1
|
Bhat P, Tamboli P, Sircar K, Kannan K. Spatial Distribution of Tumor Cells in Clear Cell Renal Cell Carcinoma Is Associated with Metastasis and a Matrisome Gene Expression Signature. Cancers (Basel) 2025; 17:249. [PMID: 39858031 PMCID: PMC11763402 DOI: 10.3390/cancers17020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Predicting the behavior of clear cell renal cell carcinoma (ccRCC) is challenging using standard-of-care histopathologic examination. Indeed, pathologic RCC tumor grading, based on nuclear morphology, performs poorly in predicting outcomes of patients with International Society of Urological Pathology/World Health Organization grade 2 and 3 tumors, which account for most ccRCCs. Methods: We applied spatial point process modeling of H&E-stained images of patients with grade 2 and grade 3 ccRCCs (n = 72) to find optimum separation into two groups. Results: One group was associated with greater spatial randomness and clinical metastasis (p < 0.01). Notably, spatial analysis outperformed standard pathologic grading in predicting clinical metastasis. Moreover, cell-to-cell interaction distances in the metastasis-associated group were significantly greater than those in the other patient group and were also greater than expected by the random distribution of cells. Differential gene expression between the two spatially defined groups of patients revealed a matrisome signature, consistent with the extracellular matrix's crucial role in tumor invasion. The top differentially expressed genes (with a fold change > 3) stratified a larger, multi-institutional cohort of 352 ccRCC patients from The Cancer Genome Atlas into groups with significant differences in survival and TNM disease stage. Conclusions: Our results suggest that the spatial distribution of ccRCC tumor cells can be extracted from H&E-stained images and that it is associated with metastasis and with extracellular matrix genes that are presumably driving these tumors' aggressive behavior.
Collapse
Affiliation(s)
- Prahlad Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W Holcombe Blvd., Houston, TX 77030, USA;
| | - Pheroze Tamboli
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Kanishka Sircar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W Holcombe Blvd., Houston, TX 77030, USA;
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Kasthuri Kannan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W Holcombe Blvd., Houston, TX 77030, USA;
| |
Collapse
|
2
|
Roozitalab MR, Prekete N, Allen M, Grose RP, Louise Jones J. The Microenvironment in DCIS and Its Role in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:211-235. [PMID: 39821028 DOI: 10.1007/978-3-031-70875-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).The DCIS ME is unique, complex and dynamic. Myoepithelial cells form the wall of the ductal-lobular tree and exhibit broad tumour suppressor functions. However, in DCIS they acquire phenotypic changes that bestow them with tumour promoter properties, an important evolution since they act as the primary barrier for invasion. Changes in the peri-ductal stromal environment also arise in DCIS, including transformation of fibroblasts into cancer-associated fibroblasts (CAFs). CAFs orchestrate other changes in the stroma, including the physical structure of the extracellular matrix (ECM) through altered protein synthesis, as well as release of a plethora of factors including proteases, cytokines and chemokines that remodel the ECM. CAFs can also modulate the immune ME as well as impact on tumour cell signalling pathways. The heterogeneity of CAFs, including recognition of anti-tumourigenic populations, is becoming evident, as well as heterogeneity of immune cells and the interplay between these and the adipocyte and vascular compartments. Knowledge of the impact of these changes is more advanced in IBC but evidence is starting to accumulate for a role in DCIS. Detailed in vitro, in vivo and tissue studies focusing on the interplay between DCIS epithelial cells and the ME should help to define features that can better predict DCIS behaviour.
Collapse
Affiliation(s)
- Mohammad Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Niki Prekete
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
4
|
Wu Y, Liu H, Sun Z, Liu J, Li K, Fan R, Dai F, Tang H, Hou Q, Li J, Tang X. The adhesion-GPCR ADGRF5 fuels breast cancer progression by suppressing the MMP8-mediated antitumorigenic effects. Cell Death Dis 2024; 15:455. [PMID: 38937435 PMCID: PMC11211477 DOI: 10.1038/s41419-024-06855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
ADGRF5 (GPR116) has been identified as a facilitator of breast cancer cell migration and metastasis, yet the underlying mechanisms remain largely elusive. Our current study reveals that the absence of ADGRF5 in breast cancer cells impairs extracellular matrix (ECM)-associated cell motility and impedes in vivo tumor growth. This correlates with heightened expression of matrix metalloproteinase 8 (MMP8), a well-characterized antitumorigenic MMP, and a shift in the polarization of tumor-associated neutrophils (TANs) towards the antitumor N1 phenotype in the tumor microenvironment (TME). Mechanistically, ADGRF5 inhibits ERK1/2 activity by enhancing RhoA activation, leading to decreased phosphorylation of C/EBPβ at Thr235, hindering its nuclear translocation and subsequent activation. Crucially, two C/EBPβ binding motifs essential for MMP8 transcription are identified within its promoter region. Consequently, ADGRF5 silencing fosters MMP8 expression and CXCL8 secretion, attracting increased infiltration of TANs; simultaneously, MMP8 plays a role in decorin cleavage, which leads to trapped-inactivation of TGF-β in the TME, thereby polarizing TANs towards the antitumor N1 neutrophil phenotype and mitigating TGF-β-enhanced cell motility in breast cancer. Our findings reveal a novel connection between ADGRF5, an adhesion G protein-coupled receptor, and the orchestration of the TME, which dictates malignancy progression. Overall, the data underscore ADGRF5 as a promising therapeutic target for breast cancer intervention.
Collapse
Grants
- 82372645 National Natural Science Foundation of China (National Science Foundation of China)
- 81972602 National Natural Science Foundation of China (National Science Foundation of China)
- 82002716 National Natural Science Foundation of China (National Science Foundation of China)
- 82273497 National Natural Science Foundation of China (National Science Foundation of China)
- 81502331 National Natural Science Foundation of China (National Science Foundation of China)
- The Natural Science Foundation of Hunan Province (grant nos. 2023JJ20021), the Fundamental Research Funds for the Central Universities (521119200099, 541109030051).
- The Natural Science Foundation of Hunan Province (grant nos.2024JJ6490)
- Natural Science Foundation of Henan Province (222300420029), Program for Science and Technology Innovation Talents in Universities of Henan Province (23HASTIT042).
- The Project of Department of Education of Guangdong Province, (2019KTSCX146), the Shenzhen Science and Technology Program (JCYJ20190808164209301), the Shenzhen Scientific Research Foundation for Excellent Returned Scholars (000493), the Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD005), the Disciple gathering teaching project of Shenzhen University, the Shenzhen Key Laboratory Foundation (ZDSYS20200811143757022), the Teaching Reform Research Project of Shenzhen University (YXBJG202339), and the Shenzhen International Cooperation Research Project (GJHZ20220913143004008).
- The Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya Hospital of Central South University (YX202105), Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ31010).
Collapse
Affiliation(s)
- Yalan Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Huixia Liu
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhe Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jieling Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ronghui Fan
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637003, Sichuan, China
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen, 518061, China
| | - JinSong Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaolong Tang
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| |
Collapse
|
5
|
Dibdiakova K, Majercikova Z, Galanda T, Richterova R, Kolarovszki B, Racay P, Hatok J. Relationship between the Expression of Matrix Metalloproteinases and Their Tissue Inhibitors in Patients with Brain Tumors. Int J Mol Sci 2024; 25:2858. [PMID: 38474106 DOI: 10.3390/ijms25052858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) play critical roles in regulating processes associated with malignant behavior. These endopeptidases selectively degrade components of the extracellular matrix (ECM), growth factors, and their receptors, contributing to cancer cell invasiveness and migratory characteristics by disrupting the basal membrane. However, the expression profile and role of various matrix metalloproteinases remain unclear, and only a few studies have focused on differences between diagnoses of brain tumors. Using quantitative real-time PCR analysis, we identified the expression pattern of ECM modulators (n = 10) in biopsies from glioblastoma (GBM; n = 20), astrocytoma (AST; n = 9), and meningioma (MNG; n = 19) patients. We found eight deregulated genes in the glioblastoma group compared to the benign meningioma group, with only MMP9 (FC = 2.55; p = 0.09) and TIMP4 (7.28; p < 0.0001) upregulated in an aggressive form. The most substantial positive change in fold regulation for all tumors was detected in matrix metalloproteinase 2 (MNG = 30.9, AST = 4.28, and GBM = 4.12). Notably, we observed an influence of TIMP1, demonstrating a positive correlation with MMP8, MMP9, and MMP10 in tumor samples. Subsequently, we examined the protein levels of the investigated MMPs (n = 7) and TIMPs (n = 3) via immunodetection. We confirmed elevated levels of MMPs and TIMPs in GBM patients compared to meningiomas and astrocytomas. Even when correlating glioblastomas versus astrocytomas, we showed a significantly increased level of MMP1, MMP3, MMP13, and TIMP1. The identified metalloproteases may play a key role in the process of gliomagenesis and may represent potential targets for personalized therapy. However, as we have not confirmed the relationship between mRNA expression and protein levels in individual samples, it is therefore natural that the regulation of metalloproteases will be subject to several factors.
