1
|
Bessa Santana PDP, Mota TC, Oliveira Das Mercês M, Baia De Souza E, Costa De Almeida NND, Da Silva Cordeiro M, Santos SDSD, Bahia MDO, Dos Santos Miranda M, Ohashi OM. Artesunate does not affect oocyte maturation and early embryo development of bovine. Drug Chem Toxicol 2024; 47:527-533. [PMID: 37288763 DOI: 10.1080/01480545.2023.2217478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 06/09/2023]
Abstract
Despite the cytotoxicity and embryotoxicity previously reported artesunate is a recommended drug to treat malaria for adults, children, and women in the first trimester of pregnancy. To address the putative effects of artesunate on female fertility and preimplantation embryo development, when the pregnancy is not detectable yet, artesunate was added to the oocyte in vitro maturation and in vitro embryo development of bovine. Briefly, in experiment 1 the cumulus-oocyte complexes (COCs) were in vitro matured for 18 h with 0.5, 1, or 2 µg/mL of artesunate or not (negative control) and then checked for nuclear maturation and subsequent embryo development. In experiment 2, the COCs were in vitro matured and fertilized without artesunate, which was added (0.5, 1, or 2 µg/mL) from the 1st to the 7th day of embryo culture along with a negative and a positive control group with doxorubicin. As a result, the use of artesunate on oocyte in vitro maturation did not differ from the negative control (p > 0.05) regarding nuclear maturation, cleavage, and blastocyst formation. Also, artesunate on in vitro embryo culture did not differ from negative control (p > 0.05) regarding cleavage and blastocyst formation, except for positive control, with doxorubicin (p < 0.05). In conclusion, under the conditions investigated, there was no evidence of artesunate toxicity on oocyte competence and the preimplantation period of in vitro embryo development in the bovine model, however, artesunate use still should be taken carefully as the outcome of implantation after oocytes and blastocysts exposure to artesunate remains unknown.
Collapse
|
2
|
Dutra MJ, Malta IS, de Almeida Lança ML, de Vasconcellos LMR, Adorno-Farias D, Jara JA, Kaminagakura E. Effects of artemisinin and cisplatin on the malignant progression of oral leukoplakia. In vitro and in vivo study. J Cancer Res Clin Oncol 2024; 150:390. [PMID: 39154308 PMCID: PMC11330948 DOI: 10.1007/s00432-024-05924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.
Collapse
Affiliation(s)
- Mateus José Dutra
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Isabella Souza Malta
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Maria Leticia de Almeida Lança
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Daniela Adorno-Farias
- Oral Medicine and Pathology Department, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Antonio Jara
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
| |
Collapse
|
3
|
Elbadawi M, Efferth T. In Vivo and Clinical Studies of Natural Products Targeting the Hallmarks of Cancer. Handb Exp Pharmacol 2024. [PMID: 38797749 DOI: 10.1007/164_2024_716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite more than 200 approved anticancer agents, cancer remains a leading cause of death worldwide due to disease complexity, tumour heterogeneity, drug toxicity, and the emergence of drug resistance. Accordingly, the development of chemotherapeutic agents with higher efficacy, a better safety profile, and the capability of bypassing drug resistance would be a cornerstone in cancer therapy. Natural products have played a pivotal role in the field of drug discovery, especially for the pharmacotherapy of cancer, infectious, and chronic diseases. Owing to their distinctive structures and multiple mechanistic activities, natural products and their derivatives have been utilized for decades in cancer treatment protocols. In this review, we delve into the potential of natural products as anticancer agents by targeting cancer's hallmarks, including sustained proliferative signalling, evading growth suppression, resisting apoptosis and cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. We highlight the molecular mechanisms of some natural products, in vivo studies, and promising clinical trials. This review emphasizes the significance of natural products in fighting cancer and the need for further studies to uncover their fully therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Mao L, Deng G, Li M, Lu SH, Jiang W, Yu X. Antitumour effects of artesunate via cell cycle checkpoint controls in human oesophageal squamous carcinoma cells. Eur J Med Res 2024; 29:293. [PMID: 38773551 PMCID: PMC11110347 DOI: 10.1186/s40001-024-01882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.
Collapse
Affiliation(s)
- Linlin Mao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Guodong Deng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengfan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Strik H, Efferth T, Kaina B. Artesunate in glioblastoma therapy: Case reports and review of clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155274. [PMID: 38142662 DOI: 10.1016/j.phymed.2023.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Artesunate, a derivative of the active ingredient artemisinin from Artemisia annua L. used for centuries in the traditional Chinese medicine, is being applied as front-line drug in malaria treatment. As it is cytotoxic for cancer cells, trials are ongoing to include this drug as supplement in cancer therapy. In glioblastoma cells, artesunate was shown to induce oxidative stress, DNA base damage and double-strand breaks (DSBs), apoptosis, and necroptosis. It also inhibits DNA repair functions and bears senolytic activity. Compared to ionizing radiation, DNA damages accumulate over the whole exposure period, which makes the agent unique in its genotoxic profile. Artesunate has been used in adjuvant therapy of various cancers. PURPOSE As artesunate has been used in adjuvant therapy of different types of cancer and clinical trials are lacking in brain cancer, we investigated its activity in glioma patients with focus on possible side effects. STUDY DESIGN Between 2014 and 2020, twelve patients were treated with artesunate for relapsing glioma and analyzed retrospectively: 8 males and 4 females, median age 45 years. HISTOLOGY 4 glioblastomas WHO grade 4, 5 astrocytomas WHO grade 3, 3 oligodendrogliomas grade 2 or 3. All patients were pretreated with radiation and temozolomide-based chemotherapy. Artesunate 100 mg was applied twice daily p.o. combined with dose-dense temozolomide alone (100 mg/m2 day 1-5/7, 10 patients) or with temozolomide (50 mg/m2 day 1-5/7) plus lomustine (CCNU, 40 mg day 6/7). Blood count, C-reactive protein (CRP), liver enzymes, and renal parameters were monitored weekly. RESULTS Apart from one transient grade 3 hematological toxicity, artesunate was well tolerated. No liver toxicity was observed. While 8 patients with late stage of the disease had a median survival of 5 months after initiation of artesunate treatment, 4 patients with treatment for remission maintenance showed a median survival of 46 months. We also review clinical trials that have been performed in other cancers where artesunate was included in the treatment regimen. CONCLUSIONS Artesunate administered at a dose of 2 × 100 mg/day was without harmful side effects, even if combined with alkylating agents used in glioma therapy. Thus, the phytochemical, which is also utilized as food supplement, is an interesting, well tolerated supportive agent useful for long-term maintenance treatment. Being itself cytotoxic on glioblastoma cells and enhancing the cytotoxicity of temozolomide as well as in view of its senolytic activity, artesunate has clearly a potential to enhance the efficacy of malignant brain cancer therapy.
Collapse
Affiliation(s)
- Herwig Strik
- Department of Neurology, Sozialstiftung Bamberg, Bamberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
6
|
Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Kim CW, Lee WS. Artemisia annua L. Polyphenols Enhance the Anticancer Effect of β-Lapachone in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:17505. [PMID: 38139333 PMCID: PMC10743427 DOI: 10.3390/ijms242417505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Recent studies suggest that the anticancer activity of β-lapachone (β-Lap) could be improved by different types of bioactive phytochemicals. The aim of this study was to elucidate how the anticancer effect of β-Lap is regulated by polyphenols extracted from Korean Artemisia annua L. (pKAL) in parental HCT116 and oxaliplatin-resistant (OxPt-R) HCT116 colorectal cancer cells. Here, we show that the anticancer effect of β-Lap is more enhanced by pKAL in HCT116-OxPt-R cells than in HCT116 cells via a CCK-8 assay, Western blot, and phase-contrast microscopy analysis of hematoxylin-stained cells. This phenomenon was associated with the suppression of OxPt-R-related upregulated proteins including p53 and β-catenin, the downregulation of cell survival proteins including TERT, CD44, and EGFR, and the upregulation of cleaved HSP90, γ-H2AX, and LC3B-I/II. A bioinformatics analysis of 21 proteins regulated by combined treatment of pKAL and β-Lap in HCT116-OxPt-R cells showed that the enhanced anticancer effect of β-Lap by pKAL was related to the inhibition of negative regulation of apoptotic process and the induction of DNA damage through TERT, CD44, and EGFR-mediated multiple signaling networks. Our results suggest that the combination of pKAL and β-Lap could be used as a new therapy with low toxicity to overcome the OxPt-R that occurred in various OxPt-containing cancer treatments.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Soon Chan Hong
- Department of Surgery, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Choong Won Kim
- Department of Biochemistry, Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Medical Science, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea;
| |
Collapse
|
7
|
Nabi N, Singh S, Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. PHYTOCHEMISTRY 2023; 214:113798. [PMID: 37517615 DOI: 10.1016/j.phytochem.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Plant-based drugs have been used for centuries for treating different ailments. Malaria, one of the prevalent threats in many parts of the world, is treated mainly by artemisinin-based drugs derived from plants of genus Artemisia. However, the distribution of artemisinin is restricted to a few species of the genus; besides, its yield depends on ontogeny and the plant's geographical location. Here, we review the studies focusing on biosynthesis and distributional pattern of artemisinin production in species of the genus Artemisia. We also discussed various agronomic and in vitro methods and molecular approaches to increase the yield of artemisinin. We have summarized different mechanisms of artemisinin involved in its anti-malarial, anti-cancer, anti-inflammatory and anti-viral activities (like against Covid-19). Overall the current review provides a synopsis of a global view of the distribution of artemisinin, its biosynthesis, and pharmacological potential in treating various diseases like malaria, cancer, and coronavirus, which may provoke future research efforts in drug development. Nevertheless, long-term trials and molecular approaches, like CRISPR-Cas, are required for in-depth research.
