN38 is the active metabolite of irinotecan with 1000-fold greater cytotoxicity compared to the parent drug. Despite the potential, its application as a drug is still seriously limited due to its stability concerns and low solubility in acceptable pharmaceutical solvents. To address these drawbacks here nanostructured lipid carrier (NLC) containing SN38 was prepared and its cytotoxicity against U87MG glioblastoma cell line was investigated. The formulations were prepared using hot ultrasonication and solvent evaporation/emulsification methods. NLCs with a mean size of 140 nm and particle size distribution (PDI) of 0.25 were obtained. The average loading efficiency was 9.5% and its entrapment efficiency was 81%. In order to obtain an accurate determination of released amount of SN38 a novel medium and extraction method was designed, which lead to an appropriate in vitro release profile of the drug from the prepared NLCs. The MTT test results revealed the significant higher cytotoxicity of NLCs on U87MG human glioblastoma cell line compared with the free drug. The confocal microscopy images confirmed the proper penetration of the nanostructures into the cells within the first 4 h. Consequently, the results indicated promising potentials of the prepared NLCs as a novel treatment for glioblastoma.
Collapse
Affiliation(s)
- Ali Sabouri Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Varshochian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rezaei
- School of chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Yalda Hosseinzadeh Ardakani
- Department of Pharmaceutics, Biopharmaceutics and Pharmacokinetics Division, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zong L, Wang H, Hou X, Fu L, Wang P, Xu H, Yu W, Dai Y, Qiao Y, Wang X, Yuan Q, Pang X, Han G, Pu X. A novel GSH-triggered polymeric nanomicelles for reversing MDR and enhancing antitumor efficiency of hydroxycamptothecin. Int J Pharm 2021; 600:120528. [PMID: 33781880 DOI: 10.1016/j.ijpharm.2021.120528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Tumor multidrug resistance (MDR) is one of the main reasons for the failure of clinical chemotherapy. Here, a bio-responsive anti-drug-resistant polymer micelle that can respond to the reductive GSH in the tumor microenvironment (TME) for delivery of HCPT was designed. A new type of polymer with anti-drug resistance and anti-tumor effect was synthesized and used to encapsulated HCPT to form reduction-sensitive micelles (PDSAH) by a thin-film dispersion method. It is demonstrated that the micelle formulation improves the anti-tumor activity and biosafety of HCPT, and also plays a significant role in reversing the drug resistance, which contributes to inhibiting the tumor growth and prolonging the survival time of H22 tumor-bearing mice. The results indicate that this nanoplatform can serve as a flexible and powerful system for delivery of other drugs that are tolerated by tumors or bacteria.
Collapse
Affiliation(s)
- Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Haiyan Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Xianqiao Hou
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Like Fu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Peirong Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Hongliang Xu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Wenjie Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Yuxin Dai
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Yonghui Qiao
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510632, China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| | - Xiaobin Pang
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Guang Han
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| |
Collapse
|
16
|
Gong Z, Liu X, Zhou B, Wang G, Guan X, Xu Y, Zhang J, Hong Z, Cao J, Sun X, Gao Z, Lu H, Pan X, Bai J. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf B Biointerfaces 2021; 202:111673. [PMID: 33714186 DOI: 10.1016/j.colsurfb.2021.111673] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
Spatial accuracy is crucial in drug delivery, especially to increase the efficacy and reduce the side effects of antitumor drugs. In this study, we developed a simple and broadly applicable strategy in which a target peptide ligand was introduced to construct a pH-responsive drug-loading system to achieve targeted delivery and drug release in lesions. In addition to reaching the tumor tissue through passive targeting modalities such as the enhanced permeability and retention (EPR) effect, active targeting nanoparticles used RGD motifs coupled to nanocarriers to specifically bind certain integrins, such as ανβ3, which is expressed on the surface of tumor cells, to achieve active tumor cell targeting. Self-assembling peptides have significant advantages in their structural design. The amphiphilic peptide LKR could form a spherical and self-assembled nanoparticle, which encapsulated the fat-soluble antitumor drug doxorubicin (Dox) in neutral medium. The Dox-encapsulating peptide nanoparticles swelled and burst, rapidly releasing Dox in an acidic microenvironment. Flow cytometry and fluorescence detection showed that the self-assembled LKR nanoparticles enhanced the drug accumulation in tumor cells compared with normal mammalian cells. The Dox-encapsulating peptide nanoparticles exhibited desirable antitumor effects in vivo. In summary, the acidic microenvironment of tumors was used to induce drug release from a targeted peptide drug-loading system to enhance cellular uptake and therapeutic effects in situ, providing a promising therapeutic approach for the treatment of major diseases such as hepatoma.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Xiaoying Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, PR China
| | - Guohui Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China.