Collapse
Affiliation(s)
- Katarina Dibdiakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4C, 03601 Martin, Slovakia
| | - Zuzana Majercikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
| | - Tomas Galanda
- Department of Neurosurgery, Roosevelt Hospital, Slovak Medical University, Nam. L. Svobodu 1, 97517 Banska Bystrica, Slovakia
| | - Romana Richterova
- Clinic of Neurosurgery, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia
| | - Branislav Kolarovszki
- Clinic of Neurosurgery, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
| | - Jozef Hatok
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
| |
Collapse
|
6
|
Guo F, Du Y, Wang Y, Wang M, Wang L, Yu N, Luo S, Wu F, Yang G. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: A review. Int J Biol Macromol 2024; 257:128658. [PMID: 38065446 DOI: 10.1016/j.ijbiomac.2023.128658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Nanodrug delivery systems based on tumor microenvironment responses have shown excellent performance in tumor-targeted therapy, given their unique targeting and drug-release characteristics. Matrix metalloproteinases (MMPs) have been widely explored owing to their high specificity and expression in various tumor microenvironments. The design of an enzyme-sensitive nanodelivery system using MMPs as targeted receptors could markedly improve the performance of drug targeting. The current review focuses on the development and application of MMP-responsive drug carriers, and summarizes the classification of single- and multi-target nanocarriers based on their MMP responsiveness. The potential applications and challenges of this nanodrug delivery system are discussed to provide a reference for designing high-performance nanodrug delivery systems.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujia Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fang Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Llinàs-Arias P, Ensenyat-Mendez M, Íñiguez-Muñoz S, Orozco JIJ, Valdez B, Salomon MP, Matsuba C, Solivellas-Pieras M, Bedoya-López AF, Sesé B, Mezger A, Ormestad M, Unzueta F, Strand SH, Boiko AD, Hwang ES, Cortés J, DiNome ML, Esteller M, Lupien M, Marzese DM. Chromatin insulation orchestrates matrix metalloproteinase gene cluster expression reprogramming in aggressive breast cancer tumors. Mol Cancer 2023; 22:190. [PMID: 38017545 PMCID: PMC10683115 DOI: 10.1186/s12943-023-01906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype that exhibits a high incidence of distant metastases and lacks targeted therapeutic options. Here we explored how the epigenome contributes to matrix metalloprotease (MMP) dysregulation impacting tumor invasion, which is the first step of the metastatic process. METHODS We combined RNA expression and chromatin interaction data to identify insulator elements potentially associated with MMP gene expression and invasion. We employed CRISPR/Cas9 to disrupt the CCCTC-Binding Factor (CTCF) binding site on an insulator element downstream of the MMP8 gene (IE8) in two TNBC cellular models. We characterized these models by combining Hi-C, ATAC-seq, and RNA-seq with functional experiments to determine invasive ability. The potential of our findings to predict the progression of ductal carcinoma in situ (DCIS), was tested in data from clinical specimens. RESULTS We explored the clinical relevance of an insulator element located within the Chr11q22.2 locus, downstream of the MMP8 gene (IE8). This regulatory element resulted in a topologically associating domain (TAD) boundary that isolated nine MMP genes into two anti-correlated expression clusters. This expression pattern was associated with worse relapse-free (HR = 1.57 [1.06 - 2.33]; p = 0.023) and overall (HR = 2.65 [1.31 - 5.37], p = 0.005) survival of TNBC patients. After CRISPR/Cas9-mediated disruption of IE8, cancer cells showed a switch in the MMP expression signature, specifically downregulating the pro-invasive MMP1 gene and upregulating the antitumorigenic MMP8 gene, resulting in reduced invasive ability and collagen degradation. We observed that the MMP expression pattern predicts DCIS that eventually progresses into invasive ductal carcinomas (AUC = 0.77, p < 0.01). CONCLUSION Our study demonstrates how the activation of an IE near the MMP8 gene determines the regional transcriptional regulation of MMP genes with opposing functional activity, ultimately influencing the invasive properties of aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Pere Llinàs-Arias
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Betsy Valdez
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Keck School of Medicine, USC Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA
| | - Chikako Matsuba
- Keck School of Medicine, USC Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA
| | - Maria Solivellas-Pieras
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Borja Sesé
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain
| | - Anja Mezger
- Science for Life Laboratory, Solna, 17665, Sweden
| | | | - Fernando Unzueta
- Advanced Optical Microscopy Facility Scientific and Technological Centres of University of Barcelona, Barcelona, Spain
| | - Siri H Strand
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alexander D Boiko
- Department of Medicine, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, 90048, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Javier Cortés
- Pangaea Oncology, Quiron Group, International Breast Cancer Center (IBCC), Barcelona, 08017, Spain
- Medica Scientia Innovation Research SL (MEDSIR), Barcelona, 08018, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, 28670, Spain
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, 28029, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Diego M Marzese
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, 07120, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Zhang J, Jiang S, Li S, Jiang J, Mei J, Chen Y, Ma Y, Liu Y, Liu Y. Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. ENGINEERING 2023; 27:106-126. [DOI: 10.1016/j.eng.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Kong C, Zhu Y, Xie X, Wu J, Qian M. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Front Immunol 2023; 14:1184700. [PMID: 37359526 PMCID: PMC10285480 DOI: 10.3389/fimmu.2023.1184700] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background Septic shock occurs when sepsis is related to severe hypotension and leads to a remarkable high number of deaths. The early diagnosis of septic shock is essential to reduce mortality. High-quality biomarkers can be objectively measured and evaluated as indicators to accurately predict disease diagnosis. However, single-gene prediction efficiency is inadequate; therefore, we identified a risk-score model based on gene signature to elevate predictive efficiency. Methods The gene expression profiles of GSE33118 and GSE26440 were downloaded from the Gene Expression Omnibus (GEO) database. These two datasets were merged, and the differentially expressed genes (DEGs) were identified using the limma package in R software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were performed. Subsequently, Lasso regression and Boruta feature selection algorithm were combined to identify the hub genes of septic shock. GSE9692 was then subjected to weighted gene co-expression network analysis (WGCNA) to identify the septic shock-related gene modules. Subsequently, the genes within such modules that matched with septic shock-related DEGs were identified as the hub genes of septic shock. To further understand the function and signaling pathways of hub genes, we performed gene set variation analysis (GSVA) and then used the CIBERSORT tool to analyze the immune cell infiltration pattern of diseases. The diagnostic value of hub genes in septic shock was determined using receiver operating characteristic (ROC) analysis and verified using quantitative PCR (qPCR) and Western blotting in our hospital patients with septic shock. Results A total of 975 DEGs in the GSE33118 and GSE26440 databases were obtained, of which 30 DEGs were remarkably upregulated. With the use of Lasso regression and Boruta feature selection algorithm, six hub genes (CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4) with expression differences in septic shock were screened as potential diagnostic markers for septic shock among the significant DEGs and were further validated in the GSE9692 dataset. WGCNA was used to identify the co-expression modules and module-trait correlation. Enrichment analysis showed significant enrichment in the reactive oxygen species pathway, hypoxia, phosphatidylinositol 3-kinases (PI3K)/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling, nuclear factor-κβ/tumor necrosis factor alpha (NF-κβ/TNF-α), and interleukin-6 (IL-6)/Janus Kinase (JAK)/Signal Transducers and Activators of Transcription 3 (STAT3) signaling pathways. The receiver operating characteristic curve (ROC) of these signature genes was 0.938, 0.914, 0.939, 0.956, 0.932, and 0.914, respectively. In the immune cell infiltration analysis, the infiltration of M0 macrophages, activated mast cells, neutrophils, CD8 T cells, and naive B cells was more significant in the septic shock group. In addition, higher expression levels of CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4 messenger RNA (mRNA) were observed in peripheral blood mononuclear cells (PBMCs) isolated from septic shock patients than from healthy donors. Higher expression levels of CD177 and MMP8 proteins were also observed in the PBMCs isolated from septic shock patients than from control participants. Conclusions CD177, CLEC5A, CYSTM1, MCEMP1, MMP8, and RGL4 were identified as hub genes, which were of considerable value in the early diagnosis of septic shock patients. These preliminary findings are of great significance for studying immune cell infiltration in the pathogenesis of septic shock, which should be further validated in clinical studies and basic studies.
Collapse
Affiliation(s)
- Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yurun Zhu
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofan Xie
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayu Wu
- Department of General Practice, Central Health Center of Yayang Town, Taishun County (Yayang Branch of Medical Community of Taishun County People’s Hospital), Wenzhou, Zhejiang, China
| | - Meizi Qian
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Li W, Zhang B, Cao W, Zhang W, Li T, Liu L, Xu L, Gao F, Wang Y, Wang F, Xing H, Jiang Z, Shi J, Bian Z, Song Y. Identification of potential resistance mechanisms and therapeutic targets for the relapse of BCMA CAR-T therapy in relapsed/refractory multiple myeloma through single-cell sequencing. Exp Hematol Oncol 2023; 12:44. [PMID: 37158921 PMCID: PMC10165782 DOI: 10.1186/s40164-023-00402-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND BCMA CAR-T is highly effective for relapsed/refractory multiple myeloma(R/R-MM) and significantly improves the survival of patients. However, the short remission time and high relapse rate of MM patients treated with BCMA CAR-T remain bottlenecks that limit long-term survival. The immune microenvironment of the bone marrow (BM) in R/R-MM may be responsible for this. The present study aims to present an in-depth analysis of resistant mechanisms and to explore potential novel therapeutic targets for relapse of BCMA CAR-T treatment via single-cell RNA sequencing (scRNA-seq) of BM plasma cells and immune cells. METHODS This study used 10X Genomic scRNA-seq to identify cell populations in R/R-MM CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. Cell Ranger pipeline and CellChat were used to perform detailed analysis. RESULTS We compared the heterogeneity of CD45+ BM cells before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We found that the proportion of monocytes/macrophages increased, while the percentage of T cells decreased at relapse after BCMA CAR-T treatment. We then reclustered and analyzed the alterations in plasma cells, T cells, NK cells, DCs, neutrophils, and monocytes/macrophages in the BM microenvironment before BCMA CAR-T treatment and relapse after BCMA CAR-T treatment. We show here that the percentage of BCMA positive plasma cells increased at relapse after BCMA CAR-T cell therapy. Other targets such as CD38, CD24, SLAMF7, CD138, and GPRC5D were also found to be expressed in plasma cells of the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Furthermore, exhausted T cells, TIGIT+NK cells, interferon-responsive DCs, and interferon-responsive neutrophils, increased in the R/R-MM patient at relapse after BCMA CAR-T cell treatment. Significantly, the proportion of IL1βhi Mφ, S100A9hi Mφ, interferon-responsive Mφ, CD16hi Mφ, MARCO hi Mφ, and S100A11hi Mφ significantly increased in the R/R-MM patient at relapse after BCMA CAR-T cell therapy. Cell-cell communication analysis indicated that monocytes/macrophages, especially the MIF and APRIL signaling pathway are key players in R/R-MM patient at relapse after BCMA CAR-T cell therapy. CONCLUSION Taken together, our data extend the understanding of intrinsic and extrinsic relapse of BCMA CAR-T treatment in R/R-MM patient and the potential mechanisms involved in the alterations of antigens and the induced immunosuppressive microenvironment, which may provide a basis for the optimization of BCMA CAR-T strategies. Further studies should be performed to confirm these findings.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Binglei Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lina Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - LinPing Xu
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China
| | - Jianxiang Shi
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
11
|
Zhang YN, Liu JJ, Zhang W, Qin HY, Wang LT, Chen YY, Yuan L, Yang F, Cao RY, Wang XJ. Expression, purification and refolding of pro-MMP-2 from inclusion bodies of E. coli. Protein Expr Purif 2023; 208-209:106278. [PMID: 37094772 DOI: 10.1016/j.pep.2023.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
MMP-2 has been reported as the most validated target for cancer progression and deserves further investigation. However, due to the lack of methods for obtaining large amounts of highly purified and bioactive MMP-2, identifying specific substrates and developing specific inhibitors of MMP-2remains extremely difficult. In this study, the DNA fragment coding for pro-MMP-2 was inserted into plasmid pET28a in an oriented manner, and the resulting recombinant protein was effectively expressed and led to accumulation as inclusion bodies in E. coli. This protein was easy to purify to near homogeneity by the combination of common inclusion bodies purification procedure and cold ethanol fractionation. Then, our results of gelatin zymography and fluorometric assay revealed that pro-MMP-2 at least partially restored its natural structure and enzymatic activity after renaturation. We obtained approximately 11 mg refolded pro-MMP-2 protein from 1 L LB broth, which was higher than other strategies previously reported. In conclusion, a simple and cost-effective procedure for obtaining high amounts of functional MMP-2was developed, which would contribute to the progress of studies on the gamut of biological action of this important proteinase. Furthermore, our protocol should be appropriate for the expression, purification, and refolding of other bacterial toxic proteins.