Collapse
Affiliation(s)
- Neelofer Nabi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Seema Singh
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
8
|
Elbadawi M, Boulos JC, Dawood M, Zhou M, Gul W, ElSohly MA, Klauck SM, Efferth T. The Novel Artemisinin Dimer Isoniazide ELI-XXIII-98-2 Induces c-MYC Inhibition, DNA Damage, and Autophagy in Leukemia Cells. Pharmaceutics 2023; 15:1107. [PMID: 37111592 PMCID: PMC10144546 DOI: 10.3390/pharmaceutics15041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The proto-oncogenic transcription factor c-MYC plays a pivotal role in the development of tumorigenesis, cellular proliferation, and the control of cell death. Its expression is frequently altered in many cancer types, including hematological malignancies such as leukemia. The dimer isoniazide ELI-XXIII-98-2 is a derivative of the natural product artemisinin, with two artemisinin molecules and an isoniazide moiety as a linker in between them. In this study, we aimed to study the anticancer activity and the molecular mechanisms of this dimer molecule in drug-sensitive CCRF-CEM leukemia cells and their corresponding multidrug-resistant CEM/ADR5000 sub-line. The growth inhibitory activity was studied using the resazurin assay. To reveal the molecular mechanisms underlying the growth inhibitory activity, we performed in silico molecular docking, followed by several in vitro approaches such as the MYC reporter assay, microscale thermophoresis, microarray analyses, immunoblotting, qPCR, and comet assay. The artemisinin dimer isoniazide showed a potent growth inhibitory activity in CCRF-CEM but a 12-fold cross-resistance in multidrug-resistant CEM/ADR5000 cells. The molecular docking of artemisinin dimer isoniazide with c-MYC revealed a good binding (lowest binding energy of -9.84 ± 0.3 kcal/mol) and a predicted inhibition constant (pKi) of 66.46 ± 29.5 nM, which was confirmed by microscale thermophoresis and MYC reporter cell assays. Furthermore, c-MYC expression was downregulated by this compound in microarray hybridization and Western blotting analyses. Finally, the artemisinin dimer isoniazide modulated the expression of autophagy markers (LC3B and p62) and the DNA damage marker pH2AX, indicating the stimulation of both autophagy and DNA damage, respectively. Additionally, DNA double-strand breaks were observed in the alkaline comet assay. DNA damage, apoptosis, and autophagy induction could be attributed to the inhibition of c-MYC by ELI-XXIII-98-2.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
- Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum 12702, Sudan
| | - Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Waseem Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA
| | - Mahmoud A. ElSohly
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| |
Collapse
|
9
|
Lv Q, Chi K, Shi X, Liu M, Li X, Zhou C, Shi L, Fan H, Liu H, Liu J, Zhang Y, Wang S, Wang L, Wang Z. Nanozyme-like single-atom catalyst combined with artesunate achieves photothermal-enhanced nanocatalytic therapy in the near-infrared biowindow. Acta Biomater 2023; 158:686-697. [PMID: 36623782 DOI: 10.1016/j.actbio.2022.12.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Selectively generating active free radical (AFR) in tumor microenvironment (TME) can promote irreversible oxidation of biomolecules and damage tumor cells, resulting in effective tumor inhibition. However, therapeutic efficacy of AFR-based tumor suppression approaches is often limited by insufficient amount of H2O2 or O2 within TME. To overcome this obstacle, we design a pH/photothermal dual responsive nanosystem (PFeSA@AS) for combined photothermal and nanocatalytic therapy in the near-infrared biowindow. Here the Fe single-atom dispersed N, S-doped carbon nanosheets (FeSA) nanozyme is dispersed by phospholipid-polyethylene glycol-amine (DSPE-PEG-NH2), and further loads artesunate (AS) via an amide reaction. Upon 808-nm laser irradiation in TME, the AS is released and further be catalyzed by the FeSA nanozyme to produce cytotoxic C-centered AFRs, and further be accelerated due to the photothermal conversion performance of FeSA (23.35%). The nanocatalytic process of FeSA nanozyme is realized by density functional theory (DFT). The tumor inhibition rates of a CT26 xenograft model is 92% through a photothermal-enhanced nanocatalytic synergistic therapy, and negligible systematic toxicity is observed. This work offers a potential paradigm of multifunctional single atomic catalysts (SACs) for enhancing tumor nanocatalytic therapy. STATEMENT OF SIGNIFICANCE: We designed a pH/photothermal dual responsive nanosystem (PFeSA@AS) for nanocatalytic therapy: (1) the nanosystem responsively releases AS under 808-nm laser irradiation in TME; (2) FeSA in the nanosystem can act as heme mimetic to convert AS into high cytotoxic C-centered free radicals for nanocatalytic therapy; (3) the photothermal conversion performance of FeSA further enhances the catalytic process to yield abundant AFR. Both in vitro and in vivo results demonstrate that this nanosystem can efficiently inhibit tumor growth through a photothermal-enhanced nanocatalytic synergistic therapy.
Collapse
Affiliation(s)
- Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Chi
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Miaodeng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoye Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Shi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiling Fan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Wan X, Tou F, Zeng J, Chen X, Li S, Chen L, Zheng Z, Rao J. Integrative analysis and identification of key elements and pathways regulated by Traditional Chinese Medicine (Yiqi Sanjie formula) in colorectal cancer. Front Pharmacol 2022; 13:1090599. [PMID: 36582529 PMCID: PMC9792787 DOI: 10.3389/fphar.2022.1090599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction: The clinical efficacy of Yiqi Sanjie (YQSJ) formula in the treatment of stage III colorectal cancer (CRC) has been demonstrated. However, the underlying antitumor mechanisms remain poorly understood. Materials and methods: The aim of the present study was to comprehensively characterize the molecular and microbiota changes in colon tissues and fecal samples from CRC mice and in CRC cell lines treated with YQSJ or its main active component, peiminine. Integrative tandem mass tag-based proteomics and ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry metabolomics were used to analyze azoxymethane/dextran sulfate sodium-induced CRC mouse colon tissues. Results: The results showed that 0.8% (57/7568) of all detected tissue proteins and 3.2% (37/1141) of all detected tissue metabolites were significantly changed by YQSJ treatment, with enrichment in ten and six pathways associated with colon proteins and metabolites, respectively. The enriched pathways were related to inflammation, sphingolipid metabolism, and cholesterol metabolism. Metabolomics analysis of fecal samples from YQSJ-treated mice identified 121 altered fecal metabolites and seven enriched pathways including protein digestion and absorption pathway. 16S rRNA sequencing analysis of fecal samples indicated that YQSJ restored the CRC mouse microbiota structure by increasing the levels of beneficial bacteria such as Ruminococcus_1 and Prevotellaceae_UCG_001. In HCT-116 cells treated with peiminine, data-independent acquisition-based proteomics analysis showed that 1073 of the 7152 identified proteins were significantly altered and involved in 33 pathways including DNA damage repair, ferroptosis, and TGF-β signaling. Conclusion: The present study identified key regulatory elements (proteins/metabolites/bacteria) and pathways involved in the antitumor mechanisms of YQSJ, suggesting new potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Xianghui Wan
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Fangfang Tou
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jiquan Zeng
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinyi Chen
- Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Li
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lanyu Chen
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhi Zheng
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Jun Rao, ; Zhi Zheng,
| | - Jun Rao
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Jun Rao, ; Zhi Zheng,
| |
Collapse
|
11
|
SAEED MOHAMEDEM, CIVES-LOSADA CANDELA, EFFERTH THOMAS. Biomarker Expression Profiling in Cervix Carcinoma Biopsies Unravels WT1 as a Target of Artesunate. Cancer Genomics Proteomics 2022; 19:727-739. [PMID: 36316038 PMCID: PMC9620444 DOI: 10.21873/cgp.20355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM Artemisinin and its derivatives are not only approved antimalarial drugs but also exert strong anticancer activity. Based on the clinical activity of artesunate (ART) that has been previously reported in cervix carcinoma, we investigated a panel of 12 different biomarkers and identified the Wilms Tumor 1 (WT1) protein as a potential target of ART. PATIENTS AND METHODS Matched biopsies of cervical carcinoma before, during, and after therapy from patients treated with ART were investigated for induction of apoptosis (TUNEL assay) and expression of Wilms Tumor protein 1 (WT1), 14-3-3 ζ, cluster of differentiation markers (CD4, CD8, CD56), ATP-binding cassette transporter B5 (ABCB5), glutathione S-transferase P1 (GSTP1), inducible nitric oxide synthase (iNOS), translationally controlled tumor protein (TCTP), eukaryotic elongation factor 3 (eIF3), and ADP/ATP translocase by immunohistochemistry. WT1 has been selected for more detailed analyses using molecular docking in silico, microscale thermophoresis using recombinant WT1, and cytotoxicity testing (resazurin assay) using HEK293 cells transfected with four different WT1 splice variants. RESULTS The fraction of apoptotic cells and the expression of WT1, 14-3-3 ζ, and CD4 increased upon ART treatment in tumors of patients. ART was bound in silico to a domain located at the DNA-binding site of WT1, while dihydroartemisinin (DHA) was bound with low affinity to a different site of WT1 not related to DNA-binding. The results were verified using microscale thermophoresis, where ART but not DHA bound to recombinant WT1. Transfectants overexpressing different WT1 splice variants exerted low but significant resistance to ART (≈2-fold). CONCLUSION WT1 may represent a novel target of ART in cancer cells that contribute to the response of tumor cells to this drug.
