1
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Sun Y, Shi D, Sun J, Zhang Y, Liu W, Luo B. Regulation mechanism of EBV-encoded EBER1 and LMP2A on YAP1 and the impact of YAP1 on the EBV infection status in EBV-associated gastric carcinoma. Virus Res 2024; 343:199352. [PMID: 38462175 PMCID: PMC10982081 DOI: 10.1016/j.virusres.2024.199352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This study aims to explore the role and regulatory mechanism of Yes-associated protein 1 (YAP1) in the development of Epstein-Barr virus-associated gastric cancer (EBVaGC). Here we showed that EBV can upregulate the expression and activity of YAP1 protein through its encoded latent products EBV-encoded small RNA 1 (EBER1) and latent membrane protein 2A (LMP2A), enhancing the malignant characteristics of EBVaGC cells. In addition, we also showed that overexpression of YAP1 induced the expression of EBV encoding latent and lytic phase genes and proteins in the epithelial cell line AGS-EBV infected with EBV, and increased the copy number of the EBV genome, while loss of YAP1 expression reduced the aforementioned indicators. Moreover, we found that YAP1 enhanced EBV lytic reactivation induced by two known activators, 12-O-tetradecanoylhorbol-13-acetate (TPA) and sodium butyrate (NaB). These results indicated a bidirectional regulatory mechanism between EBV and YAP1 proteins, providing new experimental evidence for further understanding the regulation of EBV infection patterns and carcinogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yujie Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiting Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, ZiBo 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Ayyappan V, Jenkinson NM, Tressler CM, Tan Z, Cheng M, Shen XE, Guerrero A, Sonkar K, Cai R, Adelaja O, Roy S, Meeker A, Argani P, Glunde K. Context-dependent roles for ubiquitous mitochondrial creatine kinase CKMT1 in breast cancer progression. Cell Rep 2024; 43:114121. [PMID: 38615320 PMCID: PMC11100297 DOI: 10.1016/j.celrep.2024.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.
Collapse
Affiliation(s)
- Vinay Ayyappan
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Jenkinson
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin M Tressler
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheqiong Tan
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menglin Cheng
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyi Elaine Shen
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandro Guerrero
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kanchan Sonkar
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruoqing Cai
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwatobi Adelaja
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sujayita Roy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Ko B, An J, Lee J, Kim K, Kim T, Park S, Chae H, Youn H. Anticancer effect of superoxide dismutase on canine mammary gland tumour in vitro. Vet Med Sci 2024; 10:e1323. [PMID: 37997503 PMCID: PMC10766058 DOI: 10.1002/vms3.1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) have been shown to promote tumour growth and metastasis in human cell lines. The superoxide anion (•O2 - ) is produced during ROS formation and is involved in tumour cell signalling. OBJECTIVES Superoxide dismutase (SOD) has been applied to canine mammary gland tumours to investigate its antitumour effects in vitro. METHODS Cell proliferation, cell cycle cell migration assays, reverse transcription-quantitative polymerase chain reaction, and western blot analysis were performed to determine the effects of SOD on canine mammary tumour cell line. RESULTS SOD treatment resulted in anti-proliferative effects and mediated cell cycle arrest in the canine mammary gland tumour cell lines (CIPp and CIPm). It also downregulated the expression of N-cadherin and Vimentin. CONCLUSIONS The results confirmed that SOD inhibits tumour cell proliferation and migration, thus supporting the potential applications of SOD as a chemotherapeutic agent for canine mammary gland tumours.
Collapse
Affiliation(s)
- Byung‐Gee Ko
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Ju‐Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary ScienceCollege of Veterinary Medicine, Kangwon National UniversityChuncheon‐siRepublic of Korea
| | - Jeong‐Hwa Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Kyeong‐Bo Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Tae‐Hyeon Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Su‐Min Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Hyung‐Kyu Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| | - Hwa‐Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
6
|
Shi X, Wei K, Wu Y, Mao L, Pei W, Zhu H, Shi Y, Zhang S, Tao S, Wang J, Pang S, Mao H, Wang W, Yang Q, Chen C. Exosome-derived miR-372-5p promotes stemness and metastatic ability of CRC cells by inducing macrophage polarization. Cell Signal 2023; 111:110884. [PMID: 37690660 DOI: 10.1016/j.cellsig.2023.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Colorectal cancer (CRC) is the most common malignancy in the digestive system, and tumor metastasis is the main cause of death in clinical patients with CRC. It has been shown that exosomes promote phenotypic changes in macrophages and tumor metastasis in the CRC tumor microenvironment. In this study, we used miRNA-seq technology to screen out the highly expressed miR-372-5p among the miRNAs differentially expressed in plasma exosomes of clinical CRC patients. It was found that miR-372-5p highly expressed in HCT116 exosomes could be phagocytosed by macrophages and promote their polarization into M2 macrophages by regulating the PTEN/AKT pathway. Meanwhile, co-culture of CRC cells with conditioned medium (CM) of macrophages enhanced the EMT, stemness and metastasis of CRC cells. Mechanistically, CRC cells exosome-derived miR-372-5p induced polarized M2 macrophages to secrete chemokine C-X-C-Motif Ligand 12 (CXCL12), which activated the WNT/β-catenin pathway to promote the EMT, stemness and metastatic ability of CRC cells. In summary, this study elucidated the molecular mechanism of exosomal miR-372-5p promoting metastasis and stemness in CRC, which may provide new therapeutic targets for CRC metastasis and prognosis assessment.
Collapse
Affiliation(s)
- Xiuru Shi
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Ke Wei
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Yulun Wu
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Lingyu Mao
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Wenhao Pei
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Haitao Zhu
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Yingxiang Shi
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Shuang Tao
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Jing Wang
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Huilan Mao
- Anhui Province Key Laboratory of Translational Cancer Research (Bengbu Medical College), Anhui 233030, China
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Anhui 233030, China.
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| |
Collapse
|
7
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
8
|
Simigdala N, Chalari A, Sklirou AD, Chavdoula E, Papafotiou G, Melissa P, Kafalidou A, Paschalidis N, Pateras IS, Athanasiadis E, Konstantopoulos D, Trougakos IP, Klinakis A. Loss of Kmt2c in vivo leads to EMT, mitochondrial dysfunction and improved response to lapatinib in breast cancer. Cell Mol Life Sci 2023; 80:100. [PMID: 36933062 PMCID: PMC10024673 DOI: 10.1007/s00018-023-04734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023]
Abstract
Deep sequencing of human tumours has uncovered a previously unappreciated role for epigenetic regulators in tumorigenesis. H3K4 methyltransferase KMT2C/MLL3 is mutated in several solid malignancies, including more than 10% of breast tumours. To study the tumour suppressor role of KMT2C in breast cancer, we generated mouse models of Erbb2/Neu, Myc or PIK3CA-driven tumorigenesis, in which the Kmt2c locus is knocked out specifically in the luminal lineage of mouse mammary glands using the Cre recombinase. Kmt2c knock out mice develop tumours earlier, irrespective of the oncogene, assigning a bona fide tumour suppressor role for KMT2C in mammary tumorigenesis. Loss of Kmt2c induces extensive epigenetic and transcriptional changes, which lead to increased ERK1/2 activity, extracellular matrix re-organization, epithelial-to-mesenchymal transition and mitochondrial dysfunction, the latter associated with increased reactive oxygen species production. Loss of Kmt2c renders the Erbb2/Neu-driven tumours more responsive to lapatinib. Publicly available clinical datasets revealed an association of low Kmt2c gene expression and better long-term outcome. Collectively, our findings solidify the role of KMT2C as a tumour suppressor in breast cancer and identify dependencies that could be therapeutically amenable.