Collapse
Affiliation(s)
- Yu Nan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Jia Jian Liu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Han Yu Qin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Lin Tao Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Yuan Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Li Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China
| | - Fen Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China.
| | - Rong Yue Cao
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xue Jun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
12
|
Provera MD, Straign DM, Karimpour P, Ihle CL, Owens P. Bone morphogenetic protein pathway responses and alterations of osteogenesis in metastatic prostate cancers. Cancer Rep (Hoboken) 2023; 6:e1707. [PMID: 36054271 PMCID: PMC9940003 DOI: 10.1002/cnr2.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Prostate cancer is a common cancer in men that annually results in more than 33 000 US deaths. Mortality from prostate cancer is largely from metastatic disease, reflecting on the great strides in the last century of treatments in care for the localized disease. Metastatic castrate resistant prostate cancer (mCRPC) will commonly travel to the bone, creating unique bone pathology that requires nuanced treatments in those sites with surgical, radio and chemotherapeutic interventions. The bone morphogenetic protein (BMP) pathway has been historically studied in the capacity to regulate the osteogenic nature of new bone. New mineralized bone generation is a frequent and common observation in mCRPC and referred to as blastic bone lesions. Less common are bone destructive lesions that are termed lytic. METHODS We queried the cancer genome atlas (TCGA) prostate cancer databases for the expression of the BMP pathway and found that distinct gene expression of the ligands, soluble antagonists, receptors, and intracellular mediators were altered in localized versus metastatic disease. Human prostate cancer cell lines have an innate ability to promote blastic- or lytic-like bone lesions and we hypothesized that inhibiting BMP signaling in these cell lines would result in a distinct change in osteogenesis gene expression with BMP inhibition. RESULTS We found unique and common changes by comparing these cell lines response and unique BMP pathway alterations. We treated human PCa cell lines with distinct bone pathologic phenotypes with the BMP inhibitor DMH1 and found distinct osteogenesis responses. We analyzed distinct sites of metastatic PCa in the TCGA and found that BMP signaling was selectively altered in commons sites such as lymph node, bone and liver compared to primary tumors. CONCLUSIONS Overall we conclude that BMPs in metastatic prostate cancer are important signals and functional mediators of diverse processes that have potential for individualized precision oncology in mCRPC.
Collapse
Affiliation(s)
- Meredith D. Provera
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Desiree M. Straign
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | | | - Claire L. Ihle
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Philip Owens
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care SystemAuroraColoradoUSA
| |
Collapse
|
13
|
Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 2023; 12:1108695. [PMID: 36741729 PMCID: PMC9897057 DOI: 10.3389/fonc.2022.1108695] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in tumorigenesis. They were initially recognized to promote tumor progression by remodeling the extracellular matrix through their proteolytic activity. However, accumulating evidence has revealed that some MMPs have protective roles in cancer progression, and the same MMP can exert opposing roles depending on the cell type in which it is expressed or the stage of cancer. Moreover, studies have shown that MMPs are involved in cancer progression through their roles in other biological processes such as cell signaling and immune regulation, independent of their catalytic activity. Despite the prognostic significance of tumoral or stromal expression of MMPs in breast cancer, their roles and molecular mechanisms in breast cancer progression remain unclear. As the failures of early clinical trials with broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity, substantial efforts have been made to develop highly selective MMP inhibitors. Some recently developed MMP inhibitory monoclonal antibodies demonstrated promising anti-tumor effects in preclinical models of breast cancer. Importantly, anti-tumor effects of these antibodies were associated with the modulation of tumor immune microenvironment, suggesting that the use of MMP inhibitors in combination with immunotherapy can improve the efficacy of immunotherapy in HER2-positive or triple-negative breast cancer. In this review, the current understanding of the roles of tumoral or stromal MMPs in breast cancer is summarized, and recent advances in the development of highly selective MMP inhibitors are discussed.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea,BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea,*Correspondence: Mi Jeong Kwon,
| |
Collapse
|
14
|
Kazmi A, Abbas Z, Saleem Z, Haider S, Farooqui WA, Ahmed S. Relation of salivary MMP-8 with oral submucous fibrosis and oral squamous cell carcinoma: a cross sectional analytical study. BMJ Open 2022; 12:e060738. [PMID: 36523229 PMCID: PMC9748963 DOI: 10.1136/bmjopen-2021-060738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES We aim to evaluate salivary matrix metalloproteinases (MMP-8) levels in oral submucous fibrosis (OSF) and oral squamous cell carcinoma (OSCC) for the purpose of diagnosis at the early stage via non-invasive method. SETTING The study was multicentre, carried out at a tertiary care hospital in Karachi, Pakistan. PARTICIPANTS A total 60 participants of any age, sex and ethnicity were randomly selected for the purpose of this study. Patients demonstrating clinical evidence of OSF and biopsy-proven cases of OSCC were included. Patients with indeterminate histopathological report, immunodeficiency, autoimmune disorder, chronic medical and periodontal disease (periodontal depth greater than 5 mm) and individuals with interincisal mouth opening greater than 35 mm were excluded from the study. INTERVENTIONS Salivary MMP-8 levels were observed in OSF, healthy and OSCC groups by using ELISA. One way analysis of variance was applied to establish whether MMP-8 levels of disease-free individuals and patients suffering from OSF and OSCC differed from each other. RESULTS Statistically significant difference in salivary MMP-8 expression in diseased and control group was observed. MMP-8 levels in OSCC (0.64 ng/mL) and OSF (0.66 ng/mL) were underexpressed as compared with healthy participants (7.9 ng/mL). CONCLUSION MMP-8 levels were underexpressed in OSCC and OSF patients as compared with controls, which imply that MMP-8 level has an inverse relation with OSCC and OSF.
Collapse
Affiliation(s)
- Anum Kazmi
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Zia Abbas
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Zohra Saleem
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Safdar Haider
- Oral and maxillofacial surgery, Bahria University medical and dental college, Karachi, Pakistan
| | - Waqas Ahmed Farooqui
- School of Public Health, Dow University of Health Sciences - Ojha Campus, Karachi, Pakistan
| | - Shaheen Ahmed
- Oral and Maxillofacial Surgery, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
15
|
Monea M, Pop AM. The Use of Salivary Levels of Matrix Metalloproteinases as an Adjuvant Method in the Early Diagnosis of Oral Squamous Cell Carcinoma: A Narrative Literature Review. Curr Issues Mol Biol 2022; 44:6306-6322. [PMID: 36547091 PMCID: PMC9776994 DOI: 10.3390/cimb44120430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with increased mortality, in which the early diagnosis is the most important step in increasing patients' survival rate. Extensive research has evaluated the role of saliva as a source of diagnostic biomarkers, among which matrix metalloproteinases (MMPs) have shown a valuable potential for detecting even early stages of OSCC. The aim of this review was to present recent clinical data regarding the significance of salivary MMPs in the detection of early malignant transformation of the oral mucosa. A narrative review was conducted on articles published in PubMed, Cochrane Library, Web of Science, EBSCO and SciELO databases, using specific terms. Our search revealed that MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-12 and MMP-13 had significantly higher levels in saliva from patients with OSCC compared to controls. However, the strength of evidence is limited, as most information regarding their use as adjuvant diagnostic tools for OSCC comes from studies with a low number of participants, variable methodologies for saliva sampling and diagnostic assays, and insufficient adjustment for all covariates. MMP-1, MMP-3 and MMP-9 were considered the most promising candidates for salivary diagnosis of OSCC, but larger studies are needed in order to validate their clinical application.