Collapse
Affiliation(s)
- MOHAMED E. M. SAEED
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - CANDELA CIVES-LOSADA
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany,Department of Physiology and Pharmacology, IBSAL, University of Salamanca, Salamanca, Spain
| | - THOMAS EFFERTH
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
A Histone Deacetylase Inhibitor Manifests Synergistic Interaction with Artesunate by Suppressing DNA Repair Activity. SCI 2022. [DOI: 10.3390/sci4040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Artesunate (ART), a plant based semi-synthetic antimalarial drug, is emerging as a new class of effective cancer chemotherapeutics. However, the dosage of ART required to have an anti-cancer effect on cancer cells is greater than that needed to exterminate malarial parasites. The goal of this study was to develop an effective combination therapy to reduce the dose-dependent side effects of ART both in vitro and in vivo. In our study, 4-phenylbutyrate (4-PB), a histone deacetylase inhibitor (HDAC), exhibited significant synergistic induction of apoptosis in MCF-7 cells in combination with ART. The IC50 of ART decreased significantly from 55.56 ± 5.21 µM to 24.71 ± 3.44 µM in MCF-7 cells. ART treatment increased cellular oxidative stress, and the resulting generation of intracellular reactive oxygen species (ROS) caused extensive DNA damage in the cell. The extent of ROS production and cell cycle arrest were further enhanced by 4-PB treatment. In further investigation, we found that 4-PB attenuated mRNA expression of crucial DNA damage response (DDR) elements of the nonhomologous end-joining (NHEJ) pathway, consequently enhancing the DNA damaging effect of ART. Furthermore, the combination therapy resulted in improvement in the life expectancy of the treated mice and a prominent reduction in tumour volume without interfering with the normal biochemical, haematological and histological parameters of the mice. Overall, our study revealed a novel combination therapy in which 4-PB potentiated the cytotoxicity of ART synergistically and provided a promising combination drug for effective cancer therapy.
Collapse
|
13
|
Beltzig L, Christmann M, Kaina B. Abrogation of Cellular Senescence Induced by Temozolomide in Glioblastoma Cells: Search for Senolytics. Cells 2022; 11:cells11162588. [PMID: 36010664 PMCID: PMC9406955 DOI: 10.3390/cells11162588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
A first-line therapeutic for high-grade glioma, notably glioblastoma (GBM), is the DNA methylating drug temozolomide (TMZ). Previously, we showed that TMZ induces not only apoptosis and autophagy, but also cellular senescence (CSEN). We presented the hypothesis that GBM cells may escape from CSEN, giving rise to recurrent tumors. Furthermore, the inflammatory phenotype associated with CSEN may attenuate chemotherapy and drive tumor progression. Therefore, treatments that specifically target senescent cells, i.e., senolytic drugs, may lead to a better outcome of GBM therapy by preventing recurrences and tumor inflammation. Here, we tested Bcl-2 targeting drugs including ABT-737, ABT-263 (navitoclax), several natural substances such as artesunate, fisetin and curcumin as well as lomustine (CCNU) and ionizing radiation (IR) for their senolytic capacity in GBM cells. Additionally, several proteins involved in the DNA damage response (DDR), ATM, ATR, Chk1/2, p53, p21, NF-kB, Rad51, PARP, IAPs and autophagy, a pathway involved in CSEN induction, were tested for their impact in maintaining CSEN. Treatment of GBM cells with a low dose of TMZ for 8-10 days resulted in >80% CSEN, confirming CSEN to be the major trait induced by TMZ. To identify senolytics, we treated the senescent population with the compounds of interest and found that ABT-737, navitoclax, chloroquine, ATMi, ATRi, BV-6, PX-866 and the natural compounds fisetin and artesunate exhibit senolytic activity, inducing death in senescent cells more efficiently than in proliferating cells. Curcumin showed the opposite effect. No specific effect on CSEN cells was observed by inhibition of Chk1/Chk2, p21, NF-kB, Rad51 and PARP. We conclude that these factors neither play a critical role in maintaining TMZ-induced CSEN nor can their inhibitors be considered as senolytics. Since IR and CCNU did not exhibit senolytic activity, radio- and chemotherapy with alkylating drugs is not designed to eliminate TMZ-induced senescent cancer cells.
Collapse
|
14
|
Ismail M, Yang W, Li Y, Chai T, Zhang D, Du Q, Muhammad P, Hanif S, Zheng M, Shi B. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 2022; 287:121608. [PMID: 35690021 DOI: 10.1016/j.biomaterials.2022.121608] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
The effective treatment of glioblastoma (GBM) is a great challenge because of the blood-brain barrier (BBB) and the growing resistance to single-agent therapeutics. Targeted combined co-delivery of drugs could circumvent these challenges; however, the absence of more effective combination drug delivery strategies presents a potent barrier. Here, a unique combination ApoE-functionalized liposomal nanoplatform based on artesunate-phosphatidylcholine (ARTPC) encapsulated with temozolomide (ApoE-ARTPC@TMZ) was presented that can successfully co-deliver dual therapeutic agents to TMZ-resistant U251-TR GBM in vivo. Examination in vitro showed ART-mediated inhibition of DNA repair through the Wnt/β-catenin signaling cascade, which also improved GBM sensitivity to TMZ, resulting in enhanced synergistic DNA damage and induction of apoptosis. In assessing BBB permeation, the targeted liposomes were able to effectively traverse the BBB through low-density lipoprotein family receptors (LDLRs)-mediated transcytosis and achieved deep intracranial tumor penetration. More importantly, the targeted combination liposomes resulted in a significant decrease of U251-TR glioma burden in vivo that, in concert, substantially improved the survival of mice. Additionally, by lowering the effective dosage of TMZ, the combination liposomes reduced systemic TMZ-induced toxicity, highlighting the preclinical potential of this novel integrative strategy to deliver combination therapies to brain tumors.
Collapse
Affiliation(s)
- Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Wen Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yanfei Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Tianran Chai
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Qiuli Du
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
15
|
Aengenvoort J, Sekeres M, Proksch P, Fritz G. Targeting Mechanisms of the DNA Damage Response (DDR) and DNA Repair by Natural Compounds to Improve cAT-Triggered Tumor Cell Death. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113567. [PMID: 35684504 PMCID: PMC9182506 DOI: 10.3390/molecules27113567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Recently, we identified secalonic acid F (SA), 5-epi-nakijiquinone Q (NQ) and 5-epi-ilimaquinone (IQ) as natural compounds (NC) affecting mechanisms of the DNA damage response (DDR). Here, we further characterized their effects on DDR, DNA repair and cytotoxicity if used in mono- and co-treatment with conventional anticancer therapeutics (cAT) (cisplatin (Cis), doxorubicin (Doxo)) in vitro. All three NC influence the phosphorylation level of selected DDR-related factors (i.e., pCHK1, pKAP1, pP53, pRPA32) in mono- and/or co-treatment. Both SA and NQ attenuate the Cis- and Doxo-induced G2/M-phase arrest and effectively stimulate caspase-mediated apoptosis. Notably, SA impacts DNA repair as reflected by enhanced steady-state levels of Cis-(1,2-GpG)-DNA adducts and Doxo-induced DNA double-strand breaks (DSB). Moreover, SA decreased the mRNA and protein expression of the homologous recombination (HR)-related DSB repair factors RAD51 and BRCA1. Both SA and NQ promote Cis- and Doxo-induced cytotoxicity in an additive to synergistic manner (CI ≤ 1.0). Summarizing, we conclude that SA promotes cAT-driven caspase-dependent cell death by interfering with DSB repair and DDR-related checkpoint control mechanisms. Hence, SA is considered as the most promising lead compound to evaluate its therapeutic window in forthcoming pre-clinical in vivo studies.
Collapse
Affiliation(s)
- Jana Aengenvoort
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (J.A.); (M.S.)
| | - Marlena Sekeres
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (J.A.); (M.S.)
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (J.A.); (M.S.)
- Correspondence: ; Tel.: +49-211-8113022
| |
Collapse
|
16
|
The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1458143. [PMID: 35028002 PMCID: PMC8752222 DOI: 10.1155/2022/1458143] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
Artemisinin (ART) is a bioactive molecule derived from the Chinese medicinal plant Artemisia annua (Asteraceae). ART and artemisinin derivatives (ARTs) have been effectively used for antimalaria treatment. The structure of ART is composed of a sesquiterpene lactone, including a peroxide internal bridge that is essential for its activity. In addition to their well-known antimalarial effects, ARTs have been shown recently to resist a wide range of tumors. The antineoplastic mechanisms of ART mainly include cell cycle inhibition, inhibition of tumor angiogenesis, DNA damage, and ferroptosis. In particular, ferroptosis is a novel nonapoptotic type of programmed cell death. However, the antitumor mechanisms of ARTs by regulating ferroptosis remain unclear. Through this review, we focus on the potential antitumor function of ARTs by acting on ferroptosis, including the regulation of iron metabolism, generation of reactive oxygen species (ROS), and activation of endoplasmic reticulum stress (ERS). This article systematically reviews the recent progress in ferroptosis research and provides a basis for ARTs as an anticancer drug in clinical practice.
Collapse
|
17
|
DNA binding by the antimalarial compound artemisinin. Sci Rep 2022; 12:133. [PMID: 34997002 PMCID: PMC8741894 DOI: 10.1038/s41598-021-03958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Artemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.