Collapse
Affiliation(s)
- Nikiana Simigdala
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anna Chalari
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Chavdoula
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH USA
| | - George Papafotiou
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Pelagia Melissa
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aimilia Kafalidou
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioannis S. Pateras
- 2nd Department of Pathology, Medical School, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Klinakis
- Present Address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
9
|
MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene 2023; 42:1438-1452. [PMID: 36922678 PMCID: PMC10154218 DOI: 10.1038/s41388-023-02650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Peritoneal metastasis is a key feature of advanced ovarian cancer, but the critical protein required for ovarian cancer metastasis and progression is yet to be defined. Thus, an unbiased high throughput and in-depth study is warranted to unmask the mechanism. Transcriptomic sequencing of paired primary ovarian tumors and metastases unveiled that MAP4K4, a serine/threonine kinase belongs to the Ste20 family of kinases, was highly expressed in metastatic sites. Increased MAP4K4 expression in metastasis was further validated in other independent patients, with higher MAP4K4 expression associated with poorer survival, higher level of CA125 and more advanced FIGO stage. Down regulation of MAP4K4 inhibited cancer cell adhesion, migration, and invasion. Notably, MAP4K4 was found to stabilize N-cadherin. Further results showed that MAP4K4 mediated phosphorylation of ADAM10 at Ser436 results in suppression of N-cadherin cleavage by ADAM10, leading to N-cadherin stabilization. Pharmacologic inhibition of MAP4K4 abrogated peritoneal metastases. Overall, our data reveal MAP4K4 as a significant promoter in ovarian cancer metastasis. Targeting MAP4K4 may be a potential therapeutic approach for ovarian cancer patients.
Collapse
|
10
|
Leal-Orta E, Ramirez-Ricardo J, Garcia-Hernandez A, Cortes-Reynosa P, Salazar EP. Extracellular vesicles from MDA-MB-231 breast cancer cells stimulated with insulin-like growth factor 1 mediate an epithelial-mesenchymal transition process in MCF10A mammary epithelial cells. J Cell Commun Signal 2022; 16:531-546. [PMID: 34309795 PMCID: PMC9733745 DOI: 10.1007/s12079-021-00638-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays an important role in function and development of the mammary gland. However, high levels of IGF-1 has been associated with an increased risk of breast cancer development. Epithelial-mesenchymal transition (EMT) is a process where epithelial cells lose their epithelial characteristics and acquire a mesenchymal phenotype, which is considered one of the most important mechanisms in cancer initiation and promotion of metastasis. Extracellular vesicles (EVs) are released into the extracellular space by different cell types, which mediate intercellular communication and play an important role in different physiological and pathological processes, such as cancer. In this study, we demonstrate that EVs from MDA-MB-231 breast cancer cells stimulated with IGF-1 (IGF-1 EVs) decrease the levels of E-cadherin, increase the expression of vimentin and N-cadherin and stimulate the secretion of metalloproteinase-9 in mammary non-tumorigenic epithelial cells MCF10A. IGF-1 EVs also induce the expression of Snail1, Twist1 and Sip1, which are transcription factors involved in EMT. Moreover, IGF-1 EVs induce activation of ERK1/2, Akt1 and Akt2, migration and invasion. In summary, we demonstrate, for the first time, that IGF-1 EVs induce an EMT process in mammary non-tumorigenic epithelial cells MCF10A.
Collapse
Affiliation(s)
- Elizabeth Leal-Orta
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| | | | | | - Pedro Cortes-Reynosa
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Eduardo Perez Salazar
- grid.512574.0Departamento de Biologia Celular, Cinvestav-IPN, 07360 Mexico City, Mexico
| |
Collapse
|
11
|
Xie X, Li Y, Lian S, Lu Y, Jia L. Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther 2022; 7:341. [PMID: 36184654 PMCID: PMC9526788 DOI: 10.1038/s41392-022-01174-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The war against cancer traces back to the signature event half-a-century ago when the US National Cancer Act was signed into law. The cancer crusade costs trillions with disappointing returns, teasing the possibility of a new breakthrough. Cure for cancer post-metastases still seems tantalisingly out of reach. Once metastasized, cancer-related death is extremely difficult, if not impossible, to be reversed. Here we present cancer pre-metastasis chemoprevention strategy that can prevent circulating tumour cells (CTCs) from initiating metastases safely and effectively, and is disparate from the traditional cancer chemotherapy and cancer chemoprevention. Deep learning of the biology of CTCs and their disseminating organotropism, complexity of their adhesion to endothelial niche reveals that if the adhesion of CTCs to their metastasis niche (the first and the most important part in cancer metastatic cascade) can be pharmaceutically interrupted, the lethal metastatic cascade could be prevented from getting initiated. We analyse the key inflammatory and adhesive factors contributing to CTC adhesion/germination, provide pharmacological fundamentals for abortifacients to intervene CTC adhesion to the distant metastasis sites. The adhesion/inhibition ratio (AIR) is defined for selecting the best cancer metastasis chemopreventive candidates. The successful development of such new therapeutic modalities for cancer metastasis chemoprevention has great potential to revolutionise the current ineffective post-metastasis treatments.
Collapse
Affiliation(s)
- Xiaodong Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Shu Lian
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China. .,Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
12
|
Øystese KAB, Casar-Borota O, Berg-Johnsen J, Berg JP, Bollerslev J. Distribution of E- and N-cadherin in subgroups of non-functioning pituitary neuroendocrine tumours. Endocrine 2022; 77:151-159. [PMID: 35674926 PMCID: PMC9242907 DOI: 10.1007/s12020-022-03051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Clinically non-functioning pituitary neuroendocrine tumours (NF-PitNETs) present a varying degree of aggressiveness, and reliable prognostic markers are lacking. We aimed to characterise the distribution of E- and N-cadherin in corticotroph, PIT1 and null-cell NF-PitNETs, and link it to the course of the tumours. METHODS The distribution of E- and N-cadherin was investigated by immunohistochemistry in a retrospective cohort of 30 tumours of the less common NF-PitNETs (corticotroph (N = 18), PIT1 (N = 8) and null-cell PitNETs (N = 4)). Immunoreactive scores (IRS) were compared to previously presented cohorts of gonadotroph NF-PitNETs (N = 105) and corticotroph functioning PitNETs (N = 17). RESULTS We found a low IRS for the extra-cellular domain of E-cadherin (median 0 (IQR 0-0, N = 135)), a medium to high IRS for the intra-cellular domain of E-cadherin (median 6 (IQR 4-9)) and a high IRS for N-cadherin (median 12 (IQR 10.5-12)) throughout the cohort of NF-PitNETs. The corticotroph NF-PitNETs presented a higher IRS for both the extra- and intra-cellular domain of E-cadherin (median 0 (IQR 0-1) and median 9 (IQR 6-12), respectively) than the gonadotroph NF-PitNETs (p < 0.001 for both comparisons). Presence of nuclear E-cadherin was associated with a weaker staining for the intra-cellular domain of E-cadherin (median 4 (IQR 0.5-6) and median 9 (IQR 9-12), for tumours with and without nuclear E-cadherin, respectively), and with a lower rate of re-intervention (p = 0.03). CONCLUSIONS Considering our results and the benign course of NF-PitNETs, we suggest that a high N-cadherin and downregulation of membranous E-cadherin are not associated with a more aggressive tumour behaviour in these subgroups of NF-PitNETs.
Collapse
Affiliation(s)
- Kristin Astrid B Øystese
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Jon Berg-Johnsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jens Petter Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Bollerslev
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Exploring the FGF/FGFR System in Ocular Tumors: New Insights and Perspectives. Int J Mol Sci 2022; 23:ijms23073835. [PMID: 35409195 PMCID: PMC8998873 DOI: 10.3390/ijms23073835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Ocular tumors are a family of rare neoplasms that develop in the eye. Depending on the type of cancer, they mainly originate from cells localized within the retina, the uvea, or the vitreous. Even though current treatments (e.g., radiotherapy, transpupillary thermotherapy, cryotherapy, chemotherapy, local resection, or enucleation) achieve the control of the local tumor in the majority of treated cases, a significant percentage of patients develop metastatic disease. In recent years, new targeting therapies and immuno-therapeutic approaches have been evaluated. Nevertheless, the search for novel targets and players is eagerly required to prevent and control tumor growth and metastasis dissemination. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system consists of a family of proteins involved in a variety of physiological and pathological processes, including cancer. Indeed, tumor and stroma activation of the FGF/FGFR system plays a relevant role in tumor growth, invasion, and resistance, as well as in angiogenesis and dissemination. To date, scattered pieces of literature report that FGFs and FGFRs are expressed by a significant subset of primary eye cancers, where they play relevant and pleiotropic roles. In this review, we provide an up-to-date description of the relevant roles played by the FGF/FGFR system in ocular tumors and speculate on its possible prognostic and therapeutic exploitation.