Collapse
Affiliation(s)
- Monica Monea
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Correspondence:
| | - Anca Maria Pop
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
16
|
Jiang Y, Li X, Yang Y, Luo J, Ren X, Yuan J, Tong Q. LncRNA HOXC-AS1 Sponges miR-99a-3p and Upregulates MMP8, Ultimately Promoting Gastric Cancer. Cancers (Basel) 2022; 14:cancers14143534. [PMID: 35884594 PMCID: PMC9321533 DOI: 10.3390/cancers14143534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Long noncoding RNAs, including the HOXC Cluster Antisense RNA 1 (HOXC-AS1), are reported to be critical during the occurrence and progression of gastric cancer. We examined cells and tissues for the expression of HOXC-AS1 and correlated the expression levels with the disease specific survival of the gastric cancer patients. We also identified the interaction between HOXC-AS1 and miR-99a-3p, as well as matrix metalloproteinase 8 (MMP8) by dual-luciferase reporter gene assays. Western blot and qRT-PCR were conducted to verify the alteration in expression levels, while Cell Counting Kit-8 assay and colony formation assay were performed to explore the influences on gastric cancer cells. Overexpression of HOXC-AS1 would accordingly sponge greater quantities of miR-99a-3p, leading to the upregulation of MMP8, eventually facilitating the progress of gastric cancer. Abstract Gastric cancer (GC) is among the most lethal tumors worldwide. Long noncoding RNAs (lncRNAs) are reported to be critical during the occurrence and progression of malignancies. The HOXC cluster antisense RNA 1 (HOXC-AS1) has been suggested to participate in the genesis and development of GC. Therefore, we examined GC cells and tissues for the expression of HOXC-AS1 and correlated the expression levels with the disease specific survival of the patients, finding that HOXC-AS1 was overexpressed and probably had a tendency of leading to a poor prognosis. The Cell Counting Kit-8 assay and colony formation assay were then performed under knockdown of HOXC-AS1, revealing that cell proliferation of GC was distinctly decreased. Afterwards, miR-99a-3p was predicted to bind with HOXC-AS1 by DIANA tools. We carried out dual-luciferase reporter gene assays to identify the interaction between them. After knockdown of HOXC-AS1, miR-99a-3p was clearly overexpressed in GC cells. In addition, matrix metalloproteinase 8 (MMP8) was shown to be combined with miR-99a-3p using TargetScan. Similar experiments, along with western blot, were conducted to validate the correlation between miR-99a-3p and MMP8. Finally, rescue experiments for CCK-8 were completed, disclosing that HOXC-AS1 promoted cell progression of GC through sponging miR-99a-3p followed by subsequent upregulation of MMP8.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Yu Yang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Jiajun Luo
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.J.); (Y.Y.); (J.L.); (J.Y.)
- Correspondence:
| |
Collapse
|
17
|
Kaasinen M, Hagström J, Mustonen H, Sorsa T, Sund M, Haglund C, Seppänen H. Matrix Metalloproteinase 8 Expression in a Tumour Predicts a Favourable Prognosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:3314. [PMID: 35328734 PMCID: PMC8951094 DOI: 10.3390/ijms23063314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant cause of cancer-related death globally, and, despite improvements in diagnostics and treatment, survival remains poor. Matrix metalloproteinases (MMPs) are enzymes involved in stroma remodelling in inflammation and cancer. MMP-8 plays a varied prognostic role in cancers of the gastrointestinal tract. We examined the prognostic value of MMP-8 immunoexpression in tumour tissue and the amount of MMP-8-positive polymorphonuclear cells (PMNs) in PDAC and their association with immune responses using C-reactive protein (CRP) as a marker of systemic inflammation. Tumour samples from 141 PDAC patients undergoing surgery in 2002−2011 at the Department of Surgery, Helsinki University Hospital were stained immunohistochemically, for which we evaluated MMP-8 expression in cancer cells and the amount of MMP-8-positive PMNs. We assessed survival using the Kaplan−Meier analysis while uni- and multivariable analyses relied on the Cox proportional hazards model. A negative MMP-8 stain and elevated CRP level predicted a poor prognosis (hazard ratio [HR] = 6.95; 95% confidence interval (CI) 2.69−17.93; p < 0.001) compared to a positive stain and low CRP level (<10 mg/L). The absence of PMNs together with an elevated CRP level also predicted an unfavourable outcome (HR = 3.17; 95% CI 1.60−6.30; p = 0.001). MMP-8 expression in the tumour served as an independent positive prognostic factor (HR = 0.33; 95% CI 0.16−0.68; p = 0.003). Tumour MMP-8 expression and a low CRP level may predict a favourable outcome in PDAC with similar results for MMP-8-positive PMNs and low CRP levels. Tumoural MMP-8 expression represents an independent positive prognostic factor in PDAC.
Collapse
Affiliation(s)
- Mirjami Kaasinen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
- Department of Oral Pathology and Radiology, University of Turku, 20014 Turku, Finland
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 17177 Solna, Sweden
| | - Malin Sund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, 90187 Umeå, Sweden
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
18
|
Li X, Ye Y, Zhou W, Shi Q, Wang L, Li T. Anti-Inflammatory Effects of BoNT/A Against Complete Freund's Adjuvant-Induced Arthritis Pain in Rats: Transcriptome Analysis. Front Pharmacol 2021; 12:735075. [PMID: 34803684 PMCID: PMC8602683 DOI: 10.3389/fphar.2021.735075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Arthritis is the most common cause to lead to chronic pain. Botulinum toxin type A (BoNT/A) has been widely used to treat chronic pain. In our previous study, we confirmed the anti-inflammatory and antinociceptive effects of BoNT/A in the Complete Freund’s Adjuvant (CFA)-induced arthritis model, but the underlying anti-inflammatory mechanism was not fully elucidated. The purpose of this study was to investigate the anti-inflammatory effects and mechanisms of BoNT/A on arthritis using transcriptomic analysis. The BoNT/A was injected into the rat ankle joint on day 21 after CFA injection. The von Frey and hot plate tests were applied to assess the pain-related behaviors at different time points. Five days after BoNT/A treatment, gene expression profiling in dorsal root ganglion (DRG) was performed using RNA sequencing (RNA-seq). The differentially expressed genes (DEGs) were analyzed by various tools. The mechanical allodynia and thermal hyperalgesia were significantly reversed after BoNT/A injection. RNA-seq revealed 97 DEGs between the CFA group and Sham group; these DEGs were enriched inflammatory response, IL-17 signaling pathway, etc. There are 71 DEGs between the CFA+BoNT/A group and the CFA group; these DEGs related to response to peptide, PI3K-Akt signaling pathway, ECM–receptor interactions, etc. Three key genes were significantly decreased after CFA-induced arthritis pain, while BoNT/A increased the expression of these genes. The identification of S100A9, S100A8, and MMP8 genes can provide new therapeutic targets for arthritis pain and affect the signaling pathway to play an anti-inflammatory role after the treatment of BoNT/A.
Collapse
Affiliation(s)
- Xinhe Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinshuang Ye
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qilin Shi
- Department of Rehabilitation Medicine, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Lin Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tieshan Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Kremer JL, Auricino TB, Dos Santos Passaia B, Lotfi CFP. Upregulation of TCF21 inhibits migration of adrenocortical carcinoma cells. Discov Oncol 2021; 12:23. [PMID: 35201460 PMCID: PMC8777580 DOI: 10.1007/s12672-021-00417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Adrenocortical carcinomas (ACC) are rare and aggressive cancer. Our previous study has revealed that the transcription factor 21, TCF21, is downregulated in ACC and regulates steroidogenic factor 1 (SF-1) binding to the SF-1 E-box promoter. In addition, it could be found that TCF21 is a predictor of overall survival (OS) in adult carcinomas. METHODS In this study, it was investigated the correlation between TCF21 expression and the promoter methylation status in adrenocortical tumor cells, carcinomas and adenoma. The biological function and potential molecular mechanism of TCF21 restoration in migration and invasion of ACC cells was examined. RESULTS We could be demonstrated a negative correlation between the level of TCF21 expression and methylation of its promoter in adenoma and carcinoma cells indicating the epigenetic control of TCF21 expression. It was also demonstrated that the expression of TCF21 inhibits migration and invasion in the ACC cell line, H295R cells, using plasmid transfection to express TCF21. Furthermore, it could be investigated the TCF21 function as tumor suppressor probably through Kisspeptin 1 (KISS-1) expression and epithelial-mesenchymal transition (EMT) reversion, as well as the modulation of several metalloproteinases in ACC cells. CONCLUSIONS Our results suggest that enhancement of TCF21 expression levels may be a potential strategy to revert invasive abilities in adrenocortical carcinomas.
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Barabba Auricino
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
20
|
Maradiaga ODH, Mok PL, Sivapragasam G, Samrot AV, Ali Khan MS, Farhana A, Alzahrani B, Tong J, Karuppiah T, Joseph NMS, Subbiah SK. Lipofection of Single Guide RNA Targeting MMP8 Decreases Proliferation and Migration in Lung Adenocarcinoma Cells. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:710. [PMID: 34356991 PMCID: PMC8306211 DOI: 10.3390/medicina57070710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
Background and Objectives: Matrix metalloproteinases (MMP) have been implicated as major determinants of tumour growth and metastasis, which are considered two of the main hallmarks of cancer. The interaction of MMP8 and other signalling molecules within and adjacent tumoral tissues, including immune cells, are rather elusive, particularly of adenocarcinoma cell type. In this study, we aimed to investigate the role of MMP8 in non-small cell lung cancer proliferation and invasiveness potential. Materials and Methods: We individually lipofected with two different single guide RNA (sgRNAs) that specifically targeted on MMP8, with CRISPR-Cas 9 protein into the cells. Results: Our results clearly indicated that the lipofection of these complexes could lead to reduced ability of A549 cells to survive and proliferate to form colonies. In addition, when compared to non-transfected cells, the experimental cell groups receiving sgRNAs demonstrated relatively decreased migration rate, hence, wider wound gaps in scratch assay. The quantitative real time-polymerase chain reaction (qRT-PCR) demonstrated significant reduction in the MAP-K, survivin and PI3-K gene expression. MMP8 might have protective roles over tumour growth and spread in our body. Conclusions: The delivery of sgRNAs targeting on the MMP8 gene could induce tumour cell death and arrest cell migratory activity.
Collapse
Affiliation(s)
- Oscar David Hernandez Maradiaga
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; (A.F.); (B.A.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Gothai Sivapragasam
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia;
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Department of Pharmacology, Hamidiye International Faculty of Medicine, University of Health Sciences, Mekteb-I, Tibbiye-I Sahane (Hamidiye) Complex Selimiye Mahallesi, Tibbiye Caddesi #38, Istanbul 34668, Turkey
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; (A.F.); (B.A.)
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; (A.F.); (B.A.)
| | - Jiabei Tong
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
| | - Thilakavathy Karuppiah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Narcisse M. S. Joseph
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (O.D.H.M.); (J.T.); (N.M.S.J.)
- Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research, 173, Agaram Main Rd, Selaiyur, Chennai 600073, India
| |
Collapse
|
21
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
22
|
Juurikka K, Dufour A, Pehkonen K, Mainoli B, Campioni Rodrigues P, Solis N, Klein T, Nyberg P, Overall CM, Salo T, Åström P. MMP8 increases tongue carcinoma cell-cell adhesion and diminishes migration via cleavage of anti-adhesive FXYD5. Oncogenesis 2021; 10:44. [PMID: 34059618 PMCID: PMC8167110 DOI: 10.1038/s41389-021-00334-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
Matrix metalloproteinases (MMPs) modify bioactive factors via selective processing or degradation resulting in tumour-promoting or tumour-suppressive effects, such as those by MMP8 in various cancers. We mapped the substrates of MMP8 to elucidate its previously shown tumour-protective role in oral tongue squamous cell carcinoma (OTSCC). MMP8 overexpressing (+) HSC-3 cells, previously demonstrated to have reduced migration and invasion, showed enhanced cell-cell adhesion. By analysing the secretomes of MMP8 + and control cells with terminal amine isotopic labelling of substrates (TAILS) coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS), we identified 36 potential substrates of MMP8, including FXYD domain-containing ion transport regulator 5 (FXYD5). An anti-adhesive glycoprotein FXYD5 has been previously shown to predict poor survival in OTSCC. Cleavage of FXYD5 by MMP8 was confirmed using recombinant proteins. Furthermore, we detected a loss of FXYD5 levels on cell membrane of MMP8 + cells, which was rescued by inhibition of the proteolytic activity of MMP8. Silencing (si) FXYD5 increased the cell-cell adhesion of control but not that of MMP8 + cells. siFXYD5 diminished the viability and motility of HSC-3 cells independent of MMP8 and similar effects were seen in another tongue cancer cell line, SCC-25. FXYD5 is a novel substrate of MMP8 and reducing FXYD5 levels either with siRNA or cleavage by MMP8 increases cell adhesion leading to reduced motility. FXYD5 being a known prognostic factor in OTSCC, our findings strengthen its potential as a therapeutic target.
Collapse
Affiliation(s)
- K Juurikka
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - A Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - K Pehkonen
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - B Mainoli
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
| | - P Campioni Rodrigues
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - N Solis
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - T Klein
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - P Nyberg
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
| | - C M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - T Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - P Åström
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Centre for Blood Research, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada. .,Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
23
|
Kalinina A, Golubeva I, Kudryavtsev I, Khromova N, Antoshina E, Trukhanova L, Gorkova T, Kazansky D, Khromykh L. Cyclophilin A is a factor of antitumor defense in the early stages of tumor development. Int Immunopharmacol 2021; 94:107470. [PMID: 33640856 DOI: 10.1016/j.intimp.2021.107470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 01/12/2023]
Abstract
Cyclophilin A (CypA) is a pro-inflammatory factor with multiple immunomodulating effects. Here, we investigated the effects of recombinant human CypA (rhCypA) as a factor of antitumor host defense. Our results demonstrated that rhCypA dramatically inhibited the growth of murine transplantable tumors (mammary adenocarcinoma Ca755, melanoma B16, Lewis lung carcinoma (LLC), and cervical cancer CC-5). In the B16 model, rhCypA effects were observed only when tumor cells were transplanted at the significantly reduced injection dose, indicating that antitumor properties of rhCypA are more effective at the initial stages of cancer development. Antitumor effect of rhCypA in the CC-5 model was comparable to the action of 5-fluorouracil (5FU), and rhCypA administration prevented 5FU - induced leukopenia in the blood of tumor-bearing mice. In the LLC model, rhCypA injection before but not after tumor resection significantly suppressed the formation of post-surgical metastases. RhCypA exhibited no direct cytotoxic effects in vitro on human leukemia cells (K-562, HL-60, KG-1), indicating that rhCypA antitumor action could be mediated by its immunomodulating activity. In the B16 model, rhCypA had no impact on tumor angiogenesis and gene expression of several MMPs, endogenous CypA, and CD147, which play a crucial role in cancer progression. However, in this model, rhCypA stimulated gene expression of MMPs 8, 9, and 12 that could contribute to malignancy growth inhibition. Here, our findings pointed out CypA as one of the factors of antitumor host defense that can effectively control the initial stages of tumor and metastases formation by regulating the action of MMPs and changing the tumor microenvironment.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Irina Golubeva
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Igor Kudryavtsev
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Natalia Khromova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Elena Antoshina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Lubov Trukhanova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Tatyana Gorkova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Dmitry Kazansky
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Ludmila Khromykh
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation.
| |
Collapse
|
24
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
25
|
Peltonen R, Hagström J, Tervahartiala T, Sorsa T, Haglund C, Isoniemi H. High Expression of MMP-9 in Primary Tumors and High Preoperative MPO in Serum Predict Improved Prognosis in Colorectal Cancer with Operable Liver Metastases. Oncology 2020; 99:144-160. [PMID: 33027796 DOI: 10.1159/000510609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The liver metastases of colorectal cancer (CRC) can be surgically treated in selected cases, with continuously improving results. Matrix metalloproteinases (MMPs) contribute to cancer invasion by degrading the extracellular matrix, and elevated levels of MMP-2, MMP-8, and MMP-9 have been detected in several malignancies. Myeloperoxidase (MPO) is a mediator of tissue damage that can oxidatively activate latent MMPs. We evaluated the prognostic value of MMP-2, MMP-8, and MMP-9 in tissue samples of primary tumors and liver metastases and the pre- and postoperative serum levels of MMP-8, MMP-9, and MPO in CRC patients undergoing liver resection. METHODS Tissue and serum samples were obtained from 111 patients who had primary colorectal tumors and their liver metastases surgically treated at the Helsinki University Hospital between 1988 and 2007. Tissue expression of MMP-2, MMP-8, and MMP-9 in primary tumors and liver metastases was evaluated by immunohistochemistry. Pre- and postoperative serum concentrations of MMP-8, MMP-9, and MPO were determined using a time-resolved immunofluorometric assay or commercially available enzyme-linked immunosorbent assay kits. Clinical data were retrieved from patient records and the Central Statistical Office of Finland. Associations with disease-free survival (DFS) and overall survival (OS) were estimated using Cox regression analysis and the Kaplan-Meier method. RESULTS High expression of MMP-9 in colorectal tumor tissue was associated with better DFS (p = 0.010), and high preoperative MPO in serum with improved DFS and OS (p < 0.001 and p = 0.014, respectively). The prognostic significance varied according to gender, age, and the synchronicity of liver metastases. CONCLUSION Low preoperative MPO in serum might identify patients at high risk of recurrence and death after resection of colorectal liver metastases. Elevated preoperative MPO and high expression of MMP-9 in colorectal tumor tissue indicate an improved prognosis. The use of these biomarkers should be adjusted according to clinical characteristics.
Collapse
Affiliation(s)
- Reetta Peltonen
- Transplantation and Liver Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, Helsinki, Finland.,Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland.,Department of Gastrointestinal Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Helena Isoniemi
- Transplantation and Liver Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Quesnel A, Karagiannis GS, Filippou PS. Extracellular proteolysis in glioblastoma progression and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188428. [PMID: 32956761 DOI: 10.1016/j.bbcan.2020.188428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Gliomas encompass highly invasive primary central nervous system (CNS) tumours of glial cell origin with an often-poor clinical prognosis. Of all gliomas, glioblastoma is the most aggressive form of primary brain cancer. Current treatments in glioblastoma are insufficient due to the invasive nature of brain tumour cells, which typically results in local tumour recurrence following treatment. The latter represents the most important cause of mortality in glioblastoma and underscores the necessity for an in-depth understanding of the underlying mechanisms. Interestingly, increased synthesis and secretion of several proteolytic enzymes within the tumour microenvironment, such as matrix metalloproteinases, lysosomal proteases, cathepsins and kallikreins for extracellular-matrix component degradation may play a major role in the aforementioned glioblastoma invasion mechanisms. These proteolytic networks are key players in establishing and maintaining a tumour microenvironment that promotes tumour cell survival, proliferation, and migration. Indeed, the targeted inhibition of these proteolytic enzymes has been a promisingly useful therapeutic strategy for glioblastoma management in both preclinical and clinical development. We hereby summarize current advances on the biology of the glioblastoma tumour microenvironment, with a particular emphasis on the role of proteolytic enzyme families in glioblastoma invasion and progression, as well as on their subsequent prognostic value as biomarkers and their therapeutic targeting in the era of precision medicine.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom.