Collapse
|
18
|
Liao H, Shi J, Wen K, Lin J, Liu Q, Shi B, Yan Y, Xiao Z. Molecular Targets of Ferroptosis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:985-996. [PMID: 34466409 PMCID: PMC8403010 DOI: 10.2147/jhc.s325593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is a special form of regulatory cell death caused by the accumulation of intracellular iron and lipid peroxidation. Here, we summarize the research progress on ferroptosis in hepatocellular carcinoma (HCC), trace the development of the concept of ferroptosis and its key regulatory factors, and discuss the application value of ferroptosis in the treatment of HCC from different perspectives. We believe that exploring the relationship between ferroptosis and HCC and clarifying the metabolism and expression of ferroptosis-specific genes and molecules will accelerate the development of novel ferroptosis-related molecules as HCC markers and therapeutic targets. We hope to provide a theoretical basis for better diagnosis and treatment to effectively improve the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Qinghua Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Bingchao Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| |
Collapse
|
19
|
Goyal M, Singh BK, Simantov K, Kaufman Y, Eshar S, Dzikowski R. An SR protein is essential for activating DNA repair in malaria parasites. J Cell Sci 2021; 134:271848. [PMID: 34291805 PMCID: PMC8435287 DOI: 10.1242/jcs.258572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Plasmodium falciparum, the parasite responsible for the deadliest form of human malaria, replicates within the erythrocytes of its host, where it encounters numerous pressures that cause extensive DNA damage, which must be repaired efficiently to ensure parasite survival. Malaria parasites, which have lost the non-homologous end joining (NHEJ) pathway for repairing DNA double-strand breaks, have evolved unique mechanisms that enable them to robustly maintain genome integrity under such harsh conditions. However, the nature of these adaptations is unknown. We show that a highly conserved RNA splicing factor, P. falciparum (Pf)SR1, plays an unexpected and crucial role in DNA repair in malaria parasites. Using an inducible and reversible system to manipulate PfSR1 expression, we demonstrate that this protein is recruited to foci of DNA damage. Although loss of PfSR1 does not impair parasite viability, the protein is essential for their recovery from DNA-damaging agents or exposure to artemisinin, the first-line antimalarial drug, demonstrating its necessity for DNA repair. These findings provide key insights into the evolution of DNA repair pathways in malaria parasites as well as the ability of the parasite to recover from antimalarial treatment. Summary: There is an unexpected role for the alternative splicing factor PfSR1 in activating the DNA damage response in the human malaria parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Brajesh Kumar Singh
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yotam Kaufman
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shiri Eshar
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
20
|
Kamarya Y, Lijie X, Jinyao L. Chemical Constituents and their Anti-Tumor Mechanism of Plants from Artemisia. Anticancer Agents Med Chem 2021; 22:1838-1844. [PMID: 34238198 DOI: 10.2174/1871520621666210708125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND At present, chemotherapy is still the main treatment method for cancer, but its side effects and multidrug resistance limit the therapeutic effect seriously. Now the screening of anti-tumor drugs with higher efficiency and lower toxicity from natural products is one of the important research directions for oncotherapy. Artemisia has a variety of anti-tumor constituents, which can exert its anti-tumor effect by inducing tumor cell apoptosis, inhibiting tumor angiogenesis, arresting cell cycle, accelerating iron ion-mediated oxidative damage, etc. Objective: This paper will provide a focused, up-to-date and comprehensive overview of the anti-tumor active constituents and their mechanisms of plants in Artemisia. METHOD The relevant information about Artemisia and its bioactive components comes from scientific databases (such as PubMed, Web of Science, Science Direct). RESULTS Here we have discussed the present situation and mechanism of bioactive components of Artemisia in anti-tumor. The application prospect of active components of Artemisia in cancer prevention and treatment was investigated. CONCLUSION The information summarized in this review may provide new ideas for the follow-up treatment of cancer and contribute to the development of new, effective, multi-side effects and fewer side effects of antineoplastic drugs.
Collapse
Affiliation(s)
- Yasin Kamarya
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xia Lijie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Li Jinyao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
21
|
Wei MX, Yu JY, Liu XX, Li XQ, Yang JH, Zhang MW, Yang PW, Zhang SS, He Y. Synthesis and biological evaluation of novel artemisone-piperazine-tetronamide hybrids. RSC Adv 2021; 11:18333-18341. [PMID: 35480921 PMCID: PMC9033422 DOI: 10.1039/d1ra00750e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
For the first time, six novel artemisone-piperazine-tetronamide hybrids (12a-f) were efficiently synthesised from dihydroartemisinin (DHA) and investigated for their in vitro cytotoxicity against some human cancer cells and benign cells. All the targets showed good cytotoxic activity in vitro. Hybrid 12a exhibited much better inhibitory activity against human liver cancer cell line SMMC-7721 (IC50 = 0.03 ± 0.04 μM for 24 h) than the parent DHA (IC50 > 0.7 μM), and two references, vincristine (VCR; IC50 = 0.27 ± 0.03 μM) & cytosine arabinoside (ARA; IC50 = 0.63 ± 0.04 μM). Furthermore, hybrid 12a had low toxicity against human benign liver cell line LO2 (IC50 = 0.70 ± 0.02 μM for 24 h) compared with VCR, ARA, and DHA in vitro. Moreover, the inhibitory activity of hybrid 12a was obviously enhanced when human liver cancer cell line MHCC97H absorbed Fe2+ in vitro.
Collapse
Affiliation(s)
- Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Jia-Ying Yu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Xin-Xin Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Xue-Qiang Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Jin-Hui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Meng-Wei Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Pei-Wen Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Si-Si Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| | - Yu He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
| |
Collapse
|
22
|
Khanal P. Antimalarial and anticancer properties of artesunate and other artemisinins: current development. MONATSHEFTE FUR CHEMIE 2021; 152:387-400. [PMID: 33814617 PMCID: PMC8008344 DOI: 10.1007/s00706-021-02759-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
This review provides a recent perspective of artesunate and other artemisinins as antimalarial drugs and their uses in cancer therapy. Artesunate is an artemisinin derivative. Artemisinin is extracted from the plant Artemisia annua. Artemisinin and its derivatives have been the most useful drug for malarial treatment in human history. The artesunate has an advantage of a hydrophilic group over other artemisinins which makes it a more potent drug. On the industrial scale, artemisinins are synthesized in semisynthetic ways. The 1,2,4-endoperoxide bridge of artemisinins is responsible for the drug's antimalarial activity. There is the emergence of artemisinin resistance on Plasmodium falciparum and pieces of evidence suggest that it is mainly due to the mutation at Kelch13 protein of P. falciparum. Clinical trial data show that the artesunate is more favorable than quinine and other artemisinins to treat patients with severe malaria. Pieces of evidence indicate that artemisinins can be developed as anticancer drugs. The mechanism of actions on how artemisinins act as an anticancer drug involves oxidative stress, DNA damage and repair, and various types of cell deaths. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Pitambar Khanal
- Nagarik College, Tribhuvan University, Gaidakot-2, Nawalparasi Purva, Gandaki, Nepal
| |
Collapse
|
23
|
Wei MX, Yu JY, Liu XX, Li XQ, Zhang MW, Yang PW, Yang JH. Synthesis of artemisinin-piperazine-furan ether hybrids and evaluation of in vitro cytotoxic activity. Eur J Med Chem 2021; 215:113295. [PMID: 33636536 DOI: 10.1016/j.ejmech.2021.113295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
For the first time, eight novel artemisinin-piperazine-furane ether hybrids (5a-h) were efficiently synthesized and investigated for their in vitro cytotoxic activity against some human cancer and benign cells. The absolute configuration of hybrid 5c was determined by X-ray crystallographic analysis. Hybrids 5a-h exhibited more pronounced growth-inhibiting action on hepatocarcinoma cell lines than their parent dihydroartemisinin (DHA) and the reference cytosine arabinoside (ARA). The hybrid 5a showed the best cytotoxic activity against human hepatocarcinoma cells SMMC-7721 (IC50 = 0.26 ± 0.03 μM) after 24 h. Furthermore, hybrid 5a also showed good cytotoxic activity against human breast cancer cells MCF-7 and low cytotoxicity against human breast benign cells MCF-10A in vitro. We found the cytotoxicity of hybrid 5a did not change when tumour cells absorb iron sulfate (FeSO4); thus, we conclude the anti-tumour mechanism induced by iron ions (Fe2+) is unclear.
Collapse
Affiliation(s)
- Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, China.
| | - Jia-Ying Yu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, China
| | - Xin-Xin Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, China
| | - Xue-Qiang Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, China
| | - Meng-Wei Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, China
| | - Pei-Wen Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, China
| | - Jin-Hui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Engineering Research Center for Natural Medicine, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, China
| |
Collapse
|
24
|
Lu X, Efferth T. Repurposing of artemisinin-type drugs for the treatment of acute leukemia. Semin Cancer Biol 2021; 68:291-312. [DOI: 10.1016/j.semcancer.2020.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
|
25
|
Zhao F, Vakhrusheva O, Markowitsch SD, Slade KS, Tsaur I, Cinatl J, Michaelis M, Efferth T, Haferkamp A, Juengel E. Artesunate Impairs Growth in Cisplatin-Resistant Bladder Cancer Cells by Cell Cycle Arrest, Apoptosis and Autophagy Induction. Cells 2020; 9:E2643. [PMID: 33316936 PMCID: PMC7763932 DOI: 10.3390/cells9122643] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023] Open
Abstract
Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1-100 µM). Cell growth, proliferation, and cell cycle phases were investigated, as were apoptosis, necrosis, ferroptosis, autophagy, metabolic activity, and protein expression. Exposure to ART induced a time- and dose-dependent significant inhibition of tumor cell growth and proliferation of parental and cisplatin-resistant BCa cells. This inhibition was accompanied by a G0/G1 phase arrest and modulation of cell cycle regulating proteins. ART induced apoptos is by enhancing DNA damage, especially in the resistant cells. ART did not induce ferroptosis, but led to a disturbance of mitochondrial respiration and ATP generation. This impairment correlated with autophagy accompanied by a decrease in LC3B-I and an increase in LC3B-II. Since ART significantly inhibits proliferative and metabolic aspects of cisplatin-sensitive and cisplatin-resistant BCa cells, it may hold potential in treating advanced and therapy-resistant BCa.