Collapse
|
14
|
Bonnet-Magnaval F, Diallo LH, Brunchault V, Laugero N, Morfoisse F, David F, Roussel E, Nougue M, Zamora A, Marchaud E, Tatin F, Prats AC, Garmy-Susini B, DesGroseillers L, Lacazette E. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. Int J Mol Sci 2021; 23:215. [PMID: 35008641 PMCID: PMC8745428 DOI: 10.3390/ijms23010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Leïla Halidou Diallo
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Valérie Brunchault
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Nathalie Laugero
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florent Morfoisse
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florian David
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emilie Roussel
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Manon Nougue
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Audrey Zamora
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emmanuelle Marchaud
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florence Tatin
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Luc DesGroseillers
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Eric Lacazette
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| |
Collapse
|
15
|
Brena D, Huang MB, Bond V. Extracellular vesicle-mediated transport: Reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis. Transl Oncol 2021; 15:101286. [PMID: 34839106 PMCID: PMC8636863 DOI: 10.1016/j.tranon.2021.101286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles’ (EVs) role in breast tumor microenvironment and pre-metastatic niche development. Breast cancer EV-mediated transmission of pro-metastatic and drug-resistant phenotypes. Precision medicine with EVs as biomarkers and delivery vehicles for drug and anticancer genetic material.
Breast cancer metastatic progression to critical secondary sites is the second leading cause of cancer-related mortality in women. While existing therapies are highly effective in combating primary tumors, metastatic disease is generally deemed incurable with a median survival of only 2, 3 years. Extensive efforts have focused on identifying metastatic contributory targets for therapeutic antagonism and prevention to improve patient survivability. Excessive breast cancer release of extracellular vesicles (EVs), whose contents stimulate a metastatic phenotype, represents a promising target. Complex breast cancer intercellular communication networks are based on EV transport and transference of molecular information is in bulk resulting in complete reprogramming events within recipient cells. Other breast cancer cells can acquire aggressive phenotypes, endothelial cells can be induced to undergo tubule formation, and immune cells can be neutralized. Recent advancements continue to implicate the critical role EVs play in cultivating a tumor microenvironment tailored to cancer proliferation, metastasis, immune evasion, and conference of drug resistance. This literature review serves to frame the role of EV transport in breast cancer progression and metastasis. The following five sections will be addressed: (1) Intercellular communication in developing a tumor microenvironment & pre-metastatic niche. (2) Induction of the epithelial-to-mesenchymal transition (EMT). (3). Immune suppression & evasion. (4) Transmission of drug resistance mechanisms. (5) Precision medicine: clinical applications of EVs.
Collapse
Affiliation(s)
- Dara Brena
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States.
| | - Vincent Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| |
Collapse
|
16
|
Abstract
E-cadherin is the main component of epithelial adherens junctions (AJs), which play a crucial role in the maintenance of stable cell-cell adhesion and overall tissue integrity. Down-regulation of E-cadherin expression has been found in many carcinomas, and loss of E-cadherin is generally associated with poor prognosis in patients. During the last decade, however, numerous studies have shown that E-cadherin is essential for several aspects of cancer cell biology that contribute to cancer progression, most importantly, active cell migration. In this review, we summarize the available data about the input of E-cadherin in cancer progression, focusing on the latest advances in the research of the various roles E-cadherin-based AJs play in cancer cell dissemination. The review also touches upon the "cadherin switching" in cancer cells where N- or P-cadherin replace or are co-expressed with E-cadherin and its influence on the migratory properties of cancer cells.
Collapse
Affiliation(s)
- Svetlana N Rubtsova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Irina Y Zhitnyak
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| | - Natalya A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, Russia
| |
Collapse
|
17
|
Zhu F, Yang T, Yao M, Shen T, Fang C. HNRNPA2B1, as a m 6A Reader, Promotes Tumorigenesis and Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:716921. [PMID: 34631545 PMCID: PMC8494978 DOI: 10.3389/fonc.2021.716921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/02/2021] [Indexed: 01/28/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most prevalent modification on eukaryotic RNA, and the m6A modification regulators were involved in the progression of various cancers. However, the functions of m6A regulators in oral squamous cell carcinoma (OSCC) remain poorly understood. In this study, we demonstrated that 13 of 19 m6A-related genes in OSCC tissues are dysregulated, and HNRNPA2B1 was the most prognostically important locus of the 19 m6A regulatory genes in OSCC. Moreover, HNRNPA2B1 expression is elevated in OSCC, and a high level of HNRNPA2B1 is significantly associated with poor overall survival in OSCC patients. Functional studies, combined with further analysis of the correlation between the expression of HNRNPA2B1 and the EMT-related markers from the TCGA database, reveal that silencing HNRNPA2B1 suppresses the proliferation, migration, and invasion of OSCC via EMT. Collectively, our work shows that HNRNPA2B1 may have the potential to promote carcinogenesis of OSCC by targeting EMT via the LINE-1/TGF-β1/Smad2/Slug signaling pathway and provide insight into the critical roles of HNRNPA2B1 in OSCC.
Collapse
Affiliation(s)
- Feiya Zhu
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Tianru Yang
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mianfeng Yao
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Ting Shen
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Changyun Fang
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| |
Collapse
|
18
|
Zhou W, Yun Z, Wang T, Li C, Zhang J. BTF3-mediated regulation of BMI1 promotes colorectal cancer through influencing epithelial-mesenchymal transition and stem cell-like traits. Int J Biol Macromol 2021; 187:800-810. [PMID: 34293363 DOI: 10.1016/j.ijbiomac.2021.07.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The critical roles of transcription factors in cell differentiation and the delineation of cell phenotypes have been reported. The current study aimed to characterize the functions of the basic transcription factor 3 (BTF3) gene and its regulation of the intestinal stem cell marker B cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) gene in colorectal cancer (CRC). Stem cell-like traits and epithelial-mesenchymal transition (EMT) of cultured human CRC cell line HCT116 were evaluated by CD133+ subpopulation counting, colony formation, tumorosphere generation, and expression of EMT-specific markers and stem cell markers. The interaction of BTF3 with BMI1 was analyzed. BTF3 was overexpressed in CRC tissues, which was associated with poor patient survival. BTF3 knockdown impaired the retention of stem cell-like traits of HCT116 and inhibited the EMT of HCT116 cells. BMI1 expression changed in a BTF3-dependent manner, and its overexpression could partially restore stem cell-like traits and EMT of cultured HCT116 cells after BTF3 knockdown. In parallel, treatment with the BMI1 inhibitor PTC-209 mimicked the effects of BTF3 knockdown on stem cell-like traits and EMT of cultured HCT116 cells. Together, these results support the notion that BTF3 and BMI1 are potential therapeutic targets to limit CRC metastasis.
Collapse
Affiliation(s)
- Wenli Zhou
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Zhennan Yun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Ting Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
19
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
20
|
Rao C, Frodyma DE, Southekal S, Svoboda RA, Black AR, Guda C, Mizutani T, Clevers H, Johnson KR, Fisher KW, Lewis RE. KSR1- and ERK-dependent translational regulation of the epithelial-to-mesenchymal transition. eLife 2021; 10:e66608. [PMID: 33970103 PMCID: PMC8195604 DOI: 10.7554/elife.66608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/09/2021] [Indexed: 01/06/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here, we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.