| | - Xiuwen Guan
- School of Pharmacy, Weifang Medical University, Weifang, 261053, PR China
| | - Ying Xu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Juanjuan Zhang
- Department of Oral Biology, Wei Fang Medical University, Weifang, 261053, PR China
| | - Zexin Hong
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Xirui Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Haozheng Lu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China
| | - Xingliang Pan
- Microbiology Laboratory, Beijing General Station of Animal Husbandry, Beijing, 100107, PR China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, PR China.
| |
Collapse
|
17
|
Moholkar DN, Sadalage PS, Havaldar DV, Pawar KD. Engineering the liposomal formulations from natural peanut phospholipids for pH and temperature sensitive release of folic acid, levodopa and camptothecin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111979. [PMID: 33812607 DOI: 10.1016/j.msec.2021.111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/12/2021] [Accepted: 02/13/2021] [Indexed: 11/29/2022]
Abstract
The present study demonstrates the extraction and identification of phospholipids (PLs) from peanut seed for formulation of liposomes for pH and thermo-sensitive delivery and release of folic acid (FA), levodopa (DOPA) and, camptothecin (CPT). The TLC, FTIR and GC-MS based characterization of extracted peanut PLs showed phosphatidylethanolamine, cardiolipin and phosphatidic acid as major PLs and palmitic acid and oleic acid as major fatty acids. Liposomes (LSMs) of size 1-2 μm formulated by optimized thin-film hydration method were found to entrap FA, DOPA and CPT with 58, 61.4 and 52.12% efficiency, respectively with good stability. The effect of external stimuli like pH and temperature on the release pattern of FA, DOPA and CPT indicated that FA was optimally released at pH 10 and 57 °C, DOPA at pH 2 and 37 °C, while CPT was best released at pH 6 and 47 °C. When tested for the in vitro activity, DOPA released by DOPA@LSMs showed lower toxicity to 3T3 than to SH-SY5Y cells. Similarly, CPT released by CPT@LSMs showed remarkable anticancer activity against MCF-7 cells with an IC50 value of 17.99 μg/mL. Thus peanut PLs can be efficiently used for liposomal formulations for pH and thermo-sensitive release of drugs.
Collapse
Affiliation(s)
- Disha N Moholkar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | | | - Darshana V Havaldar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
18
|
Choi SK. Nanomaterial-Enabled Sensors and Therapeutic Platforms for Reactive Organophosphates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:224. [PMID: 33467113 PMCID: PMC7830340 DOI: 10.3390/nano11010224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Unintended exposure to harmful reactive organophosphates (OP), which comprise a group of nerve agents and agricultural pesticides, continues to pose a serious threat to human health and ecosystems due to their toxicity and prolonged stability. This underscores an unmet need for developing technologies that will allow sensitive OP detection, rapid decontamination and effective treatment of OP intoxication. Here, this article aims to review the status and prospect of emerging nanotechnologies and multifunctional nanomaterials that have shown considerable potential in advancing detection methods and treatment modalities. It begins with a brief introduction to OP types and their biochemical basis of toxicity followed by nanomaterial applications in two topical areas of primary interest. One topic relates to nanomaterial-based sensors which are applicable for OP detection and quantitative analysis by electrochemical, fluorescent, luminescent and spectrophotometric methods. The other topic is directed on nanotherapeutic platforms developed as OP remedies, which comprise nanocarriers for antidote drug delivery and nanoscavengers for OP inactivation and decontamination. In summary, this article addresses OP-responsive nanomaterials, their design concepts and growing impact on advancing our capability in the development of OP sensors, decontaminants and therapies.