Collapse
Affiliation(s)
- Fuguang Zhao
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Kimberly S. Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany;
| | - Martin Michaelis
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (F.Z.); (O.V.); (S.D.M.); (K.S.S.); (I.T.); (A.H.)
| |
Collapse
|
26
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
27
|
Shi X, Li S, Wang L, Li H, Li Z, Wang W, Bai J, Sun Y, Li J, Li X. RalB degradation by dihydroartemisinin induces autophagy and IFI16/caspase-1 inflammasome depression in the human laryngeal squamous cell carcinoma. Chin Med 2020; 15:64. [PMID: 32577124 PMCID: PMC7304197 DOI: 10.1186/s13020-020-00340-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 02/04/2023] Open
Abstract
Background Interferon-inducible 16 (IFI16)/caspase-1 inflammasome activates and secretes IL-1β. However, it is still unclear whether the IFI16 inflammasome is involved in human laryngeal squamous cell carcinoma. Autophagy directly removed inflammasome components and limited early IL-1β production. RalB is required for the crosstalk between inflammasome and autophagy in macrophages. Dihydroartemisinin (DHA), the main derived ingredient of artemisinin, has a variety of biological activities. The mechanism of DHA in regulating the crosstalk between IFI16 inflammasome and autophagy by inhibiting RalB expression was analyzed in order to provide clues for new therapeutic methods in laryngeal cancer. Methods The expression of IFI16 was analyzed by Oncomine and GEPIA databases and detected by Western blot and immunohistochemistry. The relationship between IFI16 inflammasome and autophagy was investigated by transmission electron microscopy, immunofluorescence assay, etc. in Hep-2, Cal-27 and HeLa cells treated with DHA. The xenograft tumor of hep-2 cell in nude mice were used to assess the effect of DHA on laryngeal cancer. Results It was reported for the first time in this study that IFI16 was overexpressed and positively correlated with caspase-1 in laryngeal carcinoma tissues. DHA significantly inhibited the activation of inflammasome and reduced IL-1β production in the microenvironment of Hep-2 cell xenograft tumor in nude mice. Mechanistically, we found that DHA degraded RalB, inhibited USP33 expression, and triggered autophagy. Meanwhile, enhanced autophagy can reduce the expression of RalB and USP33. Furthermore, DHA promotes autophagy, which suppresses the activation of IFI16/caspase-1 inflammasome and IL-1β production. Conclusions Therefore, our findings demonstrate that DHA may act as a RalB inhibitor to regulate the crosstalk between autophagy and IFI16/caspase-1 inflammasome, which inhibits IL-1β production in tumor microenvironment.
Collapse
Affiliation(s)
- Xinli Shi
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081 China.,Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Shenghao Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Hui Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081 China
| | - Zhen Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081 China
| | - Weiyi Wang
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081 China.,Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, 050000 China
| | - Jing Bai
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081 China
| | - Yajing Sun
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081 China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, 050081 China
| |
Collapse
|
28
|
Bai XY, Liu P, Chai YW, Wang Y, Ren SH, Li YY, Zhou H. Artesunate attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis by down-regulating Th17 cell responses in BALB/c mice. Eur J Pharmacol 2020; 874:173020. [DOI: 10.1016/j.ejphar.2020.173020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
|
29
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
30
|
Hao DL, Xie R, De GJ, Yi H, Zang C, Yang MY, Liu L, Ma H, Cai WY, Zhao QH, Sui F, Chen YJ. pH-Responsive Artesunate Polymer Prodrugs with Enhanced Ablation Effect on Rodent Xenograft Colon Cancer. Int J Nanomedicine 2020; 15:1771-1786. [PMID: 32214810 PMCID: PMC7083641 DOI: 10.2147/ijn.s242032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose In this study, pH-sensitive poly(2-ethyl-2-oxazoline)-poly(lactic acid)-poly(β-amino ester) (PEOz-PLA-PBAE) triblock copolymers were synthesized and were conjugated with an antimalaria drug artesunate (ART), for inhibition of a colon cancer xenograft model. Methods The as-prepared polymer prodrugs are tended to self-assemble into polymeric micelles in aqueous milieu, with PEOz segment as hydrophilic shell and PLA-PBAE segment as hydrophobic core. Results The pH sensitivity of the as-prepared copolymers was confirmed by acid-base titration with pKb values around 6.5. The drug-conjugated polymer micelles showed high stability for at least 96 h in PBS and 37°C, respectively. The as-prepared copolymer prodrugs showed high drug loading content, with 9.57%±1.24% of drug loading for PEOz-PLA-PBAE-ART4. The conjugated ART could be released in a sustained and pH-dependent manner, with 92% of released drug at pH 6.0 and 57% of drug released at pH 7.4, respectively. In addition, in vitro experiments showed higher inhibitory effect of the prodrugs on rodent CT-26 cells than that of free ART. Animal studies also demonstrated the enhanced inhibitory efficacy of PEOz-PLA-PBAE-ART2 micelles on the growth of rodent xenograft tumor. Conclusion The pH-responsive artesunate polymer prodrugs are promising candidates for colon cancer adjuvant therapy.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ge-Jing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Mi-Yi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Wei-Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qing-He Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Yan-Jun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| |
Collapse
|
31
|
Xiao R, Ding C, Zhu H, Liu X, Gao J, Liu Q, Lu D, Zhang N, Zhang A, Zhou H. Suppression of asparagine synthetase enhances the antitumor potency of ART and artemalogue SOMCL-14-221 in non-small cell lung cancer. Cancer Lett 2020; 475:22-33. [PMID: 32014457 DOI: 10.1016/j.canlet.2020.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/16/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality. Artemisinin (ART) and SOMCL-14-221 (221), a spirobicyclic analogue of ART, have been reported to inhibit the proliferation of A549 cells with unclear underlying mechanism. In the present study, we validated that both ART and 221 inhibited the proliferation and migration of NSCLC cells and the growth of A549 xenograft tumors without appreciable toxicity. The proteomic data revealed proteins upregulated in ART and 221 groups were involved in "response to endoplasmic reticulum stress" and "amino acid metabolism". Asparagine synthetase (ASNS) was identified as a key node protein in these processes. Interestingly, knockdown of ASNS improved the antitumor potency of ART and 221 in vitro and in vivo, and treatments with ART and 221 disordered the amino acid metabolism of A549 cells. Moreover, ART and 221 activated ER stress, and inhibition of ER stress abolished the anti-proliferative effects of ART and 221. In conclusion, this study demonstrates that ART and 221 suppress tumor growth by triggering ER stress, and the inhibition of ASNS enhances the antitumor activity of ART and 221, which provides new strategy for drug combination therapy.
Collapse
Affiliation(s)
- Ruoxuan Xiao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hongwen Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xia Liu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qian Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Dayun Lu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
32
|
van Stuijvenberg J, Proksch P, Fritz G. Targeting the DNA damage response (DDR) by natural compounds. Bioorg Med Chem 2020; 28:115279. [PMID: 31980363 DOI: 10.1016/j.bmc.2019.115279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/31/2022]
Abstract
Natural compounds (NC) are an important source of anticancer drugs. The genomic DNA of tumor cells is a major target of conventional anticancer therapeutics (cAT). DNA damage elicits a complex stress response programme termed DNA damage response (DDR), with the PI3-like kinase ATM and ATR being the key regulators. Since the DDR coordinates mechanisms of DNA repair and apoptosis, hence regulating the balance between death and survival, it is an attractive target of novel anticancer strategies. The aim of the study was to identify natural compounds derived from endophytic fungi, lichens, marine sponges or plants that interfere with mechanisms of the DDR. To this end, the cytotoxic and DDR modulating potency of 296 natural compounds, used alone or in combination with the cAT cisplatin (Cis) and doxorubicin (Doxo) was investigated by fluorescence-based analysis of the ATM/ATR-catalyzed S139 phosphorylation of histone 2AX (γH2AX), a surrogate marker of DNA damage-triggered DDR. After initial screening, a total of ten natural compounds were identified that were toxic in pancreatic carcinoma cells and activated the DDR on their own and/or promoted the DDR if used in combination with cAT. Their mode of action was shown to be independent of drug transport mechanisms. Based on their chemical structures, DDR modulatory activity and published data we suggest the marine NC 5-epi-nakijiquinone Q and 5-epi-ilimaquinone as well as the fungal compound secalonic acid F as most promising NC-based drug candidates for future synthesis of DDR-modulating chemical derivatives and their preclinical in vitro and in vivo testing.