Collapse
Affiliation(s)
- Chaitra Rao
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Danielle E Frodyma
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Robert A Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Adrian R Black
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical CenterOmahaUnited States
| | - Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC UtrechtUtrechtNetherlands
| | - Keith R Johnson
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
- Department of Oral Biology, University of Nebraska Medical CenterOmahaUnited States
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical CenterOmahaUnited States
| | - Robert E Lewis
- Eppley Institute, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
21
|
Ercolano G, Gomez-Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, Michalik L, Loyon R, Ianaro A, Ho PC, Borg C, Kopf M, Merkler D, Krebs P, Romero P, Trabanelli S, Jandus C. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun 2021; 12:2538. [PMID: 33953160 PMCID: PMC8100153 DOI: 10.1038/s41467-021-22764-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/25/2021] [Indexed: 01/27/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play a critical role in protection against helminths and in diverse inflammatory diseases by responding to soluble factors such as the alarmin IL-33, that is often overexpressed in cancer. Nonetheless, regulatory factors that dictate ILC2 functions remain poorly studied. Here, we show that peroxisome proliferator-activated receptor gamma (PPARγ) is selectively expressed in ILC2s in humans and in mice, acting as a central functional regulator. Pharmacologic inhibition or genetic deletion of PPARγ in ILC2s significantly impair IL-33-induced Type-2 cytokine production and mitochondrial fitness. Further, PPARγ blockade in ILC2s disrupts their pro-tumoral effect induced by IL-33-secreting cancer cells. Lastly, genetic ablation of PPARγ in ILC2s significantly suppresses tumor growth in vivo. Our findings highlight a crucial role for PPARγ in supporting the IL-33 dependent pro-tumorigenic role of ILC2s and suggest that PPARγ can be considered as a druggable pathway in ILC2s to inhibit their effector functions. Hence, PPARγ targeting might be exploited in cancer immunotherapy and in other ILC2-driven mediated disorders, such as asthma and allergy.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Alejandra Gomez-Cadena
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Nina Dumauthioz
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Giulia Vanoni
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Tania Wyss
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Romain Loyon
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Christophe Borg
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland. .,Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
22
|
Lin H, Zeng W, Lei Y, Chen D, Nie Z. Tuftelin 1 (TUFT1) Promotes the Proliferation and Migration of Renal Cell Carcinoma via PI3K/AKT Signaling Pathway. Pathol Oncol Res 2021; 27:640936. [PMID: 34257606 PMCID: PMC8262214 DOI: 10.3389/pore.2021.640936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 12/25/2022]
Abstract
Tuftelin 1 (TUFT1), a protein functioning distinctively in different tissues, is reported to be elevated in several types of cancers and the elevation of TUFT1 is correlated with unfavorable clinicopathologic characteristics and poor survival. However, the involvement of TUFT1 in renal cell carcinoma (RCC) remains unknown. In the current study, we investigated the role of TUFT1 in RCC and potential underlying mechanisms. RT-PCR and Western blot analysis showed that both the mRNA and protein levels of TUFT1 were increased in primary RCC tissue and RCC cell lines. TUFT1 overexpression in RCC cells resulted in enhanced cell proliferation and migration while knockdown of TUFT1 by contrast decreased the growth and migration of the RCC cells, indicating TUFT1 expression is involved in RCC cell growth and migration. The involvement of TUFT1 in the epithelial-mesenchymal transition (EMT) of RCC cells was also determined by measuring the expression of EMT-related markers. Our data showed that TUFT1 overexpression promoted RCC cell EMT progression while knockdown of TUFT1 suppressed such process. Further signaling pathway inhibition assay revealed that TUFT1-induced RCC cell growth, migration and EMT was significantly suppressed by PI3K inhibitor, but not JNK or MEK inhibitors. In addition, TUFT1 overexpression enhanced the AKT phosphorylation, a key member of the PI3K signaling pathway, while PI3K inhibitor suppressed such process. Taken together, our study showed that TUFT1 expression was elevated in RCC and such elevation promoted the proliferation, migration and EMT of RCC cells in vitro, through PI3K/AKT signaling pathway. The findings of our current study imply that TUFT1 is involved in RCC tumorigenesis, and it may serve as a biomarker for RCC diagnosis and a potential target for RCC treatment.
Collapse
Affiliation(s)
- Hua Lin
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Weifeng Zeng
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yuhang Lei
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Desheng Chen
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Zhen Nie
- Department of Urology, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| |
Collapse
|
23
|
Jia F, Wang Y, Fang Z, Dong J, Shi F, Zhang W, Wang Z, Hu Z. Novel Peptide-Based Magnetic Nanoparticle for Mesenchymal Circulating Tumor Cells Detection. Anal Chem 2021; 93:5670-5675. [PMID: 33788544 DOI: 10.1021/acs.analchem.1c00577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The monitoring of circulating tumor cells (CTCs) has recently served as a promising approach for assessing prognosis and evaluating cancer treatment. We have already developed a CTCs enrichment platform by EpCAM recognition peptide-functionalized magnetic nanoparticles (EP@MNPs). However, considering heterogeneous CTCs generated through epithelial-mesenchymal transition (EMT), mesenchymal CTCs would be missed with this method. Notably, N-cadherin, overexpressed on mesenchymal CTCs, can facilitate the migration of cancer cells. Hence, we screened a novel peptide targeting N-cadherin, NP, and developed a new CTCs isolation approach via NP@MNPs to complement EpCAM methods' deficiencies. NP@MNPs had a high capture efficiency (about 85%) of mesenchymal CTCs from spiked human blood. Subsequently, CTCs were captured and sequenced at the single-cell level via NP@MNPs and EP@MNPs, RNA profiles of which showed that epithelial and mesenchymal subgroups could be distinguished. Here, a novel CTCs isolation platform laid the foundation for mesenchymal CTCs isolation and subsequent molecular analysis.
Collapse
Affiliation(s)
- Fei Jia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuehua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Fang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jierong Dong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanghao Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weikai Zhang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100811, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China.,School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
24
|
Do HTT, Cho J. Involvement of the ERK/HIF-1α/EMT Pathway in XCL1-Induced Migration of MDA-MB-231 and SK-BR-3 Breast Cancer Cells. Int J Mol Sci 2020; 22:ijms22010089. [PMID: 33374849 PMCID: PMC7796296 DOI: 10.3390/ijms22010089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.
Collapse
|
25
|
Ardizzone A, Scuderi SA, Giuffrida D, Colarossi C, Puglisi C, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Role of Fibroblast Growth Factors Receptors (FGFRs) in Brain Tumors, Focus on Astrocytoma and Glioblastoma. Cancers (Basel) 2020; 12:E3825. [PMID: 33352931 PMCID: PMC7766440 DOI: 10.3390/cancers12123825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Despite pharmacological treatments and surgical practice options, the mortality rate of astrocytomas and glioblastomas remains high, thus representing a medical emergency for which it is necessary to find new therapeutic strategies. Fibroblast growth factors (FGFs) act through their associated receptors (FGFRs), a family of tyrosine kinase receptors consisting of four members (FGFR1-4), regulators of tissue development and repair. In particular, FGFRs play an important role in cell proliferation, survival, and migration, as well as angiogenesis, thus their gene alteration is certainly related to the development of the most common diseases, including cancer. FGFRs are subjected to multiple somatic aberrations such as chromosomal amplification of FGFR1; mutations and multiple dysregulations of FGFR2; and mutations, translocations, and significant amplifications of FGFR3 and FGFR4 that correlate to oncogenesis process. Therefore, the in-depth study of these receptor systems could help to understand the etiology of both astrocytoma and glioblastoma so as to achieve notable advances in more effective target therapies. Furthermore, the discovery of FGFR inhibitors revealed how these biological compounds improve the neoplastic condition by demonstrating efficacy and safety. On this basis, this review focuses on the role and involvement of FGFRs in brain tumors such as astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Sarah A. Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Dario Giuffrida
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande (CT), Italy; (D.G.); (C.C.)
| | - Caterina Puglisi
- IOM Ricerca Srl, Via Penninazzo 11, 95029 Viagrande (CT), Italy;
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.A.); (S.A.S.); (M.C.); (S.C.); (E.E.)