| |
Collapse
|
27
|
Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: Accomplices in metastasis. Cancer Lett 2020; 492:11-20. [PMID: 32745581 DOI: 10.1016/j.canlet.2020.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Metastasis is a critical cause of treatment failure and death in patients with advanced malignancies. Tumor cells can leave the primary site and enter the bloodstream; these circulating tumor cells then colonize target organs by overcoming blood shear stress, evading immune surveillance, and silencing the offensive capabilities of immune cells, eventually forming metastatic foci. From leaving the primary focus to the completion of distant metastasis, malignant tumor cells are supported and/or antagonized by certain immune cells. In particular, it has been found that myeloid granulocytes play an important role in this process. This review therefore aims to comprehensively describe the significance of neutrophils in solid tumor metastasis in terms of their supporting role in initiating the invasion and migration of tumor cells and assisting the colonization of circulating tumor cells in distant target organs, with the hope of providing insight into and ideas for anti-tumor metastasis treatment of tumor patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weilun Huang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Plastic and Cosmetic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Isabela Avila-Rodríguez M, Meléndez-Martínez D, Licona-Cassani C, Manuel Aguilar-Yañez J, Benavides J, Lorena Sánchez M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 2020; 13:3-14. [PMID: 32440346 PMCID: PMC7238406 DOI: 10.3892/br.2020.1300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest-growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
Collapse
Affiliation(s)
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | | | - José Manuel Aguilar-Yañez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
- Scicore Medical SAPI de CV, Monterrey, Nuevo León 64920, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
| |
Collapse
|
29
|
Microfluidic adhesion analysis of single glioma cells for evaluating the effect of drugs. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9734-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Wu L, Saxena S, Singh RK. Neutrophils in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:1-20. [PMID: 32036601 DOI: 10.1007/978-3-030-35723-8_1] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neutrophils are the first responders to inflammation, infection, and injury. As one of the most abundant leukocytes in the immune system, neutrophils play an essential role in cancer progression, through multiple mechanisms, including promoting angiogenesis, immunosuppression, and cancer metastasis. Recent studies demonstrating elevated neutrophil to lymphocyte ratios suggest neutrophil as a potential therapeutic target and biomarker for disease status in cancer. This chapter will discuss the phenotypic and functional changes in the neutrophil in the tumor microenvironment, the underlying mechanism(s) of neutrophil facilitated cancer metastasis, and clinical potential of neutrophils as a prognostic/diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
31
|
Miguel AFP, Mello FW, Melo G, Rivero ERC. Association between immunohistochemical expression of matrix metalloproteinases and metastasis in oral squamous cell carcinoma: Systematic review and meta-analysis. Head Neck 2019; 42:569-584. [PMID: 31750584 DOI: 10.1002/hed.26009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of this systematic review (SR) was to summarize and critically appraise available evidence on the association of the immunohistochemical expression of matrix metalloproteinases (MMPs) with the occurrence of lymph node/distant metastasis of oral squamous cell carcinoma (OSCC). METHODS Searches were conducted in five main electronic and three gray literature databases. RESULTS From 2128 records identified, 50 were included for qualitative analysis. A total of 12 MMPs were identified (-1, -2, -3, -7, -8, -9, -10, -11, -13, -25, -26, and MT1-MMP). Most included studies reported a positive association of MMP-1, -2, -3, -7, -9, and MT1-MMP with lymph node metastasis. MMP-8, -25, and -26 were not associated with lymph node metastasis. CONCLUSIONS According to this SR, MMP-1, -2, -3, -7, -9, and MT1-MMP seem to play an important role in lymph node metastasis of OSCC.
Collapse
Affiliation(s)
- Andressa F P Miguel
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernanda W Mello
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gilberto Melo
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Elena R C Rivero
- Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
32
|
Spencer P, Ye Q, Song L, Parthasarathy R, Boone K, Misra A, Tamerler C. Threats to adhesive/dentin interfacial integrity and next generation bio-enabled multifunctional adhesives. J Biomed Mater Res B Appl Biomater 2019; 107:2673-2683. [PMID: 30895695 PMCID: PMC6754319 DOI: 10.1002/jbm.b.34358] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/07/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022]
Abstract
Nearly 100 million of the 170 million composite and amalgam restorations placed annually in the United States are replacements for failed restorations. The primary reason both composite and amalgam restorations fail is recurrent decay, for which composite restorations experience a 2.0-3.5-fold increase compared to amalgam. Recurrent decay is a pernicious problem-the standard treatment is replacement of defective composites with larger restorations that will also fail, initiating a cycle of ever-larger restorations that can lead to root canals, and eventually, to tooth loss. Unlike amalgam, composite lacks the inherent capability to seal discrepancies at the restorative material/tooth interface. The low-viscosity adhesive that bonds the composite to the tooth is intended to seal the interface, but the adhesive degrades, which can breach the composite/tooth margin. Bacteria and bacterial by-products such as acids and enzymes infiltrate the marginal gaps and the composite's inability to increase the interfacial pH facilitates cariogenic and aciduric bacterial outgrowth. Together, these characteristics encourage recurrent decay, pulpal damage, and composite failure. This review article examines key biological and physicochemical interactions involved in the failure of composite restorations and discusses innovative strategies to mitigate the negative effects of pathogens at the adhesive/dentin interface. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2466-2475, 2019.
Collapse
Affiliation(s)
- Paulette Spencer
- Institute for Bioengineering Research, School of Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas,1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Qiang Ye
- Institute for Bioengineering Research, School of Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Linyong Song
- Institute for Bioengineering Research, School of Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Ranganathan Parthasarathy
- Department of Civil Engineering, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA
| | - Kyle Boone
- Institute for Bioengineering Research, School of Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Anil Misra
- Institute for Bioengineering Research, School of Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Department of Civil Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, School of Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas,1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| |
Collapse
|
33
|
Feng J, Chen Y, Hua W, Sun X, Chen Y, Liu Y, Fan J, Zhao Y, Zhao L, Xu X, Yang X. The MMP -8 rs11225395 Promoter Polymorphism Increases Cancer Risk of Non-Asian Populations: Evidence from a Meta-Analysis. Biomolecules 2019; 9:E570. [PMID: 31590330 PMCID: PMC6843622 DOI: 10.3390/biom9100570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
This meta-analysis aimed to systematically review the evidence on cancer risk of the MMP-8 rs11225395 promoter polymorphism. Relevant studies published by 12 June 2019 were identified by systematically searching PubMed, Web of Science, Cochrane Library, CNKI and Wanfang databases. R programs and STATA software were used to calculate odds ratio (OR) and 95% confidence interval (CI). In total, 7375 cancer samples and 8117 controls were included by integrating 15 case-control data sets. Pooled estimates from the statistical analysis revealed no statistical significance for the association between this polymorphism and cancer risk. All pooled estimates resulting from subgroup analyses by cancer type and sample size were not materially altered and did not draw significantly different conclusions. The stratified analyses according to geographic region showed the statistical significance for increased cancer risk of the MMP-8 rs11225395 polymorphism in non-Asian populations under the allele model (OR = 1.11, 95% CI: 1.04-1.19), homozygote model (OR = 1.22, 95% CI: 1.05-1.41), heterozygote model (OR = 1.21, 95% CI: 1.07-1.36), and dominant model (OR = 1.21, 95% CI: 1.08-1.35). However, no statistical significance was detected in Asian populations. In conclusion, these findings suggested that the MMP-8 rs11225395 polymorphism is associated with elevated susceptibility to cancer in non-Asian populations.
Collapse
Affiliation(s)
- Jiarong Feng
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.C.); (X.S.); (Y.C.)
| | - Yudi Chen
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.C.); (X.S.); (Y.C.)
| | - Wenxi Hua
- Medical College, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.Z.)
| | - Xiaohan Sun
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.C.); (X.S.); (Y.C.)
| | - Yanjie Chen
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.C.); (X.S.); (Y.C.)
| | - Yu Liu
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.C.); (X.S.); (Y.C.)
| | - Jiaying Fan
- Department of Biotechnology, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China;
| | - Yuening Zhao
- Medical College, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.Z.)
| | - Lixiang Zhao
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xiaojing Xu
- Department of Cell Biology, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xiaoqin Yang
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, 199 Ren’ai Road, Suzhou 215123, China (Y.C.); (X.S.); (Y.C.)
| |
Collapse
|
34
|
The Role of MMP8 in Cancer: A Systematic Review. Int J Mol Sci 2019; 20:ijms20184506. [PMID: 31514474 PMCID: PMC6770849 DOI: 10.3390/ijms20184506] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have traditionally been considered as tumor promoting enzymes as they degrade extracellular matrix components, thus increasing the invasion of cancer cells. It has become evident, however, that MMPs can also cleave and alter the function of various non-matrix bioactive molecules, leading to both tumor promoting and suppressive effects. We applied systematic review guidelines to study MMP8 in cancer including the use of MMP8 as a prognostic factor or as a target/anti-target in cancer treatment, and its molecular mechanisms. A total of 171 articles met the inclusion criteria. The collective evidence reveals that in breast, skin and oral tongue cancer, MMP8 inhibits cancer cell invasion and proliferation, and protects patients from metastasis via cleavage of non-structural substrates. Conversely, in liver and gastric cancers, high levels of MMP8 worsen the prognosis. Expression and genetic alterations of MMP8 can be used as a prognostic factor by examination of the tumor and serum/plasma. We conclude, that MMP8 has differing effects on cancers depending on their tissue of origin. The use of MMP8 as a prognostic factor alone, or with other factors, seems to have potential. The molecular mechanisms of MMP8 in cancer further emphasize its role as an important regulator of bioactive molecules.
Collapse
|
35
|
Carpén T, Sorsa T, Jouhi L, Tervahartiala T, Haglund C, Syrjänen S, Tarkkanen J, Mohamed H, Mäkitie A, Hagström J, Mattila PS. High levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the serum are associated with poor prognosis in HPV-negative squamous cell oropharyngeal cancer. Cancer Immunol Immunother 2019; 68:1263-1272. [PMID: 31240326 PMCID: PMC6682571 DOI: 10.1007/s00262-019-02362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/17/2019] [Indexed: 01/19/2023]
Abstract
Background An emerging subset of oropharyngeal squamous cell carcinomas (OPSCC) is caused by HPV. HPV-positive OPSCC has a better prognosis than HPV-negative OPSCC, but other prognostic markers for these two different diseases are scarce. Our aim was to evaluate serum levels and tumor expression of matrix metalloproteinase-8 (MMP-8) and tissue inhibitor of metalloproteinase-1 (TIMP-1) and to assess their prognostic role in HPV-positive and HPV-negative OPSCC. Materials and methods A total of 90 consecutive OPSCC patients diagnosed and treated with curative intent at the Helsinki University Hospital between 2012 and 2016 were included. Serum samples were prospectively collected. An immunofluorometric assay and an enzyme-linked immunosorbent assay were used to determine MMP-8 and TIMP-1 serum concentrations, respectively. HPV status of the tumors was determined using a combination of HPV-DNA genotyping and p16-INK4a immunohistochemistry. The endpoints were overall survival (OS) and disease-free survival (DFS). Results High TIMP-1 serum levels were strongly and independently associated with poorer OS (adjusted HR 14.7, 95% CI 1.8–117.4, p = 0.011) and DFS (adjusted HR 8.7, 95% CI 1.3–57.1, p = 0.024) among HPV-negative patients; this association was not observed in HPV-positive OPSCC. Although TIMP-1 was immunoexpressed in the majority of the tumor tissue samples, the level of immunoexpression was not associated with prognosis, nor did MMP-8 serum levels. Conclusion Our results indicate that serum TIMP-1 levels may serve as an independent prognostic marker for HPV-negative OPSCC patients.