Collapse
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Mignani S, Shi X, Zablocka M, Majoral JP. Dendritic Macromolecular Architectures: Dendrimer-Based Polyion Complex Micelles. Biomacromolecules 2021; 22:262-274. [PMID: 33426886 DOI: 10.1021/acs.biomac.0c01645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polymeric micelles are nanoassemblies that are formed by spontaneous arrangement of amphiphilic block copolymers in aqueous solutions at critical micelle concentration (CMC). They represent an effective system for drug delivery of, for instance, poorly water-soluble anticancer drugs. Then, the development of polyion complexes (PICs) were emphasized. The morphology of these complexes depends on the topology of the polyelectrolytes used and the way they are assembled. For instance, ionic-hydrophilic block copolymers have been used for the preparation of PIC micelles. The main limitation in the use of PIC micelles is their potential instability during the self-assembly/disassembly processes, influenced by several parameters, such as polyelectrolyte concentration, deionization associated with pH, ionic strength due to salt medium effects, mixing ratio, and PIC particle cross-linking. To overcome these issues, the preparation of stable PIC micelles by increasing the rigidity of their dendritic architecture by the introduction of dendrimers and controlling their number within micelle scaffold was highlighted. In this original concise Review, we will describe the preparation, molecular characteristics, and pharmacological profile of these stable nanoassemblies.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France.,CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Maria Zablocka
- Center of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90001, Lodz, Poland
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France.,Université Toulouse, 118 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
20
|
Packiam K, Dhakshinamoorthy M. Camptothecin: An anticancer drug from Pestalotiopsis microspora Mh458929 – An endophytic fungus isolated from an ethnopharmacologically important medicinal plant Cordia dichotoma G. forst. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_417_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
21
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Han R, Wu S, Tang K, Hou Y. Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Thakkar M, Islam MS, Railkar A, Mitra S. Antisolvent precipitative immobilization of micro and nanostructured griseofulvin on laboratory cultured diatom frustules for enhanced aqueous dissolution. Colloids Surf B Biointerfaces 2020; 196:111308. [PMID: 32784059 DOI: 10.1016/j.colsurfb.2020.111308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023]
Abstract
We report for the first time an antisolvent synthesis of nanostructured hydrophobic drug formulation onto a natural diatom. The jewel of the sea, a marine diatom, which is enriched in silicon, was cultured and grown in the laboratory. Its frustules were isolated and purified. The polar functional group on its surface provided unique physical and chemical properties. Griseofulvin (GF), an antifungal drug was used as a model compound was precipitated onto and adsorbed onto hydrophilic diatom surface, while stabilizer hydroxypropyl methyl cellulose (HPMC) was used for restricting particle growth during the composite synthesis. This work demonstrates that the fine drug crystals incorporated onto the diatom silica surface. The structural and morphological properties of the drug was characterized by various techniques. The drug loading of the formulation was estimated to be 41 % by weight. The incorporation of micro/nano crystals on the diatom surface dramatically enhanced the dissolution rate, and lowered the time required for 50 % dissolution for pure drug from 240-58 min for the drug composite, and the time required for 80 % dissolution or T80 was found to be 180 min for the composite while the pure drug reached a maximum of 65 % in 300 min.
Collapse
Affiliation(s)
- Megha Thakkar
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Aditya Railkar
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
24
|
Allen J, Wang J, Zolotarskaya OY, Sule A, Mohammad S, Arslan S, Wynne KJ, Yang H, Valerie K. PEAMOtecan, a novel chronotherapeutic polymeric drug for brain cancer. J Control Release 2020; 321:36-48. [PMID: 32027939 DOI: 10.1016/j.jconrel.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and difficult to treat form of brain cancer. In this work, we report on a novel chronotherapeutic polymeric drug, PEAMOtecan, for GBM therapy. PEAMOtecan was synthesized by conjugating camptothecin, a topoisomerase I inhibitor, to our proprietary, 'clickable' and modular polyoxetane polymer platform consisting of acetylene-functionalized 3-ethyl-3-(hydroxymethyl)oxetane (EAMO) repeat units (Patent No.: US 9,421,276) via the linker 3,3'-dithiodipropionic acid (DDPA) with a disulfide bond (SS) extended by short-chain polyethylene glycol (PEG). We show that PEAMOtecan is a highly modular polymer nanoformulation that protects covalently bound CPT until slowly being released over extended periods of time dependent on the cleavage of the disulfide and ester linkages. PEAMOtecan kills glioma cells by mitotic catastrophe with p53 mutant/knockdown cells being more sensitive than matched wild type cells potentially providing cancer-specific targeting. To establish proof-of-principle therapeutic effects, we tested PEAMOtecan as monotherapy for efficacy in a mouse orthotopic glioma model. PEAMOtecan was administered by one-time, convection-enhanced delivery (CED) intra-tumorally to achieve superior distribution and extended drug release over time. In addition, the near-infrared (NIR) dye Cy5.5 was coupled to the polymer providing live-animal imaging capability to track tissue distribution and clearance of the injected polymer over time. We show that PEAMOtecan significantly improves the survival of mice harboring intra-cranial tumors (p = .0074 compared to untreated group). Altogether, these results support further development and testing of our nanoconjugate platform.
Collapse
Affiliation(s)
- Jasmine Allen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Juan Wang
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Olga Yu Zolotarskaya
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Amrita Sule
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Sajjad Mohammad
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Shukaib Arslan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States of America.
| |
Collapse
|
25
|
The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties. Biomolecules 2020; 10:biom10040642. [PMID: 32326311 PMCID: PMC7226492 DOI: 10.3390/biom10040642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/27/2020] [Accepted: 03/21/2020] [Indexed: 12/23/2022] Open
Abstract
This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.