| |
Collapse
|
26
|
Li Y, Lv Z, Zhang S, Wang Z, He L, Tang M, Pu W, Zhao H, Zhang Z, Shi Q, Cai D, Wu M, Hu G, Lui KO, Feng J, Nieto MA, Zhou B. Genetic Fate Mapping of Transient Cell Fate Reveals N-Cadherin Activity and Function in Tumor Metastasis. Dev Cell 2020; 54:593-607.e5. [PMID: 32668208 DOI: 10.1016/j.devcel.2020.06.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
Genetic lineage tracing unravels cell fate and plasticity in development, tissue homeostasis, and diseases. However, it remains technically challenging to trace temporary or transient cell fate, such as epithelial-to-mesenchymal transition (EMT) in tumor metastasis. Here, we generated a genetic fate-mapping system for temporally seamless tracing of transient cell fate. Highlighting its immediate application, we used it to study EMT gene activity from the local primary tumor to a distant metastatic site in vivo. In a spontaneous breast-to-lung metastasis model, we found that primary tumor cells activated vimentin and N-cadherin in situ, but only N-cadherin was activated and functionally required during metastasis. Tumor cells that have ever expressed N-cadherin constituted the majority of metastases in lungs, and functional deletion of N-cad significantly reduced metastasis. The seamless genetic recording system described here provides an alternative way for understanding transient cell fate and plasticity in biological processes.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shaohua Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhuo Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 201100, Shanghai, China
| | - Lingjuan He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Muxue Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qihui Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 201100, Shanghai, China
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Mingfu Wu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Jing Feng
- Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201400, China
| | - M Angela Nieto
- Institute de Neurociencias CSIC-UMH, Avda. Ramon y Cajal s/n, 03550 San Juan de Alicante, Spain
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
27
|
Transformable peptide nanoparticles inhibit the migration of N-cadherin overexpressed cancer cells. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Sommariva M, Gagliano N. E-Cadherin in Pancreatic Ductal Adenocarcinoma: A Multifaceted Actor during EMT. Cells 2020; 9:E1040. [PMID: 32331358 PMCID: PMC7226001 DOI: 10.3390/cells9041040] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a step-wise process observed in normal and tumor cells leading to a switch from epithelial to mesenchymal phenotype. In tumors, EMT provides cancer cells with a metastatic phenotype characterized by E-cadherin down-regulation, cytoskeleton reorganization, motile and invasive potential. E-cadherin down-regulation is known as a key event during EMT. However, E-cadherin expression can be influenced by the different experimental settings and environmental stimuli so that the paradigm of EMT based on the loss of E-cadherin determining tumor cell behavior and fate often becomes an open question. In this review, we aimed at focusing on some critical points in order to improve the knowledge of the dynamic role of epithelial cells plasticity in EMT and, specifically, address the role of E-cadherin as a marker for the EMT axis.
Collapse
Affiliation(s)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
29
|
FGFR1 and FGFR4 oncogenicity depends on n-cadherin and their co-expression may predict FGFR-targeted therapy efficacy. EBioMedicine 2020; 53:102683. [PMID: 32114392 PMCID: PMC7047190 DOI: 10.1016/j.ebiom.2020.102683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR)1 and FGFR4 have been associated with tumorigenesis in a variety of tumour types. As a therapeutic approach, their inhibition has been attempted in different types of malignancies, including lung cancer, and was initially focused on FGFR1-amplified tumours, though with limited success. METHODS In vitro and in vivo functional assessments of the oncogenic potential of downregulated/overexpressed genes in isogenic cell lines were performed, as well as inhibitor efficacy tests in vitro and in vivo in patient-derived xenografts (PDXs). mRNA was extracted from FFPE non-small cell lung cancer samples to determine the prognostic potential of the genes under study. FINDINGS We provide in vitro and in vivo evidence showing that expression of the adhesion molecule N-cadherin is key for the oncogenic role of FGFR1/4 in non-small cell lung cancer. According to this, assessment of the expression of genes in different lung cancer patient cohorts showed that FGFR1 or FGFR4 expression alone showed no prognostic potential, and that only co-expression of FGFR1 and/or FGFR4 with N-cadherin inferred a poorer outcome. Treatment of high-FGFR1 and/or FGFR4-expressing lung cancer cell lines and patient-derived xenografts with selective FGFR inhibitors showed high efficacy, but only in models with high FGFR1/4 and N-cadherin expression. INTERPRETATION Our data show that the determination of the expression of FGFR1 or FGFR4 alone is not sufficient to predict anti-FGFR therapy efficacy; complementary determination of N-cadherin expression may further optimise patient selection for this therapeutic strategy.
Collapse
|
30
|
Lee MW, Kim GH, Jeon HK, Park SJ. Clinical Application of Circulating Tumor Cells in Gastric Cancer. Gut Liver 2020; 13:394-401. [PMID: 30970448 PMCID: PMC6622568 DOI: 10.5009/gnl18484] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Early detection and accurate monitoring of cancer is important for improving clinical outcomes. Endoscopic biopsy and/or surgical resection specimens are the gold standard for diagnosing gastric cancer and are also useful for selecting therapeutic strategies based on the analysis of genomic/immune parameters. However, these approaches cannot be easily performed because of their invasiveness and because these specimens do not always reflect tumor dynamics and drug sensitivities during therapeutic processes, especially chemotherapy. Accordingly, many researchers have tried to develop noninvasive novel biomarkers that can monitor real-time tumor dynamics for early diagnosis, prognostic evaluation, and prediction of recurrence and therapeutic efficacy. Circulating tumor cells (CTCs) are metastatic cells that are released from the primary tumors into the blood stream and comprise a crucial step in hematogenous metastasis. CTCs, as a liquid biopsy, have received a considerable amount of attention from researchers since they are easily accessible in peripheral blood, avoiding the invasiveness associated with traditional biopsy techniques; they can also be used to derive clinical information for monitoring disease status. In this review, with respect to CTCs, we summarize the metastatic cascade, detection methods, clinical applications, and prospects for patients with gastric cancer.
Collapse
Affiliation(s)
- Moon Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hye Kyung Jeon
- Department of Internal Medicine, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Su Jin Park
- Department of Internal Medicine, Pusan National University School of Medicine, and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
31
|
Zhang K, Fang Y, He Y, Yin H, Guan X, Pu Y, Zhou B, Yue W, Ren W, Du D, Li H, Liu C, Sun L, Chen Y, Xu H. Extravascular gelation shrinkage-derived internal stress enables tumor starvation therapy with suppressed metastasis and recurrence. Nat Commun 2019; 10:5380. [PMID: 31772164 PMCID: PMC6879564 DOI: 10.1038/s41467-019-13115-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the efficacy of current starvation therapies, they are often associated with some intrinsic drawbacks such as poor persistence, facile tumor metastasis and recurrence. Herein, we establish an extravascular gelation shrinkage-derived internal stress strategy for squeezing and narrowing blood vessels, occluding blood & nutrition supply, reducing vascular density, inducing hypoxia and apoptosis and eventually realizing starvation therapy of malignancies. To this end, a biocompatible composite hydrogel consisting of gold nanorods (GNRs) and thermal-sensitive hydrogel mixture was engineered, wherein GRNs can strengthen the structural property of hydrogel mixture and enable robust gelation shrinkage-induced internal stresses. Systematic experiments demonstrate that this starvation therapy can suppress the growths of PANC-1 pancreatic cancer and 4T1 breast cancer. More significantly, this starvation strategy can suppress tumor metastasis and tumor recurrence via reducing vascular density and blood supply and occluding tumor migration passages, which thus provides a promising avenue to comprehensive cancer therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China.
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Tumor-targeting Theranostics, Guangxi Medical University, 22 Shuang-Yong Road, Nanning, Guangxi, 530021, P. R. China.
| | - Yan Fang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Yaping He
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Haohao Yin
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Xin Guan
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Yinying Pu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Bangguo Zhou
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Wenwen Yue
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Weiwei Ren
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Dou Du
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Hongyan Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Chang Liu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Liping Sun
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Tongji University School of Medicine, Tongji University, 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China.
| |
Collapse
|
32
|
Yu W, Yang L, Li T, Zhang Y. Cadherin Signaling in Cancer: Its Functions and Role as a Therapeutic Target. Front Oncol 2019; 9:989. [PMID: 31637214 PMCID: PMC6788064 DOI: 10.3389/fonc.2019.00989] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherin family includes lists of transmembrane glycoproteins which mediate calcium-dependent cell-cell adhesion. Cadherin-mediated adhesion regulates cell growth and differentiation throughout life. Through the establishment of the cadherin-catenin complex, cadherins provide normal cell-cell adhesion and maintain homeostatic tissue architecture. In the process of cell recognition and adhesion, cadherins act as vital participators. As results, the disruption of cadherin signaling has significant implications on tumor formation and progression. Altered cadherin expression plays a vital role in tumorigenesis, tumor progression, angiogenesis, and tumor immune response. Based on ongoing research into the role of cadherin signaling in malignant tumors, cadherins are now being considered as potential targets for cancer therapies. This review will demonstrate the mechanisms of cadherin involvement in tumor progression, and consider the clinical significance of cadherins as therapeutic targets.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Ting Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Kon E, Calvo-Jiménez E, Cossard A, Na Y, Cooper JA, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. eLife 2019; 8:47673. [PMID: 31577229 PMCID: PMC6786859 DOI: 10.7554/elife.47673] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
The functions of FGF receptors (FGFRs) in early development of the cerebral cortex are well established. Their functions in the migration of neocortical projection neurons, however, are unclear. We have found that FGFRs regulate multipolar neuron orientation and the morphological change into bipolar cells necessary to enter the cortical plate. Mechanistically, our results suggest that FGFRs are activated by N-Cadherin. N-Cadherin cell-autonomously binds FGFRs and inhibits FGFR K27- and K29-linked polyubiquitination and lysosomal degradation. Accordingly, FGFRs accumulate and stimulate prolonged Erk1/2 phosphorylation. Neurons inhibited for Erk1/2 are stalled in the multipolar zone. Moreover, Reelin, a secreted protein regulating neuronal positioning, prevents FGFR degradation through N-Cadherin, causing Erk1/2 phosphorylation. These findings reveal novel functions for FGFRs in cortical projection neuron migration, suggest a physiological role for FGFR and N-Cadherin interaction in vivo and identify Reelin as an extracellular upstream regulator and Erk1/2 as downstream effectors of FGFRs during neuron migration.