Collapse
Affiliation(s)
- Jana van Stuijvenberg
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
33
|
Taleghani A, Emami SA, Tayarani-Najaran Z. Artemisia: a promising plant for the treatment of cancer. Bioorg Med Chem 2020; 28:115180. [DOI: 10.1016/j.bmc.2019.115180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/28/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
|
34
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX, Jiang X. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ 2020; 27:242-254. [PMID: 31114026 PMCID: PMC7205875 DOI: 10.1038/s41418-019-0352-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/19/2023] Open
Abstract
The antimalarial drug artemisinin and its derivatives have been explored as potential anticancer agents, but their underlying mechanisms are controversial. In this study, we found that artemisinin compounds can sensitize cancer cells to ferroptosis, a new form of programmed cell death driven by iron-dependent lipid peroxidation. Mechanistically, dihydroartemisinin (DAT) can induce lysosomal degradation of ferritin in an autophagy-independent manner, increasing the cellular free iron level and causing cells to become more sensitive to ferroptosis. Further, by associating with cellular free iron and thus stimulating the binding of iron-regulatory proteins (IRPs) with mRNA molecules containing iron-responsive element (IRE) sequences, DAT impinges on IRP/IRE-controlled iron homeostasis to further increase cellular free iron. Importantly, in both in vitro and a mouse xenograft model in which ferroptosis was triggered in cancer cells by the inducible knockout of GPX4, we found that DAT can augment GPX4 inhibition-induced ferroptosis in a cohort of cancer cells that are otherwise highly resistant to ferroptosis. Collectively, artemisinin compounds can sensitize cells to ferroptosis by regulating cellular iron homeostasis. Our findings can be exploited clinically to enhance the effect of future ferroptosis-inducing cancer therapies.
Collapse
Affiliation(s)
- Guo-Qing Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Fahad A Benthani
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Jiao Wu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, 10065, USA.
| |
Collapse
|
35
|
Ji P, Huang H, Yuan S, Wang L, Wang S, Chen Y, Feng N, Veroniaina H, Wu Z, Wu Z, Qi X. ROS-Mediated Apoptosis and Anticancer Effect Achieved by Artesunate and Auxiliary Fe(II) Released from Ferriferous Oxide-Containing Recombinant Apoferritin. Adv Healthc Mater 2019; 8:e1900911. [PMID: 31701665 DOI: 10.1002/adhm.201900911] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS)-mediated apoptosis is considered a crucial therapeutic mechanisms for artesunate (AS). As an Fe(II)-dependent drug, the anticancer effect of AS is often limited due to insufficient Fe(II) concentration in targeted cells. To overcome this problem, a recombinant apoferritin nanocarrier containing ferriferous oxide (M-HFn) is constructed to produce auxiliary exogenous Fe(II) when delivering AS to cancer cells. Here, the newly fabricated AS-loaded M-HFn nanoparticles (M-HFn@AS NPs) can significantly improve the tumor-specific targeting and intracellular uptake efficiency of AS in human cervical carcinoma cells. After being captured in the acidic cavity of endosomes, M-HFn@AS NPs can simultaneously release Fe(II) and allow AS to activate satisfactory ROS-mediated apoptosis. Furthermore, in vivo studies demonstrate that M-HFn@AS NPs can selectively accumulate in tumors to efficiently inhibit tumor growth. Thus, M-HFn@AS NPs are a promising system to enhance the therapeutic effect of Fe(II)-dependent drugs.
Collapse
Affiliation(s)
- Peng Ji
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Haiqin Huang
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Shirui Yuan
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Le Wang
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Siqi Wang
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Yiwei Chen
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Na Feng
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | | | - Ziheng Wu
- Faculty of Pharmacy and Pharmaceutical SciencesMonash University Melbourne 3800 Australia
| | - Zhenghong Wu
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| | - Xiaole Qi
- College of PharmacyChina Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
36
|
Ding X, Yue W, Chen H. Effect of artesunate on apoptosis and autophagy in tamoxifen resistant breast cancer cells (TAM-R). Transl Cancer Res 2019; 8:1863-1872. [PMID: 35116937 PMCID: PMC8797964 DOI: 10.21037/tcr.2019.08.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
Background The antitumor effect of artesunate (ART) is well-recognized. To investigate the effect of ART on tamoxifen-resistant breast cancer cells (TAM-R) proliferation, apoptosis, and autophagy with TAM-R cells of breast cancer as objects of study, and to investigate whether ART could re-sensitize TAM-R cells to TAM therapy. Methods Experiments were performed using TAM-R cell lines. Cell Death Detection ELISA kit was used to detect the level of apoptosis. Western blot and immunofluorescent staining analysis were conducted to detect autophagy and apoptosis related proteins in TAM-R cells. Results After treated with ART, the proliferation activity of TAM-R cells was inhibited in a concentration-dependent manner. Increased apoptosis activity was detected in TAM-R cells when treated with ART. Compared with 10−6 M TAM monotherapy group, treatment group with ART and TAM in combination caused significant reduction in the levels of Bcl-2, XIAP, and Survivin proteins, and elevation of caspase-7. However, increased p53 proteins was not detected after ART treatment. No significant change was observed in autophagy proteins LC-3 and Beclin-1 among control, ART, TAM, and ART combined with TAM groups. Conclusions The intervention of ART could not inhibit protective autophagy in TAM-R cells, however, possess potential in inducing apoptosis. In addition, as ART inhibit TAM-R cells growth in a dose-dependent manner, co-administration of 1 or 3 µM of ART with 10−6 M TAM might not be enough to re-sensitize TAM-R cells to TAM therapy.
Collapse
Affiliation(s)
- Xiaoqing Ding
- Department of Hematology, Dongfang Hospital Affiliated to Beijing University of Traditional Chinese Medicine, Beijing 100078, China
| | - Wei Yue
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908, USA
| | - Haiyan Chen
- Department of Hematology, Dongfang Hospital Affiliated to Beijing University of Traditional Chinese Medicine, Beijing 100078, China
| |
Collapse
|
37
|
Mota TC, Garcia TB, Bonfim LT, Portilho AJS, Pinto CA, Burbano RMR, Bahia M. Markers of oxidative‐nitrosative stress induced by artesunate are followed by clastogenic and aneugenic effects and apoptosis in human lymphocytes. J Appl Toxicol 2019; 39:1405-1412. [DOI: 10.1002/jat.3826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Tatiane C. Mota
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Tarcyane B. Garcia
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Laís T. Bonfim
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Adrhyann J. S. Portilho
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Camila A. Pinto
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Rommel M. R. Burbano
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| | - Marcelo Bahia
- Laboratory of Human Cytogenetic and Genetic Toxicology, Institute of Biological SciencesFederal University of Pará (UFPA) Belém‐ Pará Brazil
| |
Collapse
|
38
|
Li S, Huang P, Gan J, Ling X, Du X, Liao Y, Li L, Meng Y, Li Y, Bai Y. Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2. Eur J Pharmacol 2019; 854:232-239. [PMID: 31004604 DOI: 10.1016/j.ejphar.2019.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/30/2023]
Abstract
Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC) threatens so many lives in China every year. Traditional treatment of ESCC has usually been disappointing. The development of novel therapy is worth investigation. We have previously demonstrated that dihydroartemisinin (DHA) has anticancer effect on esophageal cancer. However, the mechanism has not been completely known. In this present study, we explored the effect of DHA on cancer cell glycolysis, also known as Warburg effect. Pyruvate kinase M2 (PKM2) is a key regulatory factor of glycolysis, and our results showed that it is significantly overexpressed in patients with ESCC and ESCC cell lines. In DHA treatment cells, PKM2 was down-regulated and lactate product and glucose uptake were inhibited. Overexpression of PKM2 by lentiviral transfection abrogated the inhibition effect of DHA. These results suggested that DHA might repress esophageal cancer glycolysis partly by down-regulating PKM2 expression. We believe that DHA might be a prospective agent against esophageal cancer.
Collapse
Affiliation(s)
- Shumin Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Peng Huang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Junqing Gan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Xiaoxue Du
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Yuanyu Liao
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Lisha Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Yu Meng
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China.
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
39
|
Wang Y, Li Y, Shang D, Efferth T. Interactions between artemisinin derivatives and P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152998. [PMID: 31301971 DOI: 10.1016/j.phymed.2019.152998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Artemisinin was isolated and identified in 1972, which was the starting point for a new era in antimalarial drug therapy. Furthermore, numerous studies have demonstrated that artemisinin and its derivatives exhibit considerable anticancer activity both in vitro, in vivo, and even in clinical Phase I/II trials. P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) is one of the most serious causes of chemotherapy failure in cancer treatment. Interestingly, many artemisinin derivatives exhibit excellent ability to overcome P-gp mediated MDR and even show collateral sensitivity against MDR cancer cells. Furthermore, some artemisinin derivatives show P-gp-mediated MDR reversal activity. Therefore, the interaction between P-gp and artemisinin derivatives is important to develop novel combination treatment protocols with artemisinin derivatives and established anticancer drugs that are P-gp substrates. PURPOSE This systematic review provides an updated overview on the interaction between artemisinin derivatives and P-gp and the effect of artemisinin derivatives on the P-gp expression level. RESULTS Artemisinin derivatives exhibit multi-specific interactions with P-gp. The currently used artemisinin derivatives are not transported by P-gp. However, some of novel synthetized artemisinin derivatives exhibit P-gp substrate properties. Furthermore, many artemisinin derivatives act as P-gp inhibitors, which exhibit the potential to reverse MDR towards clinically used anticancer drugs. CONCLUSION Therefore, studies on the interaction between artemisinin derivatives and P-gp provide important information for the development of novel anti-cancer artemisinin derivatives to reverse P-gp mediated MDR and for the design of rational artemisinin-based combination therapies against cancer.