Collapse
|
26
|
Montané X, Bajek A, Roszkowski K, Montornés JM, Giamberini M, Roszkowski S, Kowalczyk O, Garcia-Valls R, Tylkowski B. Encapsulation for Cancer Therapy. Molecules 2020; 25:E1605. [PMID: 32244513 PMCID: PMC7180689 DOI: 10.3390/molecules25071605] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/10/2023] Open
Abstract
The current rapid advancement of numerous nanotechnology tools is being employed in treatment of many terminal diseases such as cancer. Nanocapsules (NCs) containing an anti-cancer drug offer a very promising alternative to conventional treatments, mostly due to their targeted delivery and precise action, and thereby they can be used in distinct applications: as biosensors or in medical imaging, allowing for cancer detection as well as agents/carriers in targeted drug delivery. The possibility of using different systems-inorganic nanoparticles, dendrimers, proteins, polymeric micelles, liposomes, carbon nanotubes (CNTs), quantum dots (QDs), biopolymeric nanoparticles and their combinations-offers multiple benefits to early cancer detection as well as controlled drug delivery to specific locations. This review focused on the key and recent progress in the encapsulation of anticancer drugs that include methods of preparation, drug loading and drug release mechanism on the presented nanosystems. Furthermore, the future directions in applications of various nanoparticles are highlighted.
Collapse
Affiliation(s)
- Xavier Montané
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (M.G.); (R.G.-V.)
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza St. 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Nicolaus Copernicus University, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland;
| | - Josep M. Montornés
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain;
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (M.G.); (R.G.-V.)
| | - Szymon Roszkowski
- Faculty of Agronomy and Bioengineering, Poznan University of Life Sciences, Szydlowska St. 50, 60-656 Poznan, Poland;
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
| | - Ricard Garcia-Valls
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (M.G.); (R.G.-V.)
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain;
| |
Collapse
|
27
|
Yadav N, Parveen S, Banerjee M. Potential of nano-phytochemicals in cervical cancer therapy. Clin Chim Acta 2020; 505:60-72. [PMID: 32017926 DOI: 10.1016/j.cca.2020.01.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
Cervical cancer is common among women with a recurrence rate of 35% despite surgery, radiation, and chemotherapy. Patients receiving chemotherapy or radiotherapy routinely experience several side effects including toxicity, non-targeted damage of tissues, hair loss, neurotoxicity, multidrug resistance (MDR), nausea, anemia and neutropenia. Phytochemicals can interfere with almost every stage of carcinogenesis to prevent cancer development. Many natural compounds are known to activate/deactivate multiple redox-sensitive transcription factors that modulate tumor signaling pathways. Polyphenols have been found to be promising agents against cervical cancer. However, applications of phytochemicals as a therapeutic drug are limited due to low oral bioavailability, poor aqueous solubility and requirement of high doses. Nano-sized phytochemicals (NPCs) are promising anti-cancer agents as they are required in minute quantities which lowers overall treatment costs. Several phytochemicals, including quercetin, lycopene, leutin, curcumin, green tea polyphenols and others have been packaged as nanoparticles and proven to be useful in nano-chemoprevention and nano-chemotherapy. Nanoparticles have high biocompatibility, biodegradability and stability in biological environment. Nano-scale drug delivery systems are excellent source for enhanced drug specificity, improved absorption rates, reduced drug degradation and systemic toxicity. The present review discusses current knowledge in the involvement of phytochemical nanoparticles in cervical cancer therapy over conventional chemotherapy.
Collapse
Affiliation(s)
- Neera Yadav
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
28
|
|
29
|
Ravanfar R, Abbaspourrad A. l-Histidine Crystals as Efficient Vehicles to Deliver Hydrophobic Molecules. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39376-39384. [PMID: 31580056 DOI: 10.1021/acsami.9b14239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
l-Histidine (l-His) molecules can form highly ordered fluorescent crystals with tunable size and geometry. The polymorph A crystal of l-His contains hydrophobic domains within the structure's interior. Here, we demonstrate that these hydrophobic domains can serve as vehicles for highly efficient entrapment and transport of hydrophobic small molecules. This strategy shows the ability of l-His crystals to mask the hydrophobicity of various small molecules, helping to address issues related to their poor solubility and low bioavailability. Furthermore, we demonstrate that we can modify the surface of these crystals to define their function, suggesting the significance of l-His crystals in designing site-specific and bioresponsive platforms. As a demonstration, we use l-His crystals with loaded doxorubicin, featuring hyaluronic acid covalently bonded on the crystal surface, controlling its release in response to hyaluronidase. This strategy for entrapment of hydrophobic small molecules suggests the potential of l-His crystals for targeted drug-delivery applications.