Collapse
Affiliation(s)
- Elif Kon
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elisa Calvo-Jiménez
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alexia Cossard
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Youn Na
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. [DOI: 10.1016/j.biopha.2019.109320] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
|
35
|
Joseph C, Al-Izzi S, Alsaleem M, Kurozumi S, Toss MS, Arshad M, Goh FQ, Alshankyty IM, Aleskandarany MA, Ali S, Ellis IO, Mongan NP, Green AR, Rakha EA. Retinoid X receptor gamma (RXRG) is an independent prognostic biomarker in ER-positive invasive breast cancer. Br J Cancer 2019; 121:776-785. [PMID: 31558802 PMCID: PMC6889395 DOI: 10.1038/s41416-019-0589-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Retinoid X Receptor Gamma (RXRG) is a member of the nuclear receptor superfamily and plays a role in tumour suppression. This study aims to explore the prognostic significance of RXRG in breast cancer. METHODS Primary breast cancer tissue microarrays (n = 923) were immuno-stained for RXRG protein and correlated with clinicopathological features, and patient outcome. RESULTS Nuclear RXRG expression was significantly associated with smaller tumour size (p = 0.036), lower grade (p < 0.001), lobular histology (p = 0.016), lower Nottingham Prognostic Index (p = 0.04) and longer breast cancer-specific survival (p < 0.001), and longer time to distant metastasis (p = 0.002). RXRG expression showed positive association with oestrogen receptor (ER)-related biomarkers: GATA3, FOXA1, STAT3 and MED7 (all p < 0.001) and a negative correlation with the Ki67 proliferation marker. Multivariate analysis demonstrated RXRG protein as an independent predictor of longer breast cancer-specific survival and distant metastasis-free survival. In the external validation cohorts, RXRG expression was associated with improved patients' outcome (p = 0.025). In ER-positive tumours, high expression of RXRG was associated with better patient outcome regardless of adjuvant systemic therapy. ER signalling pathway was the top predicted master regulator of RXRG protein expression (p = 0.005). CONCLUSION This study provides evidence for the prognostic value of RXRG in breast cancer particularly the ER-positive tumours.
Collapse
Affiliation(s)
- Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Sara Al-Izzi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Maariya Arshad
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Fang Qin Goh
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Ibraheem M Alshankyty
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Simak Ali
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Nigel P Mongan
- Cancer Biology and Translational Research, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham, UK. .,Histopathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt.
| |
Collapse
|
36
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 730] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
37
|
Wawruszak A, Gumbarewicz E, Okon E, Jeleniewicz W, Czapinski J, Halasa M, Okla K, Smok-Kalwat J, Bocian A, Rivero-Muller A, Stepulak A. Histone deacetylase inhibitors reinforce the phenotypical markers of breast epithelial or mesenchymal cancer cells but inhibit their migratory properties. Cancer Manag Res 2019; 11:8345-8358. [PMID: 31571991 PMCID: PMC6750858 DOI: 10.2147/cmar.s210029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Histone deacetylase inhibitors (HDIs) are a group of compounds that exhibit anticancer activity, but their significance and usefulness in breast cancer (BC) treatment are still controversial. The ability of cancer cells to invade and migrate is augmented by the acquisition of a mesenchymal phenotype – a process known as epithelial-to-mesenchymal transition (EMT). Changes in the expression level of different cadherins, so-called cadherin switches, have been used to monitor the EMT process in development and tumor progression, in particular migration and invasion potential. The aim of this study was to analyze the influence of two HDIs – valproic acid (VPA) and vorinostat (SAHA) – on the migration potential of different BC cell types, as well as on EMT, or its reverse process – mesenchymal-to-epithelial transition, progression by means of shift in epithelial and mesenchymal marker expression. Methods HDI treatment-induced expression of E- and N-cadherin at the mRNA and protein levels was evaluated by qPCR, Western blotting and immunostaining methods, respectively. BC cell proliferation and migration were assessed by BrdU, xCELLigence system and wound-healing assay. Results VPA and SAHA inhibited the proliferation and migration in a dose- and time-dependent manner, regardless of the BC cell type. Unawares, BC cells having a more mesenchymal phenotype (MDA-MB-468) were found to overexpress N-cadherin, whereas BC lines having an epithelial phenotype (T47D, MCF7) responded to HDI treatment by a significant increase of E-cadherin expression. Discussion We suggest that HDAC inhibition results in a more relaxed chromatin concomitant to an increase in the expression of already expressing genes. Conclusion By using multiple cancer cell lines, we conclude that HDI induction or reversal of EMT is not a universal mechanism, yet inhibition of cell migration is, and thus EMT should not be considered as the only measurement for tumor aggressiveness.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jakub Czapinski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okla
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | | | - Artur Bocian
- Department of Oncological Surgery, Holy Cross Cancer Centre, Kielce, Poland
| | - Adolfo Rivero-Muller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Faculty of Science and Engineering, Cell Biology, Abo Akademi University, Turku, Finland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
38
|
Tan S, Khumalo N, Bayat A. Understanding Keloid Pathobiology From a Quasi-Neoplastic Perspective: Less of a Scar and More of a Chronic Inflammatory Disease With Cancer-Like Tendencies. Front Immunol 2019; 10:1810. [PMID: 31440236 PMCID: PMC6692789 DOI: 10.3389/fimmu.2019.01810] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Keloids are considered as benign fibroproliferative skin tumors growing beyond the site of the original dermal injury. Although traditionally viewed as a form of skin scarring, keloids display many cancer-like characteristics such as progressive uncontrolled growth, lack of spontaneous regression and extremely high rates of recurrence. Phenotypically, keloids are consistent with non-malignant dermal tumors that are due to the excessive overproduction of collagen which never metastasize. Within the remit of keloid pathobiology, there is increasing evidence for the various interplay of neoplastic-promoting and suppressing factors, which may explain its aggressive clinical behavior. Amongst the most compelling parallels between keloids and cancer are their shared cellular bioenergetics, epigenetic methylation profiles and epithelial-to-mesenchymal transition amongst other disease biological (genotypic and phenotypic) behaviors. This review explores the quasi-neoplastic or cancer-like properties of keloids and highlights areas for future study.
Collapse
Affiliation(s)
- Silvian Tan
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Nonhlanhla Khumalo
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
- Hair and Skin Research Laboratory, Department of Dermatology, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
39
|
Tumor-Derived Exosomes Mediate the Instability of Cadherins and Promote Tumor Progression. Int J Mol Sci 2019; 20:ijms20153652. [PMID: 31357383 PMCID: PMC6696460 DOI: 10.3390/ijms20153652] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherins, including E-cadherin, N-cadherin, VE-cadherin, etc., are important adhesion molecules mediating intercellular junctions. The abnormal expression of cadherins is often associated with tumor development and progression. Epithelial–mesenchymal transition (EMT) is the most important step in the metastasis cascade and is accompanied by altered expression of cadherins. Recent studies reveal that as a cargo for intercellular communication, exosomes—one type of extracellular vesicles that can be secreted by tumor cells—are involved in a variety of physiological and pathological processes, especially in tumor metastasis. Tumor-derived exosomes play a crucial role in mediating the cadherin instability in recipient cells by transferring bioactive molecules (oncogenic microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), EMT-related proteins, and others), modulating their local and distant microenvironment, and facilitating cancer metastasis. In turn, aberrant expression of cadherins in carcinoma cells can also affect the biogenesis and release of exosomes. Therefore, we summarize the current research on the crosstalk between tumor-derived exosomes and aberrant cadherin signals to reveal the unique role of exosomes in cancer progression.