Collapse
Affiliation(s)
- Yulin Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yongjie Li
- Department of Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian China; College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University 55128 Mainz, Germany.
| |
Collapse
|
40
|
Cao Y, Feng YH, Gao LW, Li XY, Jin QX, Wang YY, Xu YY, Jin F, Lu SL, Wei MJ. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo. Int Immunopharmacol 2019; 70:110-116. [PMID: 30798159 DOI: 10.1016/j.intimp.2019.01.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Breast cancer is a prominent cause of death among women worldwide. Recent studies have demonstrated that artemisinin (ART) displays anti-tumor activity. Using a mouse breast cancer model, we investigated the effects of ART in vitro and in vivo to determine how it influences the anti-tumor immune response. METHODS We measured the proliferation and apoptosis of 4T1 cells in vitro after ART treatment by MTT assay and FACS. To examine the effects of ART in vivo, tumor volumes and survival rates were measured in 4T1 tumor-bearing mice. FACS was used to determine the frequencies of Tregs, MDSCs, CD4+ IFN-γ+ T cells, and CTLs in the tumors and spleens of the mice. mRNA levels of the transcription factors T-bet and FOXP3 and cytokines IFN-γ, TNF-α, TGF-β, and IL-10 were also determined by real-time RT-PCR. ELISA was used to measure TGF-β protein levels in the cell culture supernatants. RESULTS ART supplementation significantly increased 4T1 cell apoptosis and decreased TGF-β levels in vitro. ART also impeded tumor growth in 4T1 TB mice and extended their survival. MDSC and Treg frequencies significantly decreased in the 4T1 TB mice after ART treatment while CD4+ IFN-γ+ T cells and CTLs significantly increased. ART significantly increased T-bet, IFN-γ, and TNF-α mRNA levels within the tumor and significantly decreased TGF-β mRNA levels. CONCLUSION ART supplementation hindered 4T1 tumor growth in vivo by promoting T cell activation and quelling immunosuppression from Tregs and MDSCs in the tumor.
Collapse
Affiliation(s)
- Yu Cao
- Laboratory of Precision Oncology, China Medial University School of Pharmacy, Shenyang, Liaoning, China; Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yong-Hui Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li-Wei Gao
- Department of Radiation Oncology, China Japan Friendship Hospital, Beijing, China
| | - Xiao-Ying Li
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Quan-Xiu Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Breast Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yu-Ying Wang
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Breast Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Ying-Ying Xu
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shi-Long Lu
- Laboratory of Precision Oncology, China Medial University School of Pharmacy, Shenyang, Liaoning, China; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Min-Jie Wei
- Laboratory of Precision Oncology, China Medial University School of Pharmacy, Shenyang, Liaoning, China.
| |
Collapse
|
41
|
RIZKI FADHIL PRATAMA MOHAMMAD, HADI TJAHJONO DARYONO, GUSDINAR TUTUS. The Antifungal Activity of Artesunate toward Candida albicans: Two Opposite Activities. MICROBIOLOGY INDONESIA 2019. [DOI: 10.5454/mi.13.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Fei Z, Gu W, Xie R, Su H, Jiang Y. Artesunate enhances radiosensitivity of esophageal cancer cells by inhibiting the repair of DNA damage. J Pharmacol Sci 2018; 138:131-137. [PMID: 30337244 DOI: 10.1016/j.jphs.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/16/2018] [Accepted: 09/20/2018] [Indexed: 01/24/2023] Open
Abstract
Radiotherapy plays an important therapeutic role in esophageal cancer (EC). However, acquired radioresistance impairs the efficacy of radiotherapy, often leading to treatment failure. Therefore, it is important to develop novel radiosensitizers to enhance the clinical treatment of EC. The purpose of this study was to investigate the role of artesunate (ART) on radiosensitivity of human EC cell line TE-1. We found that ART inhibited the proliferation of EC cells and enhanced the radiosensitivity of TE-1 cells (SER = 1.24). In vivo tumor growth of xenografts was inhibited markedly by irradiation (IR) combined with ART, with a tumor inhibition rate of 53.76% in IR + ART group vs. 41.13% in IR-alone group. Pretreatment with ART significantly prompted cell apoptosis and reversed the IR-induced G2/M arrest. ART treatment could aggravate DNA damage of EC cells and prolong the formation of γ-H2AX foci induced by IR. ART up-regulated P21 and down-regulated the expression of cyclin D1, RAD51, RAD54, Ku70 and Ku86 protein of irradiated TE-1 cells. These findings support that ART induce radiosensitivity of TE-1 cells in vitro and in vivo, and may prove to be a promising radiosensitizer for EC treatment.
Collapse
Affiliation(s)
- Zhenhua Fei
- Department of Oncology, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang, 325000, PR China
| | - Wenyue Gu
- Department of Pathology, Yancheng Hospital Affiliated Southeast University, No.2 Xingdu Road, Yancheng, Jiangsu, 224000, PR China
| | - Raoying Xie
- Department of Oncology, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang, 325000, PR China
| | - Huafang Su
- Department of Oncology, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang, 325000, PR China
| | - Yiyan Jiang
- Department of Tumor Rehabilitation, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
43
|
Tsuda K, Miyamoto L, Hamano S, Morimoto Y, Kangawa Y, Fukue C, Kagawa Y, Horinouchi Y, Xu W, Ikeda Y, Tamaki T, Tsuchiya K. Mechanisms of the pH- and Oxygen-Dependent Oxidation Activities of Artesunate. Biol Pharm Bull 2018; 41:555-563. [PMID: 29607928 DOI: 10.1248/bpb.b17-00855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artemisinin was discovered in 1971 as a constituent of the wormwood genus plant (Artemisia annua). This plant has been used as an herbal medicine to treat malaria since ancient times. The compound artemisinin has a sesquiterpene lactone bearing a peroxide group that offers its biological activity. In addition to anti-malarial activity, artemisinin derivatives have been reported to exert antitumor activity in cancer cells, and have attracted attention as potential anti-cancer drugs. Mechanisms that might explain the antitumor activities of artemisinin derivatives reportedly induction of apoptosis, angiogenesis inhibitory effects, inhibition of hypoxia-inducible factor-1α (HIF-1α) activation, and direct DNA injury. Reactive oxygen species (ROS) generation is involved in many cases. However, little is known about the mechanism of ROS formation from artemisinin derivatives and what types of ROS are produced. Therefore, we investigated the iron-induced ROS formation mechanism by using artesunate, a water-soluble artemisinin derivative, which is thought to be the underlying mechanism involved in artesunate-mediated cell death. The ROS generated by the coexistence of iron(II), artesunate, and molecular oxygen was a hydroxyl radical or hydroxyl radical-like ROS. Artesunate can reduce iron(III) to iron(II), which enables generation of ROS irrespective of the iron valence. We found that reduction from iron(III) to iron(II) was activated in the acidic rather than the neutral region and was proportional to the hydrogen ion concentration.
Collapse
Affiliation(s)
- Katsunori Tsuda
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Shuichi Hamano
- Department of Cell and Immunity Analytics, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Yuri Morimoto
- Major in Laboratory Science, School of Health Sciences, Faculty of Medicine, Tokushima University
| | - Yumi Kangawa
- Major in Laboratory Science, School of Health Sciences, Faculty of Medicine, Tokushima University
| | - Chika Fukue
- Major in Laboratory Science, School of Health Sciences, Faculty of Medicine, Tokushima University
| | - Yoko Kagawa
- Major in Laboratory Science, School of Health Sciences, Faculty of Medicine, Tokushima University
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Wenting Xu
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, University of Tokushima Graduate School
| |
Collapse
|
44
|
Feng FB, Qiu HY. RETRACTED: Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed Pharmacother 2018; 102:1209-1220. [PMID: 29710540 DOI: 10.1016/j.biopha.2018.03.142] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figure 5D and 5F, which appear to have a similar phenotype as contained within another publication, as detailed here: https://pubpeer.com/publications/CD4DF7B6DCA28182EC6809846F3653; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Concerns were also raised about the provenance of the flow cytometry data in Figure 7A. In addition, suspected duplications were detected in Western blots contained within Figure 5E and 5F. The journal requested the corresponding author comment on these concerns and provide raw data. The corresponding author communicated that the raw data was not available and some of the results were not repeatable and therefore not solid enough to support the conclusions. The authors requested retraction of this article. The Editor-in-Chief assessed this case and decided to retract the article.
Collapse
Affiliation(s)
- Fa-Bo Feng
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, PR China
| | - Hai-Yan Qiu
- Department of Endocrinology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou 310006, PR China.
| |
Collapse
|
45
|
Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 2018; 8:50284-50304. [PMID: 28514737 PMCID: PMC5564849 DOI: 10.18632/oncotarget.17466] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/18/2017] [Indexed: 01/01/2023] Open
Abstract
Concepts of individualized therapy in the 1970s and 1980s attempted to develop predictive in vitro tests for individual drug responsiveness without reaching clinical routine. Precision medicine attempts to device novel individual cancer therapy strategies. Using bioinformatics, relevant knowledge is extracted from huge data amounts. However, tumor heterogeneity challenges chemotherapy due to genetically and phenotypically different cell subpopulations, which may lead to refractory tumors. Natural products always served as vital resources for cancer therapy (e.g., Vinca alkaloids, camptothecin, paclitaxel, etc.) and are also sources for novel drugs. Targeted drugs developed to specifically address tumor-related proteins represent the basis of precision medicine. Natural products from plants represent excellent resource for targeted therapies. Phytochemicals and herbal mixtures act multi-specifically, i.e. they attack multiple targets at the same time. Network pharmacology facilitates the identification of the complexity of pharmacogenomic networks and new signaling networks that are distorted in tumors. In the present review, we give a conceptual overview, how the problem of drug resistance may be approached by integrating phytochemicals and phytotherapy into academic western medicine. Modern technology platforms (e.g. “-omics” technologies, DNA/RNA sequencing, and network pharmacology) can be applied for diverse treatment modalities such as cytotoxic and targeted chemotherapy as well as phytochemicals and phytotherapy. Thereby, these technologies represent an integrative momentum to merge the best of two worlds: clinical oncology and traditional medicine. In conclusion, the integration of phytochemicals and phytotherapy into cancer precision medicine represents a valuable asset to chemically synthesized chemicals and therapeutic antibodies.