Collapse
Affiliation(s)
- Raheleh Ravanfar
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| | - Alireza Abbaspourrad
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
30
|
Xu KF, Jia HR, Zhu YX, Liu X, Gao G, Li YH, Wu FG. Cholesterol-Modified Dendrimers for Constructing a Tumor Microenvironment-Responsive Drug Delivery System. ACS Biomater Sci Eng 2019; 5:6072-6081. [DOI: 10.1021/acsbiomaterials.9b01386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
31
|
Kaviani M, Di Valentin C. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling. NANOSCALE 2019; 11:15576-15588. [PMID: 31403155 DOI: 10.1039/c9nr03763b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug delivery systems are based on reversible interactions between carriers and drugs. Spacers are often introduced to tailor the type of interaction and to keep drugs intact. Here, we model a drug delivery system based on a functionalized curved TiO2 nanoparticle of realistic size (700 atoms - 2.2 nm) by the neurotransmitter dopamine to carry the anticancer chemotherapeutic agent doxorubicin (DOX). The multiscale quantum chemical study aims at unraveling the nature and mechanism of the interactions between the components and the electronic properties of the composite system. We simulate the temperature effect through molecular dynamics runs of thermal annealing. Dopamine binds preferentially to low coordinated Ti sites on the nanoparticle through dissociated bidentate and chelate modes involving the diol groups. DOX is tethered by H-bonds, π-π stacking, dipole-dipole interactions and dispersion forces. Comparing different coverage densities of the spacer on the nanoparticle surface, we assess the best conditions for an effective drug transport and release: only at full coverage, DOX does not slip among the dopamine molecules to reach the nanoparticle surface, which is crucial to avoid the formation of stable coordinative bonds with under-coordinated Ti atoms. Finally, given the strong absorption properties and fluorescence of DOX and of the TiO2 photocatalyst, we model the effect of light irradiation through excited state calculations to localize excitons and to follow the charge carrier's life path. This fundamental study on the nature and mechanism of drug/carrier interaction provides a solid ground for the rational design of new experimental protocols for a more efficient drug transport and release and its combination with photodynamic therapy.
Collapse
Affiliation(s)
- Moloud Kaviani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
32
|
Dhawan S, Ghosh S, Ravinder R, Bais SS, Basak S, Krishnan NMA, Agarwal M, Banerjee M, Haridas V. Redox Sensitive Self-Assembling Dipeptide for Sustained Intracellular Drug Delivery. Bioconjug Chem 2019; 30:2458-2468. [DOI: 10.1021/acs.bioconjchem.9b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Sachendra S. Bais
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Soumen Basak
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | |
Collapse
|
33
|
Bayat M, Taherpour AA, Elahi SM. Molecular interactions between PAMAM dendrimer and some medicines that suppress the growth of hepatitis virus (Adefovir, Entecavir, Telbivudine, Lamivudine, Tenofovir): a theoretical study. INTERNATIONAL NANO LETTERS 2019. [DOI: 10.1007/s40089-019-0277-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Pu X, Zhao L, Li J, Song R, Wang Y, Yu K, Hou X, Qiao P, Zong L, Chang S. A polymeric micelle with an endosomal pH-sensitivity for intracellular delivery and enhanced antitumor efficacy of hydroxycamptothecin. Acta Biomater 2019; 88:357-369. [PMID: 30822554 DOI: 10.1016/j.actbio.2019.02.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/15/2019] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Amphiphilic poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) and poly(ethylene glycol)-poly(benzyl-l-aspartate) (PPA) block copolymers were synthesized as pH-responsive and pH-nonresponsive copolymers, respectively. Polymer micelles were fabricated by the film dispersion method, and hydroxycamptothecin (HCPT) was physically encapsulated into the micelles. The average diameter of the HCPT-loaded PIPA micelles (PIPAH micelles) was approximately 230 nm, which was slightly smaller than that of the HCPT-loaded PPA micelles (PPAH micelles, approximately 260 nm). The drug-loading content and encapsulation efficiency of the PIPAH micelles (3.33% and 68.89%, respectively) were slightly higher than those of the PPAH micelles (2.90% and 59.68%, respectively). The PIPAH micelles exhibited better colloid stability, storage stability, and plasma stability than the PPAH micelles. Drug release from the PIPAH micelles with imino groups was pH dependent, and more than 75% or 65% of the loaded HCPT was released within 24 h in weakly acidic media (pH 5.0 or 6.0, respectively). An in vitro cell assay demonstrated that the pH-sensitive micelles exhibited potent suppression of cancer cell proliferation and little cytotoxicity on normal cells. Additionally, these micelles could be efficiently internalized by the tumor cells through macropinocytosis- and caveolin-mediated endocytotic pathways. HCPT-loaded micelles had longer circulation time than the HCPT solution in a pharmacokinetic study. In vivo antitumor experiments indicate that the PIPAH micelles had better antitumor efficacy than the pH-insensitive PPAH micelles and the HCPT solution. Therefore, the pH-responsive PIPAH micelles have great potential for high-efficiency delivery of HCPT. STATEMENT OF SIGNIFICANCE: In this study, a new type of pH-responsive amphiphilic copolymer, poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) block copolymer, was synthesized. This copolymer had then self-assembled to form nanomicelles for tumor intracellular delivery of hydroxycamptothecin (HCPT) for the first time. In in vitro test, the PIPAH micelles exhibited adequate stability and pH-dependent drug release. To one's excitement, the PIPAH micelles exhibited better antitumor efficacy and biosafety than the pH-insensitive micelles (PPAH) and the HCPT solution in in vitro and in vivo antitumor experiments. Therefore, the pH-responsive micelles in this study have significant potential to be used for high-performance delivery of HCPT and potentially for the targeted delivery of other cancer therapeutic agents. The polymer designed in this study can be used as a carrier of poorly soluble drugs or other active ingredients.