Collapse
|
40
|
Wang Y, Shi L, Li J, Li L, Wang H, Yang H. Long-term cadmium exposure promoted breast cancer cell migration and invasion by up-regulating TGIF. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:110-117. [PMID: 30897409 DOI: 10.1016/j.ecoenv.2019.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a known human carcinogen. Previous studies have demonstrated that Cd exposure promoted migration and invasion of breast cancer cells. However, the molecular mechanisms underlying this process have not yet been clearly addressed. The purpose of this study was to investigate whether TG-interacting factor (TGIF) was involved in long-term Cd exposure-induced migration and invasion of breast cancer cells. Human breast cancer cells were continuously exposed to Cd for eight weeks. Western blot and qRT-PCR assays were performed to measure the expression of protein and mRNA. Migration and invasion assays were performed to assess the migratory and invasive ability of human breast cancer cells. Our data indicated that long-term Cd exposure obviously increased the expression of TGIF protein and mRNA in human breast cancer cells. Long-term Cd exposure increased the ability of migration and invasion of human breast cancer cells, which could be inhibited by transfection of small interfering RNA (siRNA) targeting TGIF. We also observed that the long-term Cd exposure-induced up-regulation of MMP2 mRNA expression was modulated by TGIF. In conclusion, our findings suggested that TGIF/MMP2 signaling axis might be involved in malignant progression stimulated by long-term Cd exposure in human breast cancer.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China.
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangmin Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Li Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
41
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
42
|
Huang H, Wright S, Zhang J, Brekken RA. Getting a grip on adhesion: Cadherin switching and collagen signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118472. [PMID: 30954569 DOI: 10.1016/j.bbamcr.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental biological process that is hijacked during tumor progression. Cadherin switching, which disrupts adherens junctions and alters cadherin-associated signaling pathways, is common during EMT. In many tumors, substantial extracellular matrix (ECM) is deposited. Collagen is the most abundant ECM constituent and it mediates specific signaling pathways by binding to integrins and discoidin domain receptors (DDRs). The interaction of the collagen receptors results in activation of signaling pathways that promote tumor progression including an induction of the cadherin switching. DDR inhibitors have demonstrated anticancer therapeutic efficacy preclinically by inhibiting the collagen signaling. Understanding how collagen signaling impacts cellular processes including EMT and cadherin switching is of great interest especially given the strong interest in stromal targeted therapies for desmoplastic cancers.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven Wright
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junqiu Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
43
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
44
|
Nguyen PT, Nguyen D, Chea C, Miyauchi M, Fujii M, Takata T. Interaction between N-cadherin and decoy receptor-2 regulates apoptosis in head and neck cancer. Oncotarget 2018; 9:31516-31530. [PMID: 30140387 PMCID: PMC6101147 DOI: 10.18632/oncotarget.25846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/15/2018] [Indexed: 11/25/2022] Open
Abstract
N-cadherin is a neural cell adhesion molecule that aberrantly occurs in head and neck cancers to promote cancer cell growth. However, the underlying mechanisms remain unclear. Here we report that N-cadherin increases cancer cell growth by inhibiting apoptosis. Apoptosis eliminates old, unnecessary, and unhealthy cells. However, tumor cells have the ability of avoiding apoptosis that increases cancer cell growth. Recent studies have found that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells by reacting with four distinct cell surface receptors: TRAIL-R1 (DR-4), TRAIL-R2 (DR-5), TRAIL-R3 (DcR-1), and TRAIL-R4 (DcR-2). Among these TRAIL receptors, the death receptors DR-4 and DR-5 transmit apoptotic signals owing to the death domain in the intracellular portion. Conversely, the decoy receptors DcR-1 and DcR-2 lack a complete intracellular portion, so neither can transmit apoptotic signals. DcR-1 or DcR-2 overexpression suppresses TRAIL-induced apoptosis. In this study, N-cadherin overexpression increased DcR-2 expression and decreased DR-5 expression. In contrast, knockdown of N-cadherin expression upregulated DR-5 expression and downregulated DcR-2 expression. A significantly positive relationship between N-cadherin and DcR-2 expression was also found in HNSCC specimens. Those specimens with a lower apoptotic index showed a higher expression of N-cadherin and/or DcR-2. In addition, we demonstrated that N-cadherin interacts directly with DcR-2. Notably, DcR-2 induces cancer cell survival through the cleavage of caspases and PARP by activating MAPK/ERK pathway and suppressing NF-kB/ p65 phosphorylation, which has a very important role in resistance to chemotherapy.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan.,Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dung Nguyen
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chanbora Chea
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makiko Fujii
- Department of Global Dental Medicine and Molecular Oncology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
45
|
Joseph C, Macnamara O, Craze M, Russell R, Provenzano E, Nolan CC, Diez-Rodriguez M, Sonbul SN, Aleskandarany MA, Green AR, Rakha EA, Ellis IO, Mukherjee A. Mediator complex (MED) 7: a biomarker associated with good prognosis in invasive breast cancer, especially ER+ luminal subtypes. Br J Cancer 2018; 118:1142-1151. [PMID: 29588513 PMCID: PMC5931067 DOI: 10.1038/s41416-018-0041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mediator complex (MED) proteins have a key role in transcriptional regulation, some interacting with the oestrogen receptor (ER). Interrogation of the METABRIC cohort suggested that MED7 may regulate lymphovascular invasion (LVI). Thus MED7 expression was assessed in large breast cancer (BC) cohorts to determine clinicopathological significance. Methods MED7 gene expression was investigated in the METABRIC cohort (n = 1980) and externally validated using bc-GenExMiner v4.0. Immunohistochemical expression was assessed in the Nottingham primary BC series (n = 1280). Associations with clinicopathological variables and patient outcome were evaluated. Results High MED7 mRNA and protein expression was associated with good prognostic factors: low grade, smaller tumour size, good NPI, positive hormone receptor status (p < 0.001), and negative LVI (p = 0.04) status. Higher MED7 protein expression was associated with improved BC-specific survival within the whole cohort and ER+/luminal subgroup. Pooled MED7 gene expression data in the external validation cohort confirmed association with better survival, corroborating with the protein expression. On multivariate analysis, MED7 protein was independently predictive of longer BC-specific survival in the whole cohort and Luminal A subtype (p < 0.001). Conclusions MED7 is an important prognostic marker in BC, particularly in ER+luminal subtypes, associated with improved survival and warrants future functional analysis.
Collapse
Affiliation(s)
- Chitra Joseph
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Olivia Macnamara
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Madeleine Craze
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | | | - Elena Provenzano
- Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Christopher C Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Maria Diez-Rodriguez
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Sultan N Sonbul
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Mohammed A Aleskandarany
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Abhik Mukherjee
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.
| |
Collapse
|
46
|
Liu J, Zhai R, Zhao J, Kong F, Wang J, Jiang W, Xin Q, Xue X, Luan Y. Programmed cell death 4 overexpression enhances sensitivity to cisplatin via the JNK/c-Jun signaling pathway in bladder cancer. Int J Oncol 2018; 52:1633-1642. [PMID: 29512740 DOI: 10.3892/ijo.2018.4303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the effects of programmed cell death 4 (PDCD4) on cell proliferation and apoptosis, and to elucidate the potential role of the Jun N-terminal kinase (JNK)/c-Jun pathway in human bladder cancer (BCa) cells. Mixed BCa cells were transfected with plasmids containing PDCD4 (PDCD4-pcDNA3). The sensitivity to cisplatin was analyzed using cell viability, invasion/migration, apoptosis, flow cytometry, wound healing and Transwell assays at different transfection times. Furthermore, epithelial-to-mesenchymal transition (EMT) markers were detected by immunofluorescence staining, and the protein expression of c-Jun, and phosphorylated Jun N-terminal kinase (p-JNK) and c-Jun (p-c-Jun, Ser-73) were also tested using western blotting. It was observed that BCa cell proliferation and invasion and tumor growth were significantly inhibited, whereas apoptosis was enhanced in PDCD4-transfected cells treated with cisplatin compared with controls. Moreover, the western blotting and immunofluorescence results demonstrated that PDCD4 upregulated the expression of epithelial cell markers, but downregulated the expression of mesenchymal cell markers. Furthermore, overexpression of PDCD4 reduced the protein levels of p-JNK and p-c-Jun. Taken together, the findings of the present study indicate that PDCD4 enhances the sensitivity of BCa cells to cisplatin, partially via regulation of the JNK/c-Jun pathway, and reverses EMT. In conclusion, the results of the present study suggested that PDCD4, a nuclear/cytoplasmic shuttling protein with multiple functions, plays an important role in the development and progression of human BCa.