Collapse
|
46
|
Shi X, Wang L, Li X, Bai J, Li J, Li S, Wang Z, Zhou M. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress. Oncotarget 2018; 8:45981-45993. [PMID: 28526807 PMCID: PMC5542242 DOI: 10.18632/oncotarget.17520] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Dihydroartemisinin is an effective antimalarial agent with multiple biological activities. In the present investigation, we elucidated its therapeutic potential and working mechanism on human tongue squamous cell carcinoma (TSCC). It was demonstrated that dihydroartemisinin could significantly inhibit cell growth in a dose- and time-dependent manner by the Cell Counting Kit-8 and colony formation assay in vitro. Meanwhile, autophagy was promoted in the Cal-27 cells treated by dihydroartemisinin, evidenced by increased LC3B-II level, increased autophagosome formation, and increased Beclin-1 level compared to dihydroartemisinin-untreated cells. Importantly, dihydroartemisinin caused DNA double-strand break with simultaneously increased γH2AX foci and oxidative stress; this inhibited the nuclear localization of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), finally leading to autophagic cell death. Furthermore, the antitumor effect of dihydroartemisinin-monotherapy was confirmed with a mouse xenograft model, and no kidney injury associated with toxic effect was observed after intraperitoneal injection with dihydroartemisinin for 3 weeks in vivo. In the present study, it was revealed that dihydroartemisinin-induced DNA double-strand break promoted oxidative stress, which decreased p-STAT3 (Tyr705) nuclear localization, and successively increased autophagic cell death in the Cal-27 cells. Thus, dihydroartemisinin alone may represent an effective and safe therapeutic agent for human TSCC.
Collapse
Affiliation(s)
- Xinli Shi
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China.,Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Jing Bai
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shenghao Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zeming Wang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Mingrui Zhou
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
47
|
Treatment of Multidrug-Resistant Leukemia Cells by Novel Artemisinin-, Egonol-, and Thymoquinone-Derived Hybrid Compounds. Molecules 2018; 23:molecules23040841. [PMID: 29642419 PMCID: PMC6017613 DOI: 10.3390/molecules23040841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023] Open
Abstract
Two major obstacles for successful cancer treatment are the toxicity of cytostatics and the development of drug resistance in cancer cells during chemotherapy. Acquired or intrinsic drug resistance is responsible for almost 90% of treatment failure. For this reason, there is an urgent need for new anticancer drugs with improved efficacy against cancer cells, and with less toxicity on normal cells. There are impressive examples demonstrating the success of natural plant compounds to fight cancer, such as Vinca alkaloids, taxanes, and anthracyclines. Artesunic acid (ARTA), a drug for malaria treatment, also exerts cytotoxic activity towards cancer cells. Multidrug resistance often results from drug efflux pumps (ABC-transporters) that reduce intracellular drug levels. Hence, it would be interesting to know, whether ARTA could overcome drug resistance of tumor cells, and in what way ABC-transporters are involved. Different derivatives showing improved features concerning cytotoxicity and pharmacokinetic behavior have been developed. Considering both drug sensitivity and resistance, we chose a sensitive and a doxorubicin-resistant leukemia cell line and determined the killing effect of ARTA on these cells. Molecular docking and doxorubicin efflux assays were performed to investigate the interaction of the derivatives with P-glycoprotein. Using single-cell gel electrophoresis (alkaline comet assay), we showed that the derivatives of ARTA induce DNA breakage and accordingly programmed cell death, which represents a promising strategy in cancer treatment. ARTA activated apoptosis in cancer cells by the iron-mediated generation of reactive oxygen species (ROS). In conclusion, ARTA derivatives may bear the potential to be further developed as anticancer drugs.
Collapse
|
48
|
Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence. Oncotarget 2018; 7:67235-67250. [PMID: 27626497 PMCID: PMC5341871 DOI: 10.18632/oncotarget.11972] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/04/2016] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor with a dismal prognosis, shows a high level of chemo- and radioresistance and, therefore, attempts to sensitize glioma cells are highly desired. Here, we addressed the question of whether artesunate (ART), a drug currently used in the treatment of malaria, enhances the killing response of glioblastoma cells to temozolomide (TMZ), which is the first-line therapeutic for GBM. We measured apoptosis, necrosis, autophagy and senescence, and the extent of DNA damage in glioblastoma cells. Further, we determined the tumor growth in nude mice. We show that ART enhances the killing effect of TMZ in glioblastoma cell lines and in glioblastoma stem-like cells. The DNA double-strand break level induced by TMZ was not clearly enhanced in the combined treatment regime. Also, we did not observe an attenuation of TMZ-induced autophagy, which is considered a survival mechanism. However, we observed a significant effect of ART on homologous recombination (HR) with downregulation of RAD51 protein expression and HR activity. Further, we found that ART is able to inhibit senescence induced by TMZ. Since HR and senescence are pro-survival mechanisms, its inhibition by ART appears to be a key node in enhancing the TMZ-induced killing response. Enhancement of the antitumor effect of TMZ by co-administration of ART was also observed in a mouse tumor model. In conclusion, the amelioration of TMZ-induced cell death upon ART co-treatment provides a rational basis for a combination regime of TMZ and ART in glioblastoma therapy.
Collapse
|
49
|
Deeken JF, Wang H, Hartley M, Cheema AK, Smaglo B, Hwang JJ, He AR, Weiner LM, Marshall JL, Giaccone G, Liu S, Luecht J, Spiegel JY, Pishvaian MJ. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 2018; 81:587-596. [PMID: 29392450 DOI: 10.1007/s00280-018-3533-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE The artemisinin class of anti-malarial drugs has shown significant anti-cancer activity in pre-clinical models. Proposed anti-cancer mechanisms include DNA damage, inhibition of angiogenesis, TRAIL-mediated apoptosis, and inhibition of signaling pathways. We performed a phase I study to determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of intravenous artesunate (IV AS). METHODS Patients were enrolled in an accelerated titration dose escalation study with planned dose levels of 8, 12, 18, 25, 34 and 45 mg/kg given on days 1 and 8 of a 21-day cycle. Toxicities were assessed using the NCI CTCAE (ver. 4.0), and response was assessed using RECIST criteria (version 1.1). Pharmacokinetic (PK) studies were performed during cycle 1. RESULTS A total of 19 pts were enrolled, 18 of whom were evaluable for toxicity and 15 were evaluable for efficacy. DLTs were seen at dosages of 12 (1 of 6 patients), 18 (1 of 6) and 25 mg/kg (2 of 2), and were neutropenic fever (Gr 4), hypersensitivity reaction (Gr 3), liver function test abnormalities (Gr 3/4) along with neutropenic fever, and nausea/vomiting (Gr 3) despite supportive care. The MTD was determined to be 18 mg/kg. No responses were observed, while four patients had stable disease, including three with prolonged stable disease for 8, 10, and 11 cycles, for a disease control rate of 27%. PK parameters of AS and its active metabolite, dihydroartemisinin (DHA), correlated with dose. CONCLUSION The MTD of intravenous artesunate is 18 mg/kg on this schedule. Treatment was well tolerated. Modest clinical activity was seen in this pre-treated population. CLINICALTRIALS. GOV IDENTIFIER NCT02353026.
Collapse
Affiliation(s)
- John F Deeken
- Inova Schar Cancer Institute, Inova Health System, 3300 Gallows Road, Falls Church, VA, 22042, USA.
| | - Hongkun Wang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Marion Hartley
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Amrita K Cheema
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Brandon Smaglo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jimmy J Hwang
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - Aiwu Ruth He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Louis M Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - John L Marshall
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Giuseppe Giaccone
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Stephen Liu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jim Luecht
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jay Y Spiegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
50
|
Li X, Gu S, Sun D, Dai H, Chen H, Zhang Z. The selectivity of artemisinin-based drugs on human lung normal and cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:86-94. [PMID: 29227908 DOI: 10.1016/j.etap.2017.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 05/21/2023]
Abstract
Artemisinin-based drugs are documented to possess anticancer potential that is selectively effective to cancer cells. However, this selectivity is disputable in different studies and the mechanism is still unclear. To clarify this discrepancy, this study employed five assays to evaluate the cytotoxic effects of artemisinin and artesunate on normal human bronchial epithelial (HBE) cells and lung adenocarcinoma A549 cells. The results of five cytotoxic assays coherently showed that artemisinin and artesunate caused dose-dependent cytotoxicity in both HBE and A549 cells with a slight selectivity to A549 cells. Further, both HBE cells and A549 cells demonstrated elevated levels of intracellular reactive oxygen species (ROS) and increased DNA damage. Since artemisinin and artesunate exerted significant cytotoxic effect on both normal cells and cancer cells via the same pathway of ROS-mediated DNA damage, the side effects of artemisinin and artesunate on normal cell cannot be ignored when developing their antitumor effects.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shiyan Gu
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Donglei Sun
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huangmei Dai
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongyu Chen
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|