Collapse
|
35
|
Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019; 9:57. [PMID: 30729081 PMCID: PMC6352626 DOI: 10.1007/s13205-019-1577-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/13/2023] Open
Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
Collapse
Affiliation(s)
- Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| | - Sahil Nagpal
- Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Mahero Ayesha Shah
- Julius Maximilians Universität Würzburg, Faculty of medicine Uniklinik, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ananya Srivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana Mahendergarh, Haryana, 123031 India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities 2004 Folwell Ave, Saint Paul, MN 55108 USA
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
36
|
He G, Ma Y, Zhou H, Sun S, Wang X, Qian H, Xu Y, Miao Z, Zha Z. Mesoporous NiS2 nanospheres as a hydrophobic anticancer drug delivery vehicle for synergistic photothermal–chemotherapy. J Mater Chem B 2019; 7:143-149. [DOI: 10.1039/c8tb02473a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monodispersed mesoporous NiS2 nanospheres (mNiS2 NSs) have been successfully developed here through a facile solvothermal method to act as a hydrophobic drug delivery vehicle for synergistic photothermal–chemo treatment of cancer.
Collapse
Affiliation(s)
- Gang He
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Yan Ma
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Hu Zhou
- The First Affiliated Hospital of University of Science and Technology of China
- Anhui Provincial Cancer Hospital
- Hefei
- P. R. China
| | - Siyuan Sun
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Xianwen Wang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Haisheng Qian
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Yan Xu
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Zhaohua Miao
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| |
Collapse
|
37
|
Liu C, Gao H, Zhao Z, Rostami I, Wang C, Zhu L, Yang Y. Improved tumor targeting and penetration by a dual-functional poly(amidoamine) dendrimer for the therapy of triple-negative breast cancer. J Mater Chem B 2019. [DOI: 10.1039/c9tb00433e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A dual-functional drug delivery system based on the conjugation of PAMAM dendrimer with EBP-1 and TAT peptide was established for the therapy of triple-negative breast cancer.
Collapse
Affiliation(s)
- Changliang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Iman Rostami
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
| |
Collapse
|
38
|
Parshad B, Yadav P, Kerkhoff Y, Mittal A, Achazi K, Haag R, Sharma SK. Dendrimer-based micelles as cyto-compatible nanocarriers. NEW J CHEM 2019. [DOI: 10.1039/c9nj02612f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of the present study is to compare the synthesized dendritic architectures in terms of self-assembly and transport potential for hydrophobic guest molecules.