Collapse
Affiliation(s)
- Junli Liu
- Laboratory of Clinical Molecular Biology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ruirui Zhai
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jingjie Zhao
- Laboratory of Clinical Molecular Biology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jue Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wen Jiang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qian Xin
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
47
|
Da C, Wu K, Yue C, Bai P, Wang R, Wang G, Zhao M, Lv Y, Hou P. N-cadherin promotes thyroid tumorigenesis through modulating major signaling pathways. Oncotarget 2018; 8:8131-8142. [PMID: 28042956 PMCID: PMC5352388 DOI: 10.18632/oncotarget.14101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a crucial step in disease progression, plays a key role in tumor metastasis. N-cadherin, a well-known EMT marker, acts as a major oncogene in diverse cancers, whereas its functions in thyroid cancer remains largely unclear. This study was designed to explore the biological roles and related molecular mechanism of N-cadherin in thyroid tumorigenesis. Quantitative RT-PCR (qRT-PCR) and immunohistochemistry assays were used to evaluate N-cadherin expression. A series of in vitro studies such as cell proliferation, colony formation, cell cycle, apoptosis, migration and invasion assays were performed to determine the effect of N-cadherin on malignant behavior of thyroid cancer cells. Our results showed that N-cadherin was significantly upregulated in papillary thyroid cancers (PTCs) as compared with non-cancerous thyroid tissues. N-cadherin knockdown markedly inhibited cell proliferation, colony formation, cell migration and invasion, and induced cell cycle arrest and apoptosis. On the other hand, ectopic expression of N-cadherin promoted thyroid cancer cell growth and invasiveness. Mechanically, our data demonstrated that tumor-promoting role of N-cadherin in thyroid cancer was closely related to the activities of the MAPK/Erk, the phosphatidylinositol-3-kinase (PI3K)/Akt and p16/Rb signaling pathways in addition to affecting the EMT process. Altogether, our findings suggest that N-cadherin promotes thyroid tumorigenesis by modulating the activities of major signaling pathways and EMT process, and may represent a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Chenxing Da
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Department of Endocrinology, Shanxi Provincial Crops Hospital of Chinese People's Armed Police Force, Xi'an 710054, P.R. China
| | - Kexia Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chenli Yue
- Department of Endocrinology, Shanxi Provincial Crops Hospital of Chinese People's Armed Police Force, Xi'an 710054, P.R. China
| | - Peisong Bai
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Rong Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Guanjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Man Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yanyan Lv
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
48
|
Ciołczyk-Wierzbicka D, Laidler P. The inhibition of invasion of human melanoma cells through N-cadherin knock-down. Med Oncol 2018; 35:42. [PMID: 29492694 PMCID: PMC5830464 DOI: 10.1007/s12032-018-1104-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
Abstract
N-cadherin seems to promote cell migration and invasion in many types of cancers. The object of this study is recognition of the possible role of N-cadherin and selected downstream protein kinases: PI3K, ERK1/2, and mTOR in cell invasion in malignant melanoma. Melanoma cells were transfected with the small interfering RNA (siRNA) that targets human N-cadherin gene (CDH2). Inhibitors LY294002 (PI3K), U0126 (ERK1/2), and everolimus (mTOR) were used to inhibit selected kinases of signalling pathways. In vitro cell invasion was studied using Matrigel and an analysis of matrix metalloproteinases MMP-2 and MMP-9 activity by gelatinase zymogram assay. Treatment of melanoma cell with either siRNA against N-cadherin or protein kinase inhibitors led to significantly decreased MMPs expression and activity, as well as diminished invasion. Both the current and the former results suggest that activation of PI3/AKT, mTOR, and ERK kinase, following N-cadherin expression, contributes not only to increased proliferation but also invasive potential of melanoma cells. The results also indicate that N-cadherin, as well as the studied kinases, should be considered as a potential target in melanoma therapy.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
49
|
Nelson ER, Li S, Kennedy M, Payne S, Kilibarda K, Groth J, Bowie M, Parilla-Castellar E, de Ridder G, Marcom PK, Lyes M, Peterson BL, Cook M, Pizzo SV, McDonnell DP, Bachelder RE. Chemotherapy enriches for an invasive triple-negative breast tumor cell subpopulation expressing a precursor form of N-cadherin on the cell surface. Oncotarget 2018; 7:84030-84042. [PMID: 27768598 PMCID: PMC5356642 DOI: 10.18632/oncotarget.12767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although most triple-negative breast cancer (TNBC) patients initially respond to chemotherapy, residual tumor cells frequently persist and drive recurrent tumor growth. Previous studies from our laboratory and others' indicate that TNBC is heterogeneous, being composed of chemo-sensitive and chemo-resistant tumor cell subpopulations. In the current work, we studied the invasive behaviors of chemo-resistant TNBC, and sought to identify markers of invasion in chemo-residual TNBC. METHODS The invasive behavior of TNBC tumor cells surviving short-term chemotherapy treatment in vitro was studied using transwell invasion assays and an experimental metastasis model. mRNA expression levels of neural cadherin (N-cadherin), an adhesion molecule that promotes invasion, was assessed by PCR. Expression of N-cadherin and its precursor form (pro-N-cadherin) was assessed by immunoblotting and flow cytometry. Pro-N-cadherin immunohistochemistry was performed on tumors obtained from patients pre- and post- neoadjuvant chemotherapy treatment. RESULTS TNBC cells surviving short-term chemotherapy treatment exhibited increased invasive behavior and capacity to colonize metastatic sites compared to untreated tumor cells. The invasive behavior of chemo-resistant cells was associated with their increased cell surface expression of precursor N-cadherin (pro-N-cadherin). An antibody specific for the precursor domain of N-cadherin inhibited invasion of chemo-resistant TNBC cells. To begin to validate our findings in humans, we showed that the percent cell surface pro-N-cadherin (+) tumor cells increased in patients post- chemotherapy treatment. CONCLUSIONS TNBC cells surviving short-term chemotherapy treatment are more invasive than bulk tumor cells. Cell surface pro-N-cadherin expression is associated with the invasive and chemo-resistant behaviors of this tumor cell subset. Our findings indicate the importance of future studies determining the value of cell surface pro-N-cadherin as: 1) a biomarker for TNBC recurrence and 2) a therapeutic target for eliminating chemo-residual disease.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Shenduo Li
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Margaret Kennedy
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Sturgis Payne
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Kelly Kilibarda
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey Groth
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Michelle Bowie
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | | | - Gustaaf de Ridder
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Paul Kelly Marcom
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Matthew Lyes
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Bercedis L Peterson
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Michael Cook
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Robin E Bachelder
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
50
|
The FGFR4-388arg Variant Promotes Lung Cancer Progression by N-Cadherin Induction. Sci Rep 2018; 8:2394. [PMID: 29402970 PMCID: PMC5799167 DOI: 10.1038/s41598-018-20570-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
The FGFR4-388Arg variant has been related to poor prognosis in several types of cancer, including lung cancer. The mechanism underlying this association has not been addressed in detail in patients with this pathology. Here, we report that this FGFR4 variant induces MAPK and STAT3 activation and causes pro-oncogenic effects in NSCLC in vitro and in vivo. This variant induces the expression of EMT-related genes, such as N-cadherin, vimentin, Snail1 and Twist1. Indeed, the induction of N-cadherin protein expression by this variant is essential for its pro-tumorigenic role. The presence of the FGFR4-388Arg variant correlates with higher N-cadherin expression levels in clinical NSCLC samples and with poorer outcome in patients with FGFR expression. These results support the prognostic role of this FGFR variant in lung cancer and show that these effects may be mediated by the induction of N-cadherin expression and an EMT phenotype.
Collapse
|