Collapse
Affiliation(s)
- Timo Carpén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland. .,Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland.
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 41, 00014 HUS, Helsinki, Finland.,Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Lauri Jouhi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 41, 00014 HUS, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 440, 00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Pathology, Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jussi Tarkkanen
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland
| | - Hesham Mohamed
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, 171 76, Stockholm, Sweden.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Petri S Mattila
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland
| |
Collapse
|
36
|
Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers (Basel) 2019; 11:cancers11040564. [PMID: 31010242 PMCID: PMC6520693 DOI: 10.3390/cancers11040564] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer is not only about the tumor cell itself, but also about other involved players including cancer cell recruited immune cells, their released pro-inflammatory factors, and the extracellular matrix. These players constitute the tumor microenvironment and play vital roles in the cancer progression. Neutrophils—the most abundant white blood cells in the circulation system—constitute a significant part of the tumor microenvironment. Neutrophils play major roles linking inflammation and cancer and are actively involved in progression and metastasis. Additionally, recent data suggest that neutrophils could be considered one of the emerging targets for multiple cancer types. This review summarizes the most recent updates regarding neutrophil recruitments and functions in the tumor microenvironment as well as potential development of neutrophils-targeted putative therapeutic strategies.
Collapse
|
37
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
38
|
Yang X, Liang R, Liu C, Liu JA, Cheung MPL, Liu X, Man OY, Guan XY, Lung HL, Cheung M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. J Exp Clin Cancer Res 2019; 38:17. [PMID: 30642390 PMCID: PMC6330758 DOI: 10.1186/s13046-018-0998-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022] Open
Abstract
Background In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma. Methods Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases. Results High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling. Conclusions These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0998-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xintao Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Rui Liang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Chunxi Liu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Xuelai Liu
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - On Ying Man
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
39
|
Osuala KO, Ji K, Mattingly RR, Sloane BF. Breast Cancer: Proteolysis and Migration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:401-411. [PMID: 31456196 DOI: 10.1007/978-3-030-20301-6_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding breast cancer cell proteolysis and migration is crucial for developing novel therapies to prevent local and distant metastases. Human cancer cells utilize many biological functions comparable to those observed during embryogenesis conferring the cancer cells with survival advantages. One such advantage is the ability to secrete proteases into the tumor microenvironment in order to remodel the extracellular matrix to facilitate migration. These proteases degrade the extracellular matrix, which initially functions as a barrier to cancer cell escape from their site of origin. The extracellular matrix also functions as a reservoir for growth factors that can be released by the secreted proteases and thereby further aid tumor growth and progression. Other survival advantages of tumor cells include: the ability to utilize multiple modes of motility, thrive in acidic microenvironments, and the tumor cell's ability to hijack stromal and immune cells to foster their own migration and survival. In order to reduce metastasis, we must focus our efforts on addressing the survival advantages that tumor cells have acquired.
Collapse
Affiliation(s)
- Kingsley O Osuala
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Kyungmin Ji
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Raymond R Mattingly
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bonnie F Sloane
- Department of Pharmacology and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
40
|
SenGupta S, Subramanian BC, Parent CA. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol 2018; 105:449-462. [PMID: 30549315 DOI: 10.1002/jlb.3ri0718-282r] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/20/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
The directed migration of neutrophils to sites of injury or infection is mediated by complex networks of chemoattractant-receptor signaling cascades. The recent appreciation of neutrophils as active participants in tumor progression and metastasis has drawn attention to a number of chemokine-receptor systems that may drive their recruitment to tumors. However, the dynamic nature of the tumor microenvironment (TME) along with the phenotypic diversity among tumor-associated neutrophils (TANs) call for a more comprehensive approach to understand neutrophil trafficking to tumors. Here, we review recent advances in understanding how guidance cues underlie neutrophil migration to primary and secondary tumor sites. We also discuss how the presence of other myeloid cells, such as functionally diverse subsets of tumor-associated macrophages (TAMs), can further influence neutrophil accumulation in tumors. Finally, we highlight the importance of hypoxia sensing in localizing TAMs and TANs in the tumor niche and provide a cohesive view on how both myeloid cell types shape TME-associated extracellular matrix organization, which in turn contribute to tumor progression.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Pakkanen PP, Aaltonen LM, Sorsa TA, Tervahartiala TI, Hagström JK, Ilmarinen TT. Serum matrix metalloproteinase 8 and tissue inhibitor of metalloproteinase 1: Potential markers for malignant transformation of recurrent respiratory papillomatosis and for prognosis of laryngeal cancer. Head Neck 2018; 41:309-314. [PMID: 30549356 DOI: 10.1002/hed.25459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/13/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Biomarkers that could predict malignant transformation of recurrent respiratory papillomatosis (RRP) would be useful in patient follow-up. We investigated whether serum matrix metalloproteinase 8 (MMP-8) and tissue inhibitor of metalloproteinase 1 (TIMP-1) could predict malignant transformation of RRP and whether they associate with survival in laryngeal squamous cell carcinoma (LSCC) without preexisting RRP. METHODS We analyzed serum MMP-8 (S-MMP-8) and serum TIMP-1 (s-TIMP-1) in 114 patients: 55 were treated for RRP and 59 for LSCC without preexisting RRP. Five patients with RRP developed LSCC during follow-up. RESULTS Elevated S-MMP-8 level in RRP was associated with malignant transformation (P = .01). Compared to patients with RRP, S-MMP-8 in patients with LSCC was significantly higher (P < .001). Increased S-TIMP-1 level in LSCC was associated with poor overall survival (P = .02) and recurrence-free survival (P = .05). CONCLUSION In RRP, high S-MMP-8 may predict malignant transformation. In LSCC, elevated S-TIMP-1 is connected to poor survival.
Collapse
Affiliation(s)
- Pihla P Pakkanen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leena-Maija Aaltonen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo A Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Dental Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Taina I Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Jaana K Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Taru T Ilmarinen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
42
|
Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. Priming the seed: Helicobacter pylori alters epithelial cell invasiveness in early gastric carcinogenesis. World J Gastrointest Oncol 2018; 10:231-243. [PMID: 30254719 PMCID: PMC6147766 DOI: 10.4251/wjgo.v10.i9.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for the development of gastric cancer (GC), one of the most common and deadliest neoplasms worldwide. H. pylori infection induces chronic inflammation in the gastric mucosa that, in the absence of treatment, may progress through a series of steps to GC. GC is only one of several clinical outcomes associated with this bacterial infection, which may be at least partially attributed to the high genetic variability of H. pylori. The biological mechanisms underlying how and under what circumstances H. pylori alters normal physiological processes remain enigmatic. A key aspect of carcinogenesis is the acquisition of traits that equip preneoplastic cells with the ability to invade. Accumulating evidence implicates H. pylori in the manipulation of cellular and molecular programs that are crucial for conferring cells with invasive capabilities. We present here an overview of the main findings about the involvement of H. pylori in the acquisition of cell invasive behavior, specifically focusing on the epithelial-to-mesenchymal transition, changes in cell polarity, and deregulation of molecules that control extracellular matrix remodeling.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Clinical Department, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Public Nutrition Section, School of Nutrition, University of Costa Rica, San José 2060, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures, University of Costa Rica, San José 2060, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
43
|
Hu PS, Chang WS, Chou AK, Hsia NY, Hung YW, Lin CW, Wu CW, Huang CY, Wu MF, Liao CH, Tsai CW, Bau DAT, Gong CL. The Association of MMP-8 Genotypes with Pterygium. ACTA ACUST UNITED AC 2018; 32:41-46. [PMID: 29275297 DOI: 10.21873/invivo.11202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Pterygium is composed of proliferating fibrovascular tissue, and its formation and progression are closely related to the homeostasis of the extracellular microenvironment. However, few studies have examined the contribution of matrix metalloproteinases (MMP) to either diagnostic or prognostic potential in pterygium. In this study, we investigated the contribution of a polymorphism in the promoter region of MMP-8 (-799C/T) and two non-synonymous polymorphisms (Val436Ala and Lys460Thr) to pterygium. MATERIALS AND METHODS In this study, 134 patients with pterygium and 268 non-cancer controls patients were collected and the MMP-8 -799C/T, Val436Ala and Lys460Thr polymorphic genotypes of each subject were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS The results showed that the three polymorphisms investigated were not significantly associated with risk of pterygium. In addition, the stratified analysis showed that there was no interaction between MMP-8 genotype with age or gender on pterygium risk determination. CONCLUSION Polymorphisms at MMP-8 -799C/T, Val436Ala and Lys460Thr may not mainly contribute to determining personal susceptibility to pterygium in the Taiwanese examined.
Collapse
Affiliation(s)
- Pei-Shin Hu
- Department of Ophthalmology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - An-Kuo Chou
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ning-Yi Hsia
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Wen Hung
- Department of Medicine Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Lin
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Cin-Wun Wu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chung-Yu Huang
- Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, R.O.C
| | - Meng-Feng Wu
- Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, R.O.C
| | - Cheng-Hsi Liao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
44
|
Meng C, Bai R, Zhao Z, Huang G, Jin T, Feng W, Liu W. MMP-8 single-nucleotide polymorphisms are related to ankylosing spondylitis in Chinese Han population. Medicine (Baltimore) 2018; 97:e12136. [PMID: 30170451 PMCID: PMC6392754 DOI: 10.1097/md.0000000000012136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ankylosing spondylitis (AS) is an extreme form of inflammatory arthritis which always leads to bony fusion of vertebral and chronic pain of back. A lot of genes including interleukin, matrix metalloproteinases (MMPs), and endoplasmic reticulum aminopeptidase were found associated with AS. MMP family members were involved in the autoimmune disease and orthopedic diseases such as rheumatoid arthritis and osteoarthritis, while few studies concentrated on the correlation between single-nucleotide polymorphisms (SNPs) in MMP and AS. In addition, there is no report on the relationship between MMP-8 and AS. To investigate the association between SNPs in MMP-8 and AS, we recruited 268 patients with AS and 654 healthy people to conduct a case-control study. Five SNPs including rs3740938, rs2012390, rs1940475, rs11225394, and rs11225395 of MMP-8 gene were genotyped. It was found rs3740938 of MMP-8 was associated with an increased risk of AS under the dominant model and additive model after adjustment for gender and age by performing logistic regression analysis (odds ratio [OR] = 1.49, 95% confidence interval [CI] = 1.02-2.18, P = .038; OR = 1.37, 95% CI = 1.01-1.87, P = .042, respectively). Moreover, haplotype "GGTCA" was associated with an increased risk of AS without adjustment for age and gender (OR = 1.75, 95% CI = 1.05-2.92, P = .032), while no positive result was found after adjustment for age and gender. Based on our results, our study indicates significant association between SNPs of MMP-8 and AS risk in a Chinese Han population and these results provide the first evidence that MMP-8 is correlated with AS.