Collapse
Affiliation(s)
- Badri Parshad
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
- Institut für Chemie und Biochemie
| | - Preeti Yadav
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Yannic Kerkhoff
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Ayushi Mittal
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sunil K. Sharma
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|
39
|
Jeong D, Pal T, Kim H, Kim TW, Biswas G, Lee D, Singh T, Murthy ASN, Kim W, Kim K, Im J. Preparation of a Camptothecin‐conjugated Molecular Carrier and its Cytotoxic Effect Toward Human Colorectal Carcinoma
In Vitro. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongjun Jeong
- Department of Pathology, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tarun Pal
- Department of ChemistryPohang University of Science and Technology Pohang Republic of Korea
| | - Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tae Wan Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Goutam Biswas
- Department of ChemistryCooch Behar Panchanan Barma University Cooch Behar India
| | - Daeun Lee
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Tejinder Singh
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Akula S. N. Murthy
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Wanil Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Kyong‐Tai Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Jungkyun Im
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| |
Collapse
|
40
|
Fu FF, Zhou BQ, Ouyang ZJ, Wu YL, Zhu JY, Shen MW, Xia JD, Shi XY. Multifunctional Cholesterol-modified Dendrimers for Targeted Drug Delivery to Cancer Cells Expressing Folate Receptors. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2172-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Magnetic nanoparticles modified with organic dendrimers containing methyl methacrylate and ethylene diamine for the microextraction of rosuvastatin. Mikrochim Acta 2018; 185:440. [DOI: 10.1007/s00604-018-2956-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
42
|
Castro RI, Forero-Doria O, Guzmán L. Perspectives of Dendrimer-based Nanoparticles in Cancer Therapy. AN ACAD BRAS CIENC 2018; 90:2331-2346. [PMID: 30066746 DOI: 10.1590/0001-3765201820170387] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/21/2017] [Indexed: 01/05/2023] Open
Abstract
Currently, cancer is the second most common cause of death in the United States, exceeded only by heart disease. Chemotherapy traditionally suffers from a non-specific distribution, with only a small fraction of the drug reaching the tumor, in this sense, the use of dendrimers incorporating drugs non-covalently encapsulated inside the dendrimer or covalently conjugated have proven to be effectives against different cancer cell lines. However, at present the dendrimers used as drug-carriers still do not meet the necessary characteristic to be considered as an ideal dendrimer for drug delivery; high toxicity, bio-degradability, low toxicity, biodistribution characteristics, and favorable retention with appropriate specificity and bioavailability have not been fully covered by the current available dendrimers. However, the development and study of new dendrimers drug-carriers continues to be an important tool in the cancer therapy as they can be functionalized with varied ligands to reach the tumor tissue through the different body barriers in the body with minimal loss of activity in the bloodstream, have the ability to selectively kill tumor cells without affecting the normal cells and most important with a release mechanism controlling actively. Given the continuous efforts and research in this area of interest, we presented in this review the work done with a special emphasis on the development of dendrimers as a major tool in the combination with drugs, as a potential adjunctive agent in anticancer therapy.
Collapse
Affiliation(s)
- Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, 5 Poniente, 1670, Talca, Chile.,Escuela de Obstetricia y Puericultura, Facultad de Ciencias Biomedicas, Universidad Autónoma de Chile, 5 Poniente, 1670, Talca, Chile
| | - Oscar Forero-Doria
- Instituto de Química de Recursos Naturales, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e InmunoHematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747-721, Talca, Chile
| |
Collapse
|
43
|
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm 2018; 548:707-720. [PMID: 30012508 DOI: 10.1016/j.ijpharm.2018.07.030] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
Dendrimers are novel polymeric nanoarchitectures characterized by hyper-branched 3D-structure having multiple functional groups on the surface that increases their functionality and make them versatile and biocompatible. Their unique properties like nanoscale uniform size, high degree of branching, polyvalency, water solubility, available internal cavities and convenient synthesis approaches make them promising agent for biological and drug delivery applications. Dendrimers have received an enormous attention from researchers among various nanomaterials. Dendrimers can be used as a carrier for diverse therapeutic agents. They can be used for reducing drug toxicities and enhancement of their efficacies. The present review provide a comprehensive outline of synthesis of dendrimers, interaction of dendrimer with guest molecules, properties, characterization and their potential applications in pharmaceutical and biomedical field.
Collapse
Affiliation(s)
- Atul P Sherje
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Mrunal Jadhav
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Bhushan R Dravyakar
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Darshana Kadam
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
44
|
Dai Y, Hua Q, Ling J, Shao C, Zhong C, Zhang X, Hu Y, Zhang L, Liu Y. Quantum chemical calculation of free radical substitution reaction mechanism of camptothecin. J Mol Graph Model 2018; 84:174-181. [PMID: 30015049 DOI: 10.1016/j.jmgm.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
Abstract
Free radical substitution reaction, which has low energy barrier and takes place in mild reaction conditions, is an important method for camptothecin's modification. The experimental data show that the free radical substitution reaction of camptothecin has high site selectivity, and prefers to take place at site 7. Up to now, few researches focus on the mechanism of it. In this study, the differences of the reaction rate constant (k) for the reactions at different sites, such as site of 7, 9, 10, 11, 12, were investigated with B3LYP of density functional theory at the 6-31 + G (d, p) base set level and CPCM aqueous solvent model. It was found that the substitution reaction can be carried out in two steps in acidic condition. First, the methyl radical attacks the corresponding site to form an intermediate having methyl radical combined with the camptothecin skeleton, and then a hydrogen atom was abstracted by the singlet oxygen to form methyl camptothecin, wherein the first step was the rate control step of the reaction. The results show that site 7 has the higherreaction rate constant (k) than other examined sites, indicating that the reaction tends to take place on site 7 position, which is in agreement with the experimental results.
Collapse
Affiliation(s)
- Yujie Dai
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Qingyuan Hua
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Jun Ling
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Chunfu Shao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Xiuli Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Yanying Hu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Liming Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Yaotian Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| |
Collapse
|
45
|
Bolu BS, Sanyal R, Sanyal A. Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates †. Molecules 2018; 23:E1570. [PMID: 29958437 PMCID: PMC6099537 DOI: 10.3390/molecules23071570] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
This review highlights the utilization of dendron-polymer conjugates as building blocks for the fabrication of nanosized drug delivery vehicles. The examples given provide an overview of the evolution of these delivery platforms, from simple micellar containers to smart stimuli- responsive drug delivery systems through their design at the macromolecular level. Variations in chemical composition and connectivity of the dendritic and polymeric segments provide a variety of self-assembled micellar nanostructures that embody desirable attributes of viable drug delivery systems.
Collapse
Affiliation(s)
- Burcu Sumer Bolu
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
46
|
Abstract
This chapter reviews the use of dendronized systems as nanocarriers for the delivery of chemotherapeutic drugs. Dendronized systems include dendrimers prepared through convergent methods as well as other systems containing dendrons (e.g., polymers, nanoparticles, liposomes). The preparation of such systems is detailed, followed by the various conjugation techniques used for the transport of chemotherapeutic drugs and their specific delivery to tumor cells. In addition, the ability of dendronized systems to provide passive and active targeting to tumors is discussed. The efficacy of drug delivery using dendronized systems is also illustrated through specific examples of kinetic and biological studies. Finally, the newest trends in conjugation of the most common chemotherapeutics to dendronized systems are described. Overall, this chapter highlights dendronized systems as a way to improve the therapeutic efficiency of drugs for the treatment of cancer. All the recent developments in areas, such as biodegradable dendrimers, modifications to enhance biocompatibility, selectively cleavable drug conjugations, ligand-mediated targeting, and the potential for multifunctional properties, show promises for future advances in cancer therapy.
Collapse
|
47
|
Christadore L, Grinstaff MW, Schaus SE. Fluorescent Dendritic Micro-Hydrogels: Synthesis, Analysis and Use in Single-Cell Detection. Molecules 2018; 23:E936. [PMID: 29669998 PMCID: PMC6017717 DOI: 10.3390/molecules23040936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels are of keen interest for a wide range of medical and biotechnological applications including as 3D substrate structures for the detection of proteins, nucleic acids, and cells. Hydrogel parameters such as polymer wt % and crosslink density are typically altered for a specific application; now, fluorescence can be incorporated into such criteria by specific macromonomer selection. Intrinsic fluorescence was observed at λmax 445 nm from hydrogels polymerized from lysine and aldehyde- terminated poly(ethylene glycol) macromonomers upon excitation with visible light. The hydrogel’s photochemical properties are consistent with formation of a nitrone functionality. Printed hydrogels of 150 μm were used to detect individual cell adherence via a decreased in fluorescence. The use of such intrinsically fluorescent hydrogels as a platform for cell sorting and detection expands the current repertoire of tools available.
Collapse
Affiliation(s)
- Lisa Christadore
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
- Departments of Biomedical Engineering and Medicine, Boston University, Boston, MA 02215, USA.
| | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
48
|
Synthesis of Cationic Amphiphilic Surface-Block Polyester Dendrimers. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-017-0651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018; 47:514-532. [PMID: 29154385 DOI: 10.1039/c7cs00550d] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For the first time, an overview of dendrimers in combination with natural products and analogues as anti-cancer agents is presented. This reflects the development of drug delivery systems, such as dendrimers, to tackle cancers. The most significant advantages of using dendrimers in nanomedicine are their high biocompatibility, good water solubility, and their entry - with or without encapsulated, complexed or conjugated drugs - through an endocytosis process. This strategy has accelerated over the years in order to develop nanosystems as nanocarriers, to decrease the intrinsic toxicity of anti-cancer agents, to decrease the drug side effects, to increase the efficacy of the treatment, and consequently to improve patient compliance.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Mignani S, Rodrigues J, Tomas H, Zablocka M, Shi X, Caminade AM, Majoral JP. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev 2018. [DOI: https://doi.org/10.1039/c7cs00550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overview of the use of dendrimers in combination with encapsulated and conjugated natural products and analogues as anti-cancer agents.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Paris
- France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University
- Xi’an
| | - Helena Tomas
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
- 90-363 Lodz
- Poland
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada
- Funchal
- Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University
- Shanghai 201620
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse, UPS, INPT
- 31077 Toulouse Cedex
| |
Collapse
|