Collapse
Affiliation(s)
- Chenyang Meng
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pediatric Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Rui Bai
- Department of Pediatric Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhenqun Zhao
- Department of Pediatric Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Guimei Huang
- Department of Administrative Affairs Office, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianbo Jin
- School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Wei Feng
- Department of Pelvic and Acetabular Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wanlin Liu
- Department of Pediatric Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
45
|
Co-delivery of curcumin and serratiopeptidase in HeLa and MCF-7 cells through nanoparticles show improved anti-cancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:673-684. [PMID: 30184794 DOI: 10.1016/j.msec.2018.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022]
Abstract
Curcumin was employed to prepare anticancer nanoparticles (size 175 ± 15 nm) using anti-inflammatory enzyme serratiopeptidase by desolvation method. Here serratiopeptidase acted as a carrier as well as bioactive molecule in the nanoformulations. The Cur-SPD NPs (curcumin loaded serratiopeptidase nanoparticles) were characterized using DLS, FESEM and FTIR. The in vitro release behavior depicted biphasic pattern at 37 °C (pH 7.4) and release of 95% of both molecules occurred in 24 h. Serratiopeptidase not only provided stability to curcumin but also increased its effectiveness against cancer cells. These nanoparticles had anti-cancer activity in MCF-7 and HeLa cell lines as shown by cytotoxicity assay, DAPI nuclear staining, ROS production and DNA damage. The immunomodulatory tests showed that Cur-SPD NPs reduce level of IL-6 but increase TNFα level in THP1 cell lines. Structural similarity of serratiopeptidase to matrix metallo proteases (MMPs), particularly MMP8, have been found (based on low RMSD values) to induce TNFα production and play tumour suppressive role in certain cancers. Thus anti-cancer properties of Cur-SPD NPs may be attributed to synergistic effect of curcumin and serratiopeptidase. Thus results in present investigation provide an insight on role of serratiopeptidase in development of co-delivery of multifunctional nanoparticles with anti-cancer properties introduction.
Collapse
|
46
|
Ciążyńska M, Bednarski IA, Wódz K, Kolano P, Narbutt J, Sobjanek M, Woźniacka A, Lesiak A. Proteins involved in cutaneous basal cell carcinoma development. Oncol Lett 2018; 16:4064-4072. [PMID: 30128029 DOI: 10.3892/ol.2018.9126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy type in the Caucasian population, with a continuously increasing incidence rate. The etiology of BCC remains unknown, but it appears to have a multifactorial origin resulting from intrinsic and extrinsic factors, including short-wavelength ultraviolet B radiation. The role of specific proteins in BCC that are known to be responsible for the regulation of cell division and are involved in skin aging, including transforming growth factor (TGF)-β, Smad2, matrix metalloproteinases (MMPs)-1, -3, -8 and -9, cathepsin-K and progerin, remains unknown. The aim of the present study was to assess the mRNA and protein expression profile of samples with diagnosed nodular BCC (nBCC) compared with that of healthy skin samples collected from matched areas. The study group included 22 patients (10 men and 12 women; mean age, 59 years; range, 44-82 years) with pathologically confirmed nBCC, and 22 healthy volunteers (10 men and 12 women; mean age, 59 years; range, 43-78 years) as a control group. The expression of the studied proteins was assessed in all samples by western blotting and reverse transcription-quantitative polymerase chain reaction analysis. Statistically significant increases in the expression of TGF-β, Smad2, cathepsin-K, progerin and MMP-1, -3, -8 and -9 were detected in skin biopsies with diagnosed nBCC compared with the control group, confirming the important role of these proteins in skin carcinogenesis.
Collapse
Affiliation(s)
- Magdalena Ciążyńska
- Department of Proliferative Diseases, Regional Oncology Centre, Łódź 93-513, Poland
| | - Igor A Bednarski
- Department of Dermatology, Paediatric Dermatology and Dermatological Oncology, Medical University of Łódź, Łódź 91-347, Poland
| | - Karolina Wódz
- Department of Experimental Immunology, Medical University of Łódź, Łódź 90-237, Poland
| | - Paweł Kolano
- Department of General and Oncological Surgery, Tomaszow Health Centre, Tomaszow Mazowiecki 97-200, Poland
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Dermatological Oncology, Medical University of Łódź, Łódź 91-347, Poland
| | - Michał Sobjanek
- Department of Dermatology, Venereology and Allergy, Medical University of Gdansk, Gdansk 80-210, Poland
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Łódź, Łódź 90-647, Poland
| | - Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Dermatological Oncology, Medical University of Łódź, Łódź 91-347, Poland
| |
Collapse
|
47
|
Uveal melanocytes express high constitutive levels of MMP-8 which can be upregulated by TNF-α via the MAPK pathway. Exp Eye Res 2018; 175:181-191. [PMID: 29935949 DOI: 10.1016/j.exer.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinase (MMP)-8 is the most potent MMP for degrading collagen type-1 and plays an important role in inflammatory reactions and tissue remolding processes. MMP-8 is expressed mainly by polymorphonuclear leukocytes and is not expressed constitutively by most non-leukocytes. We studied the constitutive and TNF-α-induced expression of MMP-8 in cultured human uveal melanocytes (UM) and the relevant signal pathways involved. Conditioned media and cells were collected from UM and other cell types. MMP-8 proteins and mRNA were measured using ELISA kit, western blot and real time RT-PCR, respectively. Phosphorylated p38 MAPK, ERK1/2, and JNK1/2 were measured by ELISA kit and western blot. Very high levels of MMP-8 proteins and mRNA were detected in the conditioned media and cell lysates in 11 UM cell lines and three uveal melanoma cell lines cultured without serum, but not in media and cell lysates from other ocular resident cells or 12 malignant cell lines from other tissues, with exception of cutaneous melanoma cells. TNF-α moderately increased MMP-8 mRNA and protein levels in a dose- and time-dependent manner, accompanied by a significant increase of phosphorylated JNK1/2 and ERK1/2 in cell lysates. ERK1/2 (U0126) and JNK1/2 (SP600125) inhibitors significantly blocked TNF-α-induced and constitutive expression of MMP-8 in UM. This is the first report on the expression and secretion of MMP-8 by UM and uveal melanoma cells. The data suggest that UM may play a role in the remolding process and pathogenesis of inflammatory-related diseases in the eye via secretion of MMP-8.
Collapse
|
48
|
Pei JS, Chang WS, Hsu PC, Hung YW, Cheng SP, Tsai CW, Bau DAT, Gong CL. The Contribution of MMP-8 Promoter Genotypes to Childhood Leukemia. ACTA ACUST UNITED AC 2018; 31:1059-1064. [PMID: 29102926 DOI: 10.21873/invivo.11170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Accumulated evidence has supported the notion that matrix metalloproteinase (MMP) genotypes are associated with the susceptibility of many types of cancers. However, few reports have studied the contribution of MMP genotypes to either diagnostic or prognostic potential in non-solid tumors such as leukemia. In this study, we firstly investigated the contribution of a polymorphism in the promoter region of MMP-8 (-799C/T) and two non-synonymous polymorphisms (Val436Ala and Lys460Thr) to childhood leukemia. PATIENTS AND METHODS In this study, 266 patients with childhood acute lymphoblastic leukemia (ALL) and 266 non-cancer control patients were collected and the genomic DNA was isolated from their peripheral blood. MMP-8 -799C/T, Val436Ala and Lys460Thr polymorphic genotypes of each subject were determined by the typical polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS The results showed that the three polymorphisms were not significantly associated with an increased risk of childhood ALL in the overall investigated population. Furthermore, when the analyses were stratified by age and gender, no significant association between these genotypes and increased ALL risk was found. CONCLUSION Our findings suggest that the polymorphisms at MMP-8 -799C/T, Val436Ala and Lys460Thr may not play a major role in determining the personal susceptibility to childhood ALL in Taiwan.
Collapse
Affiliation(s)
- Jen-Sheng Pei
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Pei-Chen Hsu
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Yi-Wen Hung
- Department of Medicine Research, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Shun-Ping Cheng
- Department of Physical Medicine and Rehabilitation, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - DA-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
49
|
Abstract
Collagen and hyaluronan are the most abundant components of the extracellular matrix (ECM) and their overexpression in tumors is linked to increased tumor growth and metastasis. These ECM components contribute to a protective tumor microenvironment by supporting a high interstitial fluid pressure and creating a tortuous setting for the convection and diffusion of chemotherapeutic small molecules, antibodies, and nanoparticles in the tumor interstitial space. This review focuses on the research efforts to deplete extracellular collagen with collagenases to normalize the tumor microenvironment. Although collagen synthesis inhibitors are in clinical development, the use of collagenases is contentious and clinically untested in cancer patients. Pretreatment of murine tumors with collagenases increased drug uptake and diffusion 2-10-fold. This modest improvement resulted in decreased tumor growth, but the benefits of collagenase treatment are confounded by risks of toxicity from collagen breakdown in healthy tissues. In this review, we evaluate the published in vitro and in vivo benefits and limitations of collagenase treatment to improve drug delivery.
Collapse
Affiliation(s)
- Aaron Dolor
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| | - Francis C. Szoka
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, California. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, 94143
| |
Collapse
|
50
|
Matrix Metalloproteinase 8: Could it Benefit the CAR-T Cell Therapy of Solid Tumors?- a- Commentary on Therapeutic Potential. CANCER MICROENVIRONMENT 2018; 11:93-96. [PMID: 29589335 DOI: 10.1007/s12307-018-0208-